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Abstract
We explore the contact problem of a flat-end indenter penetrating intermittently a generalized viscoelastic surface, containing

multiple characteristic times. This problem is especially relevant for nanoprobing of viscoelastic surfaces with the highly popular

tapping-mode AFM imaging technique. By focusing on the material perspective and employing a rigorous rheological approach, we

deliver analytical closed-form solutions that provide physical insight into the viscoelastic sources of repulsive forces, tip–sample

dissipation and virial of the interaction. We also offer a systematic comparison to the well-established standard harmonic excitation,

which is the case relevant for dynamic mechanical analysis (DMA) and for AFM techniques where tip–sample sinusoidal interac-

tion is permanent. This comparison highlights the substantial complexity added by the intermittent-contact nature of the interaction,

which precludes the derivation of straightforward equations as is the case for the well-known harmonic excitations. The derivations

offered have been thoroughly validated through numerical simulations. Despite the complexities inherent to the intermittent-con-

tact nature of the technique, the analytical findings highlight the potential feasibility of extracting meaningful viscoelastic proper-

ties with this imaging method.
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Introduction
Several current applications demand physical understanding of

soft dissipative materials at the nanoscale [1-5]. This type of

materials, such as polymers, biological cells and even some

metals, has been successfully described with linear viscoelastic

theory [6-8] and its characterization at the nanoscale has been

performed by various techniques, where the atomic force micro-

scope (AFM) has played a prominent role. Within AFM, quanti-

tative characterization of viscoelastic materials is usually per-

formed through contact-mode methods. Contact-resonance

AFM, force-modulation AFM and static force spectroscopy are
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the most popular examples in this category [9-13]. The perma-

nent-contact nature of these methods offers an important advan-

tage in mechanical characterization. In the case of contact-reso-

nance or force-modulation techniques, where the tip oscillates

harmonically in permanent contact with the sample, a steady-

state development between force and displacement is achieved,

which greatly simplifies the interpretation of the observables.

Furthermore its mathematical treatment shares close relation-

ship to the well-established bulk technique, dynamic mechani-

cal analysis (DMA [14,15]). The analytical simplicity afforded

by permanent tip–sample contact, however, comes with the

shortcomings of loss of accuracy in the acquisition of the topog-

raphy and sample damage induced by constant tip drag. Addi-

tionally, these methods are prone to significant tip wear and

contamination which could make quantitative characterization

unreliable due to constant changes in tip geometry.

Dynamic methods have been designed to overcome the above

issues, whereby tapping-mode AFM is arguably the most

popular technique, owing to its versatility, sturdiness and ease

of use. This technique can offer accurate topographical mea-

surements, while simultaneously offering material contrast

through the phase channel. The acquisition of material contrast

through the phase signal, known as phase spectroscopy, has

been extensively used, along with the derivation of representa-

tive energy quantities that are popularly used for compositional

mapping [16-18]. However, the direct correlation of the results

with quantitative material properties is not simple.

A number of studies have highlighted the challenges involved

in characterizing viscoelastic materials with dynamic intermit-

tent-contact methods [19-22], but further work remains, both in

accurately pinpointing the issues involved and in finding robust

solutions for them. Typically, viscoelasticity in AFM has been

oversimplified in an effort to maintain the analytics tractable,

but this has been done at the expense of implementing models

that do not properly represent the behavior of real materials, at

least with regards to the well-established classical viscoelas-

ticity, which predicts complex time behaviors for samples with

multiple characteristic times.

In this work we have adopted a strategy focused on the material

point of view, in order to determine what would happen (in

terms of force response) if a (properly modeled) viscoelastic

material is tapped by a flat indenter probe following an intermit-

tent-contact sinusoidal trajectory. From the rheological view-

point, the characterization of viscoelastic materials has been

classically performed by applying a well-defined input excita-

tion (either stress or sample strain) to elicit a response, which is

then measured. The measured output response and the well-

defined input are related through a material transfer function,

which contains the viscoelastic parameters. Standard inputs are

typically strain and stress step functions (in the case of stress re-

laxation and creep experiments, respectively) or harmonic exci-

tations (in the case of DMA). Following the spirit of classical

rheology, we regard tapping-mode AFM as a non-standard exci-

tation of a viscoelastic sample, and exploit the fact that the near

sinusoidal nature of the tip deflection in this technique implies

that the sample necessarily experiences a portion of that sinu-

soidal trajectory during the contact period. This strategy has led

us to expressions for the tip–sample force in time, in terms of

meaningful viscoelastic parameters. Additionally, further

manipulation has allowed us to obtain expressions for the

energy quantities measurable in a normal tapping-mode AFM

experiment, in terms of viscoelastic properties. This connection

represents a potentially feasible path towards the meaningful

quantitative extraction of viscoelastic properties with tapping-

mode AFM.

Results and Discussion
Contact problem for viscoelastic surfaces
Traditionally, stress analysis for linear viscoelastic materials has

been approached using the elastic–viscoelastic correspondence

principle (also known as simply “correspondence principle”), a

mathematical technique that exploits the fact that the Laplace

transformed field equations for linear viscoelastic materials

have the same form as the field equations for linear elastic ma-

terials [23,24]. The above fact is harnessed to extend the wealth

of available elastic solutions to their viscoelastic counterparts

[25-27] in the cases where the boundary conditions imposed in

the derivation of the elastic solution remain constant in time.

