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Abstract
We propose a continuum theory of orientational phase transitions induced by an external magnetic field in a suspension of carbon

nanotubes in a nematic liquid crystal. It is shown that in a magnetic field a non-uniform and two different uniform phases are

possible in the suspension. The uniform phases of the suspension differ by the type of orientational coupling of nanotubes with the

liquid crystal matrix (the planar type when the nanotubes are oriented along the matrix director, and the homeotropic type when the

nanotubes are perpendicular to the director). The possibility of a redistribution of the nanotube concentration (segregation effect) is

shown. The fields of orientational transitions between uniform and non-uniform phases of the suspension are found analytically. It

is shown that, when the nanotubes are weakly coupled to the matrix, the magnetic field induces reentrant transitions (uniform planar

phase–non-uniform phase–uniform homeotropic phase–non-uniform phase). These transitions can be of first or of second order

depending on the carbon nanotubes segregation intensity.
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Introduction
In recent years suspensions of anisometric particles in liquid

crystals have become of great interest for researchers [1]. This

is not only because liquid crystals (LCs) have found wide appli-

cation in modern optoelectronic devices [2] but also because an-

isometric particles orient like a LC in a medium that is capable

of spontaneous orientational ordering. Examples of such media

are suspensions of ferromagnetic or ferroelectric particles, as

well as of carbon nanotubes. In 1970, Brochard and de Gennes

proposed to dope nematic liquid crystals (NLCs) with

elongated ferromagnetic particles [3]. The magnetic suscepti-

bility of such composite system (called ferronematic), turned

out to be several orders of magnitude higher than that of the

pure LC even for a low concentration of the dispersed phase

(0.01 vol %). The new approach has opened the way for the

creation of devices that operate on the basis of magnetic orien-

tational transitions in the LC. To date, many theoretical and ex-
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perimental studies on the properties of ferronematics have been

published [4,5], which indicates the interest in this kind of com-

posite materials.

Along with ferri- or ferromagnetic particles it is also possible to

use carbon nanotubes (CNTs) in order to increase the magneto-

orientational response of the LC matrix [6,7]. Due to the highly

elongated shape (aspect ratios of 102 to 103) and anomalously

high anisotropy of the diamagnetic susceptibility (  ≈ 10−5 to

10−4) [8-11], CNTs are very attractive for the creation of nano-

composites based on LCs with high magneto-orientational

response. From experimental data [12-16], it is known that in

the absence of external fields CNTs are oriented parallel to the

director of the LC matrix, which corresponds to the planar type

of coupling. However, homeotropic coupling is also possible

[17]. Thus, for suspensions of CNTs based on LC with positive

diamagnetic susceptibility anisotropies, one should expect de-

creasing of the threshold field of the magnetic Fréedericksz

transition, which is confirmed by experiment [18,19], as well as

a decrease in the electric field of the Fréedericksz transition

[11,14,20-22]. Along with this, there are experimental studies

devoted to the investigation of LC suspensions with CNTs func-

tionalized by ferromagnetic particles [19,23-25], where an en-

hanced magneto-optical response is also observed in compari-

son with a pure LC.

The available theoretical approaches to the description of CNT

suspensions in LCs are based on a generalization of the

Landau–de Gennes theory [26-29] and mean-field theory

[30,31]. In these papers, the phase state of the binary mixture of

CNTs in LC as a function of the concentration of CNTs, the

coupling energy of subsystems and temperature in the absence

of external fields were studied.

In the present paper we propose a continuum theory of dilute

CNT suspension in LCs that makes it possible to study orienta-

tional transitions induced by the magnetic field.

Results and Discussion
Basic equations
We consider infinite plane layer of thickness L of a suspension

of CNTs in NLC with planar texture and an absolutely rigid

anchoring of NLC molecules with the boundaries. We set the

origin of the coordinate system at the middle of the layer (see

Figure 1). We use the unit vectors n and m, the so-called direc-

tors, to describe the preferential orientation of the LC mole-

cules and CNTs, respectively. We assume soft and planar cou-

pling of LC with the CNT surface, then in the absence of a mag-

netic field . In the case of a positive anisotropy of the

diamagnetic susceptibility of the LC χa > 0, applying a magnet-

ic field H = (0,0,H) will lead to the appearance of distortions in

the orientational structure of the LC. This effect is known as the

Fréedericksz transition [32]. CNTs are also oriented by the

magnetic field, because they possess an anomalously strong

diamagnetism and positive diamagnetic anisotropy [10,33-35],

so even small concentrations of CNTs in suspension should lead

to a decreasing of the Fréedericksz transition threshold in com-

parison with the pure NLC. These two mechanisms of the field

influence on the suspension prove to be interdependent due to

the orientational interaction of CNTs with the LC matrix.