For a flat-end indenter penetrating a viscoelastic surface, Cheng

et al. have shown that the correspondence principle can be suc-

cessfully applied because the boundary conditions do not

change in time [28], and therefore Sneddon’s elastic solution

[29] can be extended to its viscoelastic counterpart. The above

leads to a general solution in the Laplace domain in terms of

viscoelastic operators, relating the transformed load  and

the transformed displacement  for a flat-end punch pene-

trating a viscoelastic half-space (with the time-independent

Poisson’s ratio, ν) [28]:

(1)

where  is a ratio of polynomials in the complex variable s

which is related to the viscoelastic parameters of the sample

(further explanation is provided below), and R is the circular

punch’s radius. The factor  having units of displacement,

can be regarded as the cell constant b which converts

stress–strain to force–displacement relationships [8]. This rela-

tionship (Equation 1) is physically represented in Figure 1 for
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the case of a Generalized Maxwell model with an arbitrary

number of characteristic times. The load in Equation 1 may also

be written in the time domain as a convolution of the relaxation

modulus (G(t)) with the time derivative of the displacement:

(2)

where the substitution  has been made to express

the result in terms of the widely known relaxation modulus,

which is the stress response to a unit step strain [8,30] (see Sup-

porting Information File 1 for further details about the relaxa-

tion modulus).

Figure 1: Mechanical model diagram of a flat-end indenter pene-
trating into a Generalized Maxwell (Wiechert model) viscoelastic sur-
face. The model diagram shows the relationship between the Laplace
transformed penetration  and the transformed force  The
constant b corresponds to a cell constant (with units of displacement)
which allows conversion between stress–strain and force–displace-
ment relationships [8]. By applying the correspondence principle to the
elastic solution of flat-end punch indentation (derived by Sneddon
[29]), it is possible to obtain its viscoelastic counterpart, as previously
done by Cheng et al. [28]. For the case of a time-independent
Poisson’s ratio, the cell constant reduces to b = 4R/(1 − ν).

Harmonic excitations in contact mode
Before analyzing the case of intermittent contact between a flat-

end indenter and a viscoelastic surface, we turn our attention to

the more well-established case of harmonic permanent contact.

This case closely coincides with the well-known analytical

treatment of dynamic mechanical analysis (DMA) and there-

fore, we use it as a basis of comparison for our current develop-

ments for the intermittent-contact case. Although the case of

harmonic excitations in permanent tip–sample contact in AFM

is closely related to DMA analysis, a couple of important differ-

ences exist.

With the definitions previously introduced, we can now define

the force excitation that will be applied in a tip–sample system

with permanent-contact harmonic motion, and subsequently

derive the associated displacement response. To achieve a

steady-state harmonic response in an indenter–sample system, it

is required to initially elicit a step force, which translates into a

deflection setpoint, as in contact-resonance AFM [10,31] and

force-modulation AFM [11]. In addition to that displacement

(deflection setpoint), a harmonic excitation is imposed. Mathe-

matically the total tip–sample force excitation is:

(3)

where Fs is the static force setpoint, H(t) is the Heaviside (unit

step) function, F0 is the amplitude of the harmonic excitation

force, ω is the driving and response frequency, and 

Obviously, one has no direct control over the harmonic

tip–sample force in the experiment (similar to contact-reso-

nance AFM or force-modulation AFM), but instead, a displace-

ment or force excitation is imposed on the microcantilever

probe, which results in a harmonic displacement at the tip,

which in turn leads to a harmonic tip–sample force [11] (second

term on the right hand side of Equation 3).

The above excitation force generates a displacement response

which can be conveniently derived by using Laplace trans-

forms. The displacement response at steady state is (see Sup-

porting Information File 1 for details on the derivation):

(4)

where J(t) is the creep compliance of the material (strain

response to a unit step stress [8,30]), J′(ω) is the storage compli-

ance and accompanies the portion of the harmonic response that

is in phase with the excitation, and J″(ω) refers to the loss

compliance, which accompanies the response term that is in

quadrature with the excitation. The above can be simplified

assuming a long experimental timescale (when a steady-state

harmonic response has been developed). Incorporating the fact

that limt→∞ J(t) = Je (that is, the compliance of the material ap-

proaches the equilibrium compliance, Je, at long timescales [8]),

leads to:

(5)

To obtain the energy dissipated per cycle (Ecyc) in the steady

state, we integrate the force with the derivative of the position
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over one cycle:

(6)

where T is the excitation period (T = 2π/ω) and n is an integer

which ensures that the integral in Equation 6 is performed over

one period at steady-state. The energy dissipated per cycle is

then:

(7)

which upon integration yields:

(8)

In an analogous way, the virial of the interaction (the elastic

energy quantity), defined as the convolution of force with posi-

tion  can be calculated as [18,32]:

(9)

(10)

Note that in Equation 10 we have not included the static deflec-

tion, keeping consistency with the authors who developed the

expression [18,32]. Solving the integrals yields:

(11)