Figure 1: The planar layer of LC doped with CNTs in an external mag-
netic field, choice of the coordinate system.

In the framework of continuum theory, the equilibrium state of

the suspension corresponds to the minimum of free energy

(1)

Here, K11, K22 and K33 are the Frank elastic moduli; χa and 

are the diamagnetic susceptibility anisotropies of LC and CNTs,

respectively; μ0 is the permeability of vacuum; f is the volume

fraction of CNTs in the suspension; Wp is the surface density of

the coupling energy between the LC molecules and the surface

of the CNTs; d is the transverse diameter of a CNT; ν is the

volume of a CNT; kB is the Boltzmann constant; T is the tem-

perature. We assume a low concentration of CNTs in LC,

 (  = Nν/V, N is the number of CNTs in the suspension,

V is the suspension volume). This allows us to neglect the inter-

action between the CNTs.

The term F1 in Equation 1 is the free energy density of elastic

deformations of the LC [36]. The contributions F2 and F3 take
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into account the interaction energies of the LC matrix and CNTs

with the magnetic field. The term F4 describes the interaction of

elongated impurity particles (in our case CNTs) with LC mole-

cules [37]. In the absence of a field and for Wp > 0, the

minimum of F4 corresponds to , i.e., a planar coupling of

the LC matrix and CNTs. The planar type of coupling was ob-

served in most of the experimentally studied suspensions of

CNTs in LCs [14,18,38]. The last term F5 is the contribution of

the entropy of mixing of an ideal solution of CNTs in the LC

matrix.

As it is known, the state of thermodynamic equilibrium corre-

sponds to the minimum of the free energy (Equation 1), which

is a functional of the two vectors n and m, and the scalar quanti-

ty f. Thus, the problem is reduced to deriving the equilibrium

configurations of the directors n(r) and m(r), and the volume

fraction f(r) of the CNTs.

In the considered geometry, the vectors n and m conveniently

have the following form:

(2)

We choose the thickness L of the layer as the unit of length and

the quantity  as the unit of the magnetic

field strength, which corresponds to magnetic Fréedericksz tran-

sition field in pure NLC. We introduce the following dimen-

sionless parameters [39]:

(3)

Here, ζ is the dimensionless coordinate and h is the dimension-

less magnetic field strength. Due to the coupling between the

directors of LC, n, and CNT, m, (term F4 in Equation 1), the

suspension possesses two orientation mechanisms under the in-

fluence of a magnetic field. Both mechanisms are quadrupole in

nature and are caused by the diamagnetism of the LC matrix

and the CNTs. The parameter γ, which is determined by the

balance of the terms F3 and F2 of the free energy (Equation 1),

characterizes the relative contribution of the mechanisms of

magnetic field influence on the orientational structure of the

suspension. For , the appearance of orientational distor-

tions of the director field are caused mainly by the diamag-

netism of the CNTs, and for , the distortions of orienta-

tional structure arise mainly from the diamagnetism of the LC

matrix. The parameter σ characterizes the coupling energy of

the LC and the impurity subsystem; g is the reduced volume

fraction of CNTs in the suspension, and k is the ratio of Frank's

constants of the LC.

The parameter κ is the square of the ratio between two charac-

teristic lengths, i.e., layer thickness L and segregation length

 [3,40]. The characteristic size of the con-

centration redistribution region, LS, can be determined from the

balance of the contributions F1 and F5 in the volume density of

the free energy (Equation 1), which allows us to introduce the

dimensionless segregation parameter . For , the

segregation effect is negligible because the characteristic scale

of the segregation region of CNTs considerably exceeds the

thickness of the layer; for κ ≤ 1, the segregation effect becomes

significant.

We take typical values for NLCs [36] to estimate dimension-

less quantities: χa ≈ 10−6 and K33 > K11 ≈ 10−12 N. For CNTs

we can assume [7-11]:  ≈ 10−5 to 10−4, d ≈ 10−8 m, CNT

length l ≈ 10−6 m and ν ≈ 10−22 m−3. We also set T = 300 K and

L = 20 μm. For different suspensions the coupling energy of

CNTs with the LC matrix, Wp, varies over a wide range from

10−7 N·m−1 [26] to 10−3 N·m−1 [24]. Assuming a volume frac-

tion of CNTs  ≈ 10−3 [7], we obtain κ ≈ 1, γ ≈ 10−2 to 10−1,

σ ≈ 1 to 103 and k ≈ 1.