The above coincides with twice the average energy stored per

cycle [8]. It also coincides with the maximum coherently

storable energy [8,33]. The maximum coherently storable

energy (energy stored by the elastic components, correspond-

ing to the in-phase portion of the harmonic response and the

equilibrium compliance contribution) occurs at the one-quarter

cycle point [33], and is:

(12)

which yields:

(13)

The above is the maximum energy stored per quarter cycle, in-

cluding the energy stored from the equilibrium modulus due to

the static deflection (second term in the right hand side). Thus,

in this application when a steady-state response is achieved, the

virial of the interaction coincides with the maximum storable

energy – if the energy stored by the equilibrium modulus due to

the static deflection is not considered. The virial in this case has

a very intuitively physical interpretation, which is not the case

in tapping-mode AFM, as will be discussed later. Last, the ratio

between dissipated energy and virial, in this case, is related to

the loss tangent (tan θ(ω)):

(14)

where θ(ω) – the loss angle – describes the phase lag (or lead)

of the response of a viscoelastic material to a harmonic excita-

tion in the steady state, and its value spans from zero, when a

material is completely elastic, to 90° when the material is com-

pletely viscous. By convention, the stress always leads the

strain. Note that the above expression is only valid for the case

of harmonic excitations when a steady-state response is

achieved. As will be shown later, this is not valid for the case of

intermittent-contact excitations, where steady-state response

cannot be assumed.

Intermittent contact
Now we turn our attention to the case when a tip interacts in

intermittent contact with a viscoelastic half-space. Specifically,

we focus on the case of a hard flat-punch indenter penetrating a

viscoelastic solid in an intermittent-contact manner, which is a

problem relevant to nanoscale spectroscopy techniques, such as

tapping-mode AFM [34,35]. In standard tapping-mode AFM, a

cantilever is harmonically excited either by imposing an oscilla-

tory motion at the base (acoustic excitation), or an oscillatory
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Figure 2: Scheme of intermittent-contact tip–sample interaction in AFM. The figure shows the results of a numerical simulation of a rectangular canti-
lever with a flat-end tip tapping on a viscoelastic surface. The black dotted line refers to the instantaneous tip deflection. The tip trajectory (blue dash-
dotted line) displays a nearly sinusoidal behavior in tapping-mode AFM, typical of high-Q environments. The green line corresponds to the sample de-
formation (instantaneous sample position). The sample viscoelastic parameters have been chosen in the simulation in such a way that it undergoes a
relatively large deformation. The above has been done for illustrative purposes. However in typical cases it is expected that the sample deformation
will be significantly smaller than tip displacement. The green solid line represents the sample position. From time t′ to time t″, tip and sample share the
same spatial coordinate, which is the key observation for the derivation of the analytical equations in this study. During this time range the deforma-
tion can be regarded as the excitation (see Equation 17). Using that displacement excitation, an analytical closed-form relation for the force can be
derived (Equation 29). At time t′, the tip–sample position is zero (taking as reference the undeformed surface), and from Equation 15 it is clear that:
Asin(ωt′) = −Zeq. At time t″, the tip–sample force becomes zero, which indicates loss of contact between tip and the sample.

force at the tip (magnetic excitation), or by intermittent local

heating near the base through a laser. As a result, the tip inter-

acts with the sample intermittently and develops a quasi-steady-

state response (Figure 2) [16,17]. The dotted blue line in

Figure 2 shows the simulated tip trajectory for an AFM cantile-

ver interacting with a viscoelastic surface in tapping-mode

AFM (simulation details are provided in the figure caption).

The instantaneous tip–sample distance, taking as reference the

undeformed sample surface, is approximately given by:

(15)

where Zeq refers to the average tip–sample position, A is the

tapping amplitude, ω is the excitation frequency, and

Asin(ωt) = z(t) is the instantaneous tip deflection. We have

omitted the phase term, usually expressed as a phase lag be-

tween cantilever excitation and response, due to the sample-

oriented analytical approach that we are undertaking. The

reasons for this will become evident through the derivations we

offer in subsequent sections.

Tip–sample force in intermittent contact of a
viscoelastic surface
Now the goal is to develop an analytical equation describing the

force in time when the tip has developed a nearly sinusoidal

response. From the sample's viewpoint, it is evident that the

specimen does not develop a sinusoidal response due to the

intermittent-contact character of the interaction. For a closer

view of this, let us examine Figure 2. The green solid line repre-

sents the position of the viscoelastic sample in time. During

some portion of time, tip and sample share the same spatial co-

ordinate. That portion of time starts at time t′, when the tip en-

counters the sample, and ends at time t″, when the tip–sample

force becomes zero (when the probe leaves the sample). From

this observation, we may regard the sample displacement exci-

tation, h(t), as:

(16)

where the negative sign in the tip–sample distance refers to the

convention that when tip–sample position is negative, the sam-

ple experiences positive deformations (h(t) > 0). The second

term in brackets in Equation 16 makes zero the displacement

excitation whenever time is out of the time range of contact,

(t′,t″). As will be shown later, finding the value of t″, requires

finding the moment when the force in time becomes zero. After

that instant, the tip continues its sinusoidal response while the

sample experiences recovery (rebound) in a profile related to

the strain retardation (creep) function, J(t) [36]. However, for

the first part of the derivation, the value of t″ is not available, so

we temporarily regard the excitation as:

(17)

knowing in advance that, at some point, the response calculated

through this technique will not be applicable for times greater

than t″. We will take care of the latter afterwards. For now, the
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excitation described by Equation 17 can be divided into two

individual functions:

(18)

where complex notation is used for mathematical convenience,

bearing in mind that (at the end) only the imaginary portion of

the response should be kept, after retransformation to the time

domain [37,38]. Linear systems allow us to investigate sepa-

rately the response to each excitation, followed by addition of

the responses at the end to find the total response via the super-

position principle. Thus, we begin by applying the Laplace

transform to the first part of the excitation:

(19)

and introducing the result into Equation 1, which gives the

transformed force response to the harmonic excitation:

(20)

where  is the relaxance of the material, which is the

transfer function connecting the transformed stress and strain,

(see Supporting Information File 1 for further details). Here we

must develop the full response of the system, because during

the small interval of harmonic excitation between t′ and t″ (see

Figure 2), it is not expected that the sample will develop a

response only associated to the pole of the driving transform (as

it is the case for the techniques studied in the previous section:

DMA, contact-resonance AFM, force-modulation AFM). To

make the treatment general, we refer to the transfer function

(also called relaxance, ) of the model in Figure 1 (see

Equation S3 in Supporting Information File 1) and insert it into

Equation 20:

(21)

The second term inside the brackets can be decomposed using

partial fractions:

(22)

Performing the algebra leads to

and

Inserting the above into the right-hand side of Equation 21

yields:

(23)

We recognize that the first term of the above equation is the

portion of the response associated with the driving transform,

and by comparison with Equation S28 and Equation S29 in

Supporting Information File 1, we observe that it corresponds to

the complex modulus (G*(ω)). The second part of Equation 23

is the part of the response associated with the poles of the mate-

rial transform, and may be regarded as the transient part of the

solution. Implementing the above observations and combining

with Equation 21 we obtain:

(24)

After retransformation of Equation 24, manipulation of the

complex algebra, and keeping in mind that only the imaginary

portion is meaningful because Im(ejωt) was used in the excita-

tion (Equation 18), we obtain:
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(25)

Now, turning our attention to the second part of the excitation in

Equation 18 and applying transformation we obtain:

(26)

Inserting Equation 26 into Equation 1 and using the relaxance

of the Generalized Maxwell model in Figure 1 (see Equation S2

in Supporting Information File 1) leads to:

(27)

Retransforming Equation 27 gives:

(28)

The term in brackets is the stress–relaxation function (stress

response to a unit step strain [8]) shifted by the time t′,

(G(t − t′)). For further details on the stress relaxation of the

Generalized Maxwell model see Equation S5 in Supporting

Information File 1. Combining Equation 25 with Equation 28,

the total solution can be obtained:

(29)

where the relations

and

have been introduced.  and θ(ω) are the absolute modulus

and the loss angle, respectively (for more details see Support-

ing Information File 1). In Equation 29 it is explicit that the

function is periodic with period  The first term inside the

curly brackets refers to the portion of the response associated

with the pole of the driving transform (jω, steady-state portion).

The second term is the term associated with the poles of the

transfer function (−1/τn, transient portion) arisen from the

harmonic excitation suddenly imposed during the impact. The

third term is the relaxation modulus,

and the fourth term is the adhesive portion of the van der Waals

(vdW) interaction, in which HA is the Hamaker constant, R is

the radius of the cylindrical punch, and a0 is the interatomic dis-

tance (ca. 0.2 nm) [39]. In Equation 29 we already included t″,

which is the instant when the force becomes zero (in case of no

adhesion) or when

(in the case when vdW adhesion is considered). The above

conditions are now used to find t″. Due to the complexity of the

equation, we calculate t″ numerically for the specific cases

considered. Note that Equation 29 has been derived (for conve-

nience) assuming that the tip deflection is approximately

given by Asin(ωt). If instead, the more standard expression is

chosen (Acos(ωt − δ), where δ refers to the AFM phase lag),

Equation 29 is still fully applicable and only needs to be

translated by the appropriate amount in time, specifically:

(1/ω)(π/2 – δ).
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Figure 3: Results for the tip–sample force in tapping-mode AFM, decoupled trough the analytical relation derived (Equation 29). Panel (a) shows the
decomposition of the force, plotted vs time, while panel (b) shows the same decomposition but as function of tip–sample position (a common repre-
sentation in AFM known as force–distance curve). Both panels display the main components of the tip–sample force: i) steady-state harmonic
response (green dash-dotted line, first term of Equation 29), ii) transients (blue dotted line, second term of Equation 29), and iii) relaxation modulus
(blue dashed line, third term of Equation 29), when a flat-ended rigid indenter interacts in intermittent contact with a viscoelastic sample. The visco-
elastic sample is polyisobutylene, represented by a Generalized Maxwell model (see Figure 1) with 26 arms. The parameters of the model were digi-
talized from the data provided by Brinson and Brinson [25], who fitted the experimental data of Catsiff and Tobolsky [6], and are provided in Table S1
in Supporting Information File 1). The cantilever parameters of the AFM simulation are: k1 = 10 N/m, f0 = 100 kHz, R = 10 nm, Q1 = 100, Q2 = 450,
Q3 = 750. The free oscillation amplitude is A0 = 100 nm and the reduced tapping amplitude (amplitude setpoint) is A = 75 nm.

Figure 3 shows the different contributions to force in time. The

force is separated into its components according to Equation 29.

The steady-state force is the one associated with the pole of the

driving transform, and is represented by the first term in Equa-

tion 29 (shown as a green dash-dotted line). This portion of the

solution that is oscillatory in time is the dominant component in

applications such as DMA, where a harmonic steady-state force

and sample displacement are achieved. When analyzing this

steady-state component in a plot of force vs tip position (FD

curve, Figure 3b), one can observe that the harmonic steady-

state force has the shape of an ellipse that is known as a

Lissajous ellipse [8].

It is important to clarify here that the loss angle θ(ω) is differ-

ent from the AFM phase δ(ω), which is the phase lag of the

response of the cantilever with respect to its excitation. On the

other hand, the loss angle θ(ω) in this context is the phase lead

of the (tip–sample) force response with respect to the (sample)

local displacement excitation in the steady-state, and its value

spans from zero, when a material is completely elastic, to 90°,

when the material is completely viscous (see Supporting Infor-

mation File 1 for further information on θ(ω)).

The portion of the force response associated with the poles of

the material transform (second term inside curly brackets in

Equation 29) is shown with a blue dotted line in Figure 3. This

component of the response is related to the transient that arises

when the harmonic excitation is suddenly imposed. In standard

harmonic techniques (e.g., DMA, contact-resonance AFM,

force-modulation AFM), this portion can be neglected because

in those applications it is assumed that a steady-state response

has been achieved, and therefore the contribution related to the

pole of the driving function dominates (see Equation 5). Unlike

steady-state harmonic techniques, in tapping-mode AFM the

steady-state response assumption is not appropriate, since at

each impact the material gets perturbed from a near original

state, and therefore the contributions from the transients cannot

be neglected, as it is clear from the results shown in Figure 3.

The third term inside the curly brackets in Equation 29 is

related to the relaxation modulus (G(t)), and arises from the po-

sition offset between the cantilever average position (equilib-

rium position) and the initial position of the sample (before tip

impact). This term, associated with the relaxation modulus, is

plotted in Figure 3 with a blue dashed line. The black thin-solid

line in Figure 3 shows the total analytical force as the sum of
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the three previously described components, and it is evident that

none of the components is negligible. Additionally, the results

for the numerical simulation are depicted in Figure 3 with a

gray thick-solid line, and it is also clear that a close agreement

with the analytical solution (Equation 29) exists. This satisfac-

tory agreement has been observed for all cases studied, which

illustrates the robustness of the analytical solution.

It is important to note that the analytical solution derived does

not consider the attractive portion of the vdW tip–sample inter-

action (for simplicity), but instead only the portion due to adhe-

sion. The adhesion force is constant during contact,

and translates in our analytical equation into a simple offset. Al-

though the adhesion force in Figure 3b does not emerge as a

sudden step, but rather builds up gradually according to the

vdW attractive interaction, the sudden-step approximation intro-

duces only a small inaccuracy into the energy quantity calcula-

tions, as will be shown below.

Energy quantities for the intermittent contact
of an AFM tip with a viscoelastic surface
So far, our analyses have been related to the force in time when

a flat-end punch indenter taps harmonically on the viscoelastic

surface. Now we turn our attention to the amount of energy that

is dissipated during the tapping process. The calculation can be

performed by integrating the product of the force (given by

Equation 29) with the time derivative of the sample position

(Equation 16), as described by Equation 6. Integration yields an

expression of energy dissipated per fundamental tapping cycle

in terms of the viscoelastic material parameters:

(30)

where the relations

and

were used. Also,

has been substituted for clarity.

The first term in Equation 30 is proportional to the storage

modulus G′(ω); the second one is proportional to the loss

modulus G″(ω); the third term is related to the transients (asso-

ciated with the poles of the transfer function); the fourth term

relates to the relaxation modulus (G(t)); and the fifth term is

related to the adhesion component of the vdW interaction (sur-

face energy hysteresis). Interestingly, energy dissipation in this

case is not exclusively proportional to the loss modulus as in the

case of steady-state harmonic applications (e.g., DMA, see

Equation 8). It is evident that substantial complexity is gener-

ated in the analytical relations derived when the system does not

achieve steady-state (compare Equation 8 to Equation 30). The

above is natural because in the tapping case the force is not

harmonic (Equation 29), and therefore, its convolution with

velocity (Equation 6) to obtain energy dissipation results in a

much more complex solution than in the simple DMA case,

where both force and displacement oscillate harmonically

(Equation 3 and Equation 5).

The calculation of dissipated energy in tapping-mode AFM is

well established for high quality factor (high-Q) environments

[16,17], and has been successfully performed regardless of the

source of dissipation in the tip–sample interaction [34,40,41].