The dimensionless free energy takes the following form after

the substitution of Equation 2 into Equation 1:

(4)

Here, S is the surface area of the planes confining the layer, and

the notation K(φ) = cos2 φ + k sin2 φ is introduced.

Minimizing the functional (Equation 4) with respect to the func-

tions φ(ζ), ψ(ζ) and g(ζ), we obtain a system of equations

describing the orientational equilibrium of the suspension:

(5)
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(6)

(7)

(8)

Here, the quantity Q can be derived from the condition of a con-

stant number of CNTs in the suspension,

(9)

Together with the condition of a rigid planar coupling of the LC

director to the boundaries of the layer,

(10)

the system of Equations 5–8 allows us to find the equilibrium

state of the CNT suspension in a magnetic field.

It follows from Equation 7 that in a suspension with non-

uniform distribution of the directors n(r) and m(r), even a

uniform magnetic field causes a redistribution of the CNT con-

centration f(r) in the layer, known as segregation effect [3] in

the physics of ferronematics. This means that CNTs migrate to

those regions of the layer where their magnetic energy in the

field ( ) and the orientational energy in the LC matrix

( ) are minimal.

Orientational phases of the suspension
The system of Equations 5–8 allows for uniform solutions

[g(ζ) = 1 and the angles φ and ψ are independent of

coordinates]. One of them [φ(ζ) = ψ(ζ) ≡ 0] corresponds to the

initial state , in which the long CNTs axes are

parallel to the director of the LC. We call this state the planar

phase of the suspension, since it is characterized by the planar

coupling ( ) of CNTs to the LC matrix. In this state, the

directors of the LC and CNTs are directed orthogonally to the

external magnetic field and parallel to the boundaries of the

layer. Another uniform solution [φ(ζ) = 0 and ψ(ζ) = π/2] corre-

sponds to the homeotropic phase where the LC director is

parallel to the layer boundaries and the CNT director is oriented

along the field, . This phase is characterized by the

homeotropic coupling ( ) of CNTs to the LC matrix. The

angular phase [41] corresponds to the non-uniform solution

[φ = φ(ζ), ψ = ψ(ζ) and g = g(ζ)]. In this state the angle between

the directors n and m is different from zero and π/2. Schematic

representations of the planar, angular and homeotropic phases

of the suspension are shown in Figure 2.

Figure 2: The structure of the orientational phases: (a) planar phase,
(b) angular phase and (c) homeotropic phase.

Under the influence of a magnetic field, the initial planar phase

of the suspension (Figure 2a) becomes unstable. When the field

reaches the threshold value hc, a transition to the angular phase

occurs (Figure 2b) with distorted orientational structures of n

and m. By analogy with pure LCs this transition can be called

the Fréedericksz transition. The distortions of the orientational

structure are small [ , ] in the vicinity of hc,

and the distribution of CNTs in the layer is almost homoge-

neous, g(ζ) ≈ 1. Therefore, the solution of the system of Equa-

tions 5–8 can be found analytically. In the lowest order we

obtain φ(ζ) = φm·cos(πζ) and ψ(ζ) = λcφ(ζ). Here, the value of

 corresponds to the orientation angle of the LC director

in the middle of the layer, and λc is determined by the relation

(11)
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Figure 3: Diagram of the orientational state of the suspension for (a) γ = 0.1 [σm1 = 0.285, hm1 = 2.738] and (b) γ = 0.5 [σm2 = 0.847, hm2 = 2.404].

Non-zero solutions of φ(ζ) exist for h ≥ hc, where hc has the

meaning of the Fréedericksz transition field from the planar to

the angular phase and it is found from the following equation:

(12)

The thermodynamically stable solution of Equation 12 has the

form

(13)

and it is shown in Figure 3.

In the case of strong coupling between CNTs and LC matrix

( ), Equation 13 for the Fréedericksz transition field in the

lowest order in the small parameter 1/σ gives

(14)

Here, the quantity  corresponds to the field of

the Fréedericksz transition in the case of absolutely rigid

(σ→∞) coupling of LC and impurity subsystem, i.e., of the

directors n and m. It follows from Equation 13 that with in-

creasing parameter γ (i.e., as the volume fraction of CNTs or the

anisotropy of their diamagnetic susceptibility increases), the

Fréedericksz field decreases. Pure NLC with  cor-

responds to the value γ = 0.