However, it is well known that varying the dynamic AFM pa-

rameters (e.g., excitation frequency, tapping amplitude) can sig-

nificantly alter the calculated values of dissipated energy when

imaging viscoelastic polymers [35]. This clearly represents a

challenge in correlating the values of dissipated energy with

meaningful viscoelastic material properties. However,

Equation 30 offers a potentially feasible path for extracting ma-

terial information because it directly relates a quantity that is

measurable in real experiments with meaningful viscoelastic

properties. Throughout these derivations the shear moduli have



Beilstein J. Nanotechnol. 2017, 8, 2230–2244.

2239

Figure 4: Typical dissipation spectroscopy curve, showing dissipated energy as a function of the ratio between tapping amplitude and free amplitude
(A/A0). This plot shows how Equation 30 can decouple the total dissipated energy into meaningful viscoelastic components. The simulation results
(see up-triangle symbols) correspond to the case of a flat-end-tip cantilever tapping over a polyisobutylene sample modeled through a Generalized
Maxwell model (see Figure 1) with 26 arms (the parameters of the model were digitalized from the data provided by Brinson and Brinson [25], who
fitted the experimental data of Catsiff and Tobolsky [6], and are provided in Table S1 in Supporting Information File 1). Star symbols show the analyti-
cal calculation based on Equation 30, which closely follows the results obtained from the simulation. The analytical solution specifically gives the
amount of dissipated energy that is proportional to the storage modulus (first term in Equation 30, diamond symbols), the amount of dissipated energy
that is proportional to the loss modulus (second term in Equation 30, circle symbols), the amount of dissipated energy that is proportional to the tran-
sients (third term in Equation 30, cross symbols), and the amount of dissipated energy that is related to the relaxation modulus (fourth term in Equa-
tion 30, square symbols). The cantilever parameters of the AFM simulation are the same as the ones given in the caption of Figure 3.

been employed, although these quantities can be also expressed

in terms of their corresponding tensile moduli (E) by using the

well-known relation: E = 2G(1 + ν).

Figure 4 shows the computational results of a dissipation spec-

troscopy curve (gray triangle symbols), where the cantilever

was approached towards the sample by decreasing its equilib-

rium position (Zeq, the average tip position with respect to the

sample). Each symbol represents a different simulation per-

formed at a different equilibrium position, resulting in a differ-

ent ratio of tapping amplitude (A) to free oscillation amplitude

(A0). As the cantilever approaches the sample, the ratio A/A0

diminishes, and for each Zeq position the cantilever is allowed

to tap for a sufficiently long time to achieve a near steady-state

as the amplitude is calculated using the customary in-phase and

quadrature terms [35] and the dissipated energy is numerically

calculated through the integral

where Fts(t), and z(t) are the instantaneous tip–sample force and

tip deflection, respectively. In the same graph the main compo-

nents of Equation 30 are plotted, along with the summation of

all the components (black star symbols) showing good agree-

ment between the simulations and Equation 30 over the whole

range of A/A0.

Besides the main contributors, the adhesive component of the

vdW interaction also adds to the total dissipated energy,

because the tip–sample trajectory is not symmetric during the

contact portion. Instead, the tip remains more time in contact

with the sample during the approach than during the retract (see

Figure 2). The vdW contribution will thus be referred to as sur-

face energy hysteresis (fifth term on the right-hand side of

Equation 30), and is proportional to the mismatch between the

surface initial (unperturbed) position and the surface position at

which the cantilever leaves the sample (that is, the difference

between the two minima in Figure 3b). This contribution was

not included in Figure 4, which for clarity was devoted exclu-

sively to the analysis of viscoelastic contributions.

As a final comment on the dissipated energy, we point out that

both simulations and analytics assume that dissipation stems ex-

clusively from viscoelastic dissipation and the adhesion force

[41,42]. This neglects other sources, such as capillary forces

[41], rate dependent adhesion forces, and long-range dissipa-

tive interfacial forces [43], among others, which could also play

an important quantitative role. This simplification has been

made with the purpose of investigating in detail one of the key

aspects in materials characterization. As a result, the practical

application of the analysis shown here would require a care-

fully designed experimental setup that minimizes all sources of

dissipation that are not related to viscoelasticity. Another im-

portant consideration is that, in addition to the viscoelastic ma-
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Figure 5: Virial spectroscopy curve, showing the virial as a function of the ratio between tapping amplitude and free amplitude (A/A0). The plot shows
how Equation 31 can separate the total virial into meaningful viscoelastic contributions. The simulation results (triangle symbols) correspond to the
case of a flat-punch probe tapping on a polyisobutylene sample (this is the same simulation as the one described in the caption of Figure 4). The total
virial is decomposed into terms related to G′(ω), G″(ω), G(t), and the transients of the harmonic force. The symbol scheme is the same as in Figure 4.

terial parameters, Zeq (the average tip position with respect to

the sample) is not known in an experiment. This poses a serious

problem, since for an actual spectroscopy experiment one

would have only one observable, dissipated energy calculated

using expressions derived by Cleveland et al., and Tamayo and

García [16,17], and at least two unknowns, the material (includ-

ing all its parameters) and Zeq. Fortunately, San Paulo and

García [18] have shown that, besides energy dissipation, it is

possible to obtain another meaningful energy quantity defined

as the convolution of the tip–sample interaction force with the

tip deflection [44], as described in Equation 9. This is the virial

that can be calculated in terms of experimental tapping-mode

AFM observables [18], and has been shown to be mathemati-

cally independent from the dissipated energy [44,45]. Per-

forming the convolution of force (Equation 29) with sample po-

sition, as described in Equatio 9, leads to an expression for the

virial for the specific case of a flat-punch probe tapping on a

generalized viscoelastic surface:

(31)

where

This relationship also enables decomposition of the virial into

different terms that are proportional to the viscoelastic material

properties. As an example, these different contributions can be

visualized in Figure 5 for the case of a flat-punch probe tapping

on a polyisobutylene sample (this corresponds to the same nu-

merical simulation used to construct Figure 4). Here it is also

evident that the intermittent-contact nature of the interaction

forbids the derivation of a simple equation as in the case of

DMA (see Equation 11), in which the virial is only propor-

tional to the storage modulus. Here, as for the case of dissi-

pated energy, the virial has contributions that are not only

proportional to the storage modulus G′(ω), but also to the loss

modulus G″(ω), the relaxation modulus G(t) (4th term in Equa-

tion 31), and contributions proportional to the transients of the

harmonic force (3rd term in Equation 31). All these contribu-

tions are plotted in Figure 5, following the same symbol scheme

as for the case of dissipated energy in Figure 4. For clarity the

contribution from the adhesive force (surface energy) is also

omitted.

Although the analytical equations derived here are shown to

follow consistently the numerical results for all the cases we

have studied, they are still approximations prone to error. The

viscoelastic treatment used, based on transformational calculus,
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carries the intrinsic assumption of zero initial conditions. In

other words, we have assumed that each time the cantilever taps

on the sample, it finds it at a near rest position with negligible

initial conditions (the displacement and force derivatives are

assumed to be zero). The above makes the analytics tractable,

although it is not formally true, since during sample recovery,

the sample follows a trajectory related to the creep compliance

function [36,46,47], and it is likely that before full recovery

takes place the probe taps on the sample again (see the portion

of the sample trajectory after the tip leaves the sample in

Figure 2). Since viscoelasticity implies history dependence (fact

evidenced by the convolution integral in Equation 2), assuming

zero initial conditions neglects previous history and therefore

potentially introduces error in the analytical equations. The

above however, may have a minor effect in many cases (as it

did in all the cases we studied), since the conditions present

during surface recovery may be ‘soft’ compared to the time-

scale in which the perturbation of the tip acts. In other words,

the deformation rates commanded by the tapping process are

sufficiently large compared to the deformation rates of sample

recovery. Thus, we may refer to these conditions as ‘soft

history’. Another source of error of less importance is the

contribution to energy dissipation from the excitation of higher

modes. For the large-Q conditions we studied, we found that the

contribution from higher modes is negligible, but errors are ex-

pected in high-damping environments. Finally, we have not

explored in detail the success of the analytical equations in

terms of dynamic parameters (such as free amplitude and ampli-

tude setpoint) but we have found in this exploratory study that

typical tapping amplitudes (ca. 100 nm) result in satisfactory

agreement with simulation results, regardless the amplitude

setpoint used, as shown in Figure 4 and Figure 5, where close

consistency was achieved along the whole axis of the reduced

ratio between tapping amplitude and free amplitude (A/A0).

A potential practical application of the equations derived here is

the following: Dissipated energy and virial may be calculated

from the observables of a tapping-mode experiment [16-18] and

then equated to the terms in Equation 30 and Equation 31 to

obtain material parameters and Zeq. For a given material (with a

given set of parameters) there may be a single Zeq value that

satisfies both quantities (dissipated energy and virial), and

therefore these two quantities may work together complementa-

ry to give the unknown Zeq. Because the material properties

represent more than one unknown, an unambiguous approxima-

tion of the material parameters would require having more than

one data point, which in fact is not a limitation within ampli-

tude and phase spectroscopy experiments (as illustrated in

Figure 4). The design of a numerical algorithm capable of ex-

tracting material properties is beyond the scope of this study, al-

though it seems to be a feasible task that could eventually

exploit the relations we have derived. We expect such algo-

rithm to be more successful in material property extraction

when a higher number of data points is available, although this

could potentially undermine a key advantage of tapping-mode

AFM, which is its high scanning speed. At the same time,

knowing that the observation of viscoelasticity demands agree-

ment between the material timescale (e.g., relaxation time) and

the experimental timescale (ca. 1/ω), we expect that in tapping

mode AFM the observables are mainly governed by the ele-

ments of the model whose relaxation times are nearest to the

inverse of the tapping frequency. The above has important

implications with regards to the simplification of the model to

be considered in each particular case (i.e., the number of arms

retained in the Generalized Maxwell model), which determines

the number of unknowns to be solved for, and consequently, the

number of data points to be acquired for a successful fitting.

The analytical relations derived here portray the complexities of

the deformation of viscoelastic materials in tapping mode AFM,

and they may seem rather daunting to the general user. There-

fore, we anticipate that a useful research outlook would focus

on seeking engineering approximations that could simplify

these expressions, along with specific experimental conditions

where those simplified expressions would be appropriate. We

believe that our rigorous analytical expressions provide a solid

ground for the exploration of such simplifications.