When the CNTs is weakly coupled to the LC matrix in lowest

order in small σ, from Equation 13 we obtain

(15)

It follows from Equations 12–15 that for suspensions with

planar coupling of the directors n and m, the Fréedericksz field

is always smaller than for a pure NLC, which is confirmed by

experiments [18,19,23].

We now determine the transition field between the non-uniform

(angular) phase of the suspension and the uniform phase with

the homeotropic coupling of CNTs with the LC matrix. In the

homeotropic phase [φ(ζ) = 0 and ψ(ζ) = π/2] the LC director is

parallel to the layer boundaries and the CNT director is oriented

along the magnetic field (Figure 2c). In the vicinity of the tran-

sition field hr between the angular and homeotropic phases, the

deviations of the director of the LC, n, from the x-axis and of

the CNT director, m, from the magnetic field direction H are

small. Therefore in the lowest order in small φ(ζ) and

π/2 − ψ(ζ), we obtain the following equation for determining the

transition field between the angular and the homeotropic phase:

(16)
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Equation 16 can be solved with respect to hr and we obtain

(17)

The solution hr+ describes the upper branch of the double-

valued curve hr(σ) in Figure 3 and hr− corresponds to the lower

branch.

In the case of weak coupling of the CNT and LC directors

( ) the expressions in Equation 17 can be represented in the

form

(18)

It is seen from Equation 18 that in fields  the

suspension can only be in the angular phase.

We note that the existence of the homeotropic phase is not

possible for every value of the coupling energy of the LC

matrix and CNTs, but only for σ ≤ σm, where the threshold

value of the coupling energy (Figure 3) is determined by the

relation

(19)

As can be seen from Equation 19, the region of existence of the

homeotropic phase widens with increasing parameter γ. After

substituting Equation 19 in Equation 16, we obtain the expres-

sion for the transition field hr corresponding to the coupling

energy σm:

(20)

As can be seen from Equation 19, the upper bound of σm is π2/2

(γ→∞). Therefore, for suspensions with the coupling energies σ

> π2/2, the homeotropic phase cannot exist. For σ > π2/2, the

coupling of CNTs with LC is almost absolutely rigid. In this

case the description of the orientational structure of the suspen-

sion becomes possible with the help of one director n (n = m).

It is seen from the expression for the free energy (Equation 1)

that in this case the suspension behaves like a pure LC with

an effective anisotropy of the diamagnetic susceptibility,

.

The diagram of the orientational state of the suspension, i.e., the

threshold fields (Equation 13) and (Equation 16) for orienta-

tional transitions as functions of the coupling energy of CNTs

with the LC matrix and for different values of γ is shown in

Figure 3. The region bounded by the abscissa and curve hc cor-

responds to the planar phase in which the directors n and m are

parallel to the boundaries of the layer (Figure 2a). The region

bounded by the ordinate axis and the curve hr corresponds to

the homeotropic phase in which the LC director is oriented

along the layer boundaries and the CNT director is parallel to

the magnetic field,  (Figure 2c). Outside these

regions is the angular phase with non-uniform distributions of n

and m over the thickness of the layer (Figure 2b).

Figure 3 shows that if the coupling of CNTs with the LC matrix

is weak (σ < σm), there is a sequence of transitions with increas-

ing field for a given value of the coupling energy: planar

phase–angular phase–homeotropic phase–angular phase. That

is, there are reentrant phenomena. Such reentrant transitions

occur only for weak coupling of CNTs with the LC matrix. A

magnetic field directed perpendicularly to the CNTs makes the

initial alignment of tubes energetically unfavorable, so that they

begin to rotate in the field direction minimizing the contribu-

tion F3 in Equation 1. The LC molecules also tend to rotate into

the field direction minimizing the contribution F2. However, the

orienting influence of the cell boundaries prevents a rotation of

the LC director. Due to the orientational coupling between the

LC and CNTs, the director rotation of the disperse phase (the

term F4 in Equation 1) is transmitted to the LC matrix, and the

first orientational transition from the initial planar phase to the

non-uniform angular phase occurs at h = hc. The Fréedericksz

transition threshold field, hc, appears to be smaller than that of

the pure NLC. This result is in good agreement with experimen-

tal observations [18,19,23]. Due to induced gradients of the LC

director and the increase in the energy of orientationally elastic

deformations F1 in Equation 1, the forces of orientational elas-

ticity tend to return the director to the initial planar state. Distor-

tions of the orientational structure also cause the segregation of

the CNTs, and the term F5 in Equation 1 is minimal when the

impurity is uniformly distributed over the sample. Distortions of

the LC director are induced in this case by the orientational cou-

pling between n and m (contribution F4), i.e., the CNTs director

entrains the LC director, and F4 tends to decrease the angle be-

tween n and m. For this reason, the appearance of large orienta-

tional deformations (i.e., large gradients of n) is energetically
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Figure 4: The tricritical segregation parameter  for the Fréedericksz transition as a function of the coupling energy of CNTs with the LC matrix, σ,
for different values of the parameter γ for k = 1.5: curve 1 – γ = 0.1; curve 2 – γ = 0.5. (a) Large scale and (b) small scale.

less favorable than a minimization of F3, leading to the occur-

rence of the uniform homeotropic phase with . So that the

next transition to the uniform homeotropic phase occurs with an

increase of the magnetic field to h = hr−. For hr− < h < hr+, the

small energy loss (weak coupling) in the contribution F4 and F2

(the field is significantly lower than the Fréedericksz field of a

pure LC) is compensated by the gains in the energy of orienta-

tional elastic deformations (F1 = 0), in the entropy contribution

to the energy (F5 = min), and in the magnetic energy of CNTs

(F3 = min). When the diamagnetism of the LC matrix (F2)

begins to predominate, at h ≈ hr+, the next transition from the

homeotropic phase to the non-uniform state (the angular phase)

occurs. A similar diagram was described in [39] for ferrone-

matic liquid crystals. In the case of strong coupling (σ > σm),

the initial planar phase undergoes a Fréedericksz transition to

the non-uniform angular phase with increasing field. There is a

“synchronous” rotation of the LC and CNT directors along the

applied field, i.e., a monotonic increase in the deviations of the

directors, since the energy loss in the contribution F4 is not

small.

Tricritical phenomena
We now determine the character of the orientational transitions.

In the vicinity of the Fréedericksz field, hc, the deviations of the

LC and CNT directors from the boundaries of the layer are

small (small φ and ψ), so the free energy of the suspension

(Equation 4) can be expanded in a power series over small φ(ζ)

= φm·cos(πζ) and ψ(ζ) = λcφ(ζ). Here, the value  corre-

sponds to the orientation angle of the LC director in the middle

of the layer, and λc is defined by Equation 11. After integration

in the fourth order in φm, the free energy takes the form of the

Landau expansion

(21)

where

(22)

Here, Fc is the free energy of the uniform planar phase.

The dependence of the LC director orientation angle in the

middle of the layer, φm, on the applied magnetic field in the

vicinity of hc can be found by minimizing the expression in

Equation 21 over φm:

(23)

As noted above, for γ > 0 we always have hc < π, and therefore

the coefficients of the expansion αc > 0,  and .

Then, as can be seen from Equation 23, the Fréedericksz transi-

tion between the planar and angular phases is a second-order

transition (h ≥ hc) for . If , real solutions of Equa-

tion 23 exist only for h ≤ hc, and the Fréedericksz transition is a

first-order transition. The quantity  is the tricritical value of

the segregation parameter below which the character of the

Fréedericksz transition changes from second order to first order.

The dependence of  on the coupling energy of CNTs with the

LC matrix for different values of γ is shown in Figure 4. For

γ = 0.1 (curve 1)  behaves non-monotonically with increas-

ing coupling energy σ and exhibits a pronounced maximum,
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while for γ = 0.5 (curve 2) the maximum is poorly distinguish-

able. For σ > 10,  slightly varies for a given γ, and in the

limiting case of rigid coupling of CNT and LC directors, it

tends to the value of π2γ2/4k(1 + γ)2. It is seen from Figure 4a

for σ > 10,  grows with increasing γ. For small coupling ener-

gies (Figure 4b),  grows faster with increasing σ for γ = 0.1

than for γ = 0.5.

We now consider the transition from the angular to the homeo-

tropic phase to which the field hr− corresponds (see Figure 3).

Near the transition point hr−, deviations of the LC director from

the boundaries of the layer and of the CNT director from the

direction of the magnetic field are small. Therefore, the free

energy (Equation 4) can be represented in analogy with the

previous case in the form of a Landau expansion:

(24)

where

(25)

Here, Fr corresponds to the free energy of the uniform homeo-

tropic phase.

After minimizing Equation 24 with respect to φm, we obtain the

dependence of the LC director orientation angle in the middle of

the layer on the magnetic field strength in the vicinity of hr−:

(26)

As can be seen from this formula, the considered transition is a

second-order transition if real solutions of Equation 26 exist for

fields h ≤ hr−. This is only possible for , since the expan-

sion coefficients α− and  are positive for hr = hr− < hm. For

, the transition from the angular phase to the homeo-

tropic one is a first-order transition