Conclusion
We have studied thoroughly the physics of a flat-punch AFM

probe tapping on a generalized linear viscoelastic surface con-

taining an arbitrary number of characteristic times. We have

derived analytical expressions for force in time and for two

energy quantities frequently used in tapping-mode AFM,

namely the average dissipated energy and the virial, in terms of

meaningful viscoelastic material properties. We have derived

the expressions from the material point of view, using rigorous

linear viscoelasticity theory in a general manner, such that the

treatment is applicable for real materials. This material-focused

rheological approach (defining an input displacement of the sur-

face and deriving the corresponding output force) is a comple-

mentary approach to the linear dynamics strategy usually fol-

lowed by the AFM community, which focuses on the cantilever

motion. We anticipate that combining these two approaches can

lead to a practical use of the expressions derived here. Our

expressions shed light into the complexity of the tip–sample

force term, and the specific contributions of viscoelastic proper-

ties (G′(ω), G″(ω), G(t)), which can be counterintuitive. A thor-

ough comparison of energy quantities for tapping-mode AFM

with those of steady-state techniques (e.g., DMA) allows us to

understand the important differences among these methods, as

well as the reasons behind the challenges that emerge when
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attempting to extract meaningful material properties in tapping-

mode AFM, where oversimplified assumptions are frequently

used, which are not appropriate for viscoelastic materials. Flat-

punch indentation has been chosen for two main reasons: i) to

ensure full applicability of the correspondence viscoelastic prin-

ciple, and ii) to keep the analytics workable. Although this only

represents a portion of the general problem of indentation of

viscoelastic materials by arbitrary profiled AFM indenters, it is

a step forward in terms of understanding the complexities of the

technique in the context of viscoelastic materials, as well as the

physical quantities governing the observables.

Methods: Numerical Simulations
To model the dynamics of the cantilever, a system of three ordi-

nary differential equations is used, in which each equation cor-

responds to one eigenmode of the cantilever (assuming the dy-

namics are mainly contained in the first three eigenmodes) [32]:

(32)

where m is the effective mass of the cantilever, zi is the i-th

eigenmode displacement, ki is the i-th eigenmode force con-

stant,  is the i-th eigenmode resonance frequency, Fi, ωi, and

Qi are the force amplitude, excitation frequency, and quality

factor of the i-th eigenmode, respectively. The tip deflection is

z(t) = Σi zi(t), and the tip–sample distance is zt−s(t) = z(t) + Zeq,

where Zeq is the average tip position with respect to the sample.

The notation employed to represent the tip–sample force term,

in Equation 32 emphasizes the nature of the viscoelastic materi-

al modeled. According to it, the tip–sample force is a func-

tional of the sample deformation. In other words, the force at

the current time t, Fts(t), depends on the history of the surface

deformation at all previous times ξ, from ξ = 0 to ξ = t [8,13].

This force term is included in the simulation by implementing

Cheng’s solution in operator equation form for the flat-punch

case [28]:

(33)

The constants qm and un can be found by algebraic manipula-

tion of the relaxance of the material (Equation S2 or Equation

S3 in Supporting Information File 1), which is a ratio of polyno-

mials  where the numerator and denomi-

nator are defined as:

(34)

Therefore, the coefficients qm and un can be found by grouping

the coefficients of the relaxance according to their power in the

complex variable ‘s’ (for additional details refer to [8,13]).

After finding the coefficients of the differential equation in

Equation 33, its numerical calculation is performed as follows:

when the tip is in contact with the sample, then zt−s(t) = −h(t),

and the time derivatives of sample deformation can be calcu-

lated up to the M-th order. Afterwards, the N-th order deriva-

tive is calculated on the force

followed by the calculation of the lower order derivatives, down

to the zero-th order, which corresponds to the value of Fts(t).

Additionally, the vdW interaction has been included as

during the noncontact portion of the interaction. This expres-

sion was derived through pairwise addition using the non-

retarded Hamaker summation method [39]. Here the total

attractive van der Waals potential (EvdW) was calculated for the

specific case of a flat-end cylindrical punch interacting with a

flat semi-infinite half-space, and subsequently the interaction

force was obtained through differentiation:

For the adhesion portion during contact, a constant adhesion

force was added as

as already explained.
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The calculation of the tapping amplitude (A) for the construc-

tion of the dissipative and virial spectroscopy curves (Figure 4)

was performed by extracting the Fourier components of the tip

deflection (z(t)) that are related to the driving frequency, using

the customary in-phase and quadrature terms [21]. The numeri-

cal calculations of the dissipated energy were performed

through the integral  [45], while the nu-

merical calculations of the virial were performed using the rela-

tion  [32]. For additional details of the

simulations and analytical solutions refer to the open access

code provided in [48].

Supporting Information
Supporting Information File 1
This file contains relevant information related to the theory

of linear viscoelasticity that may help the reader follow the

analytical derivations. It also contains information related

to the viscoelastic material that was used in the numerical

simulations.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-8-223-S1.pdf]
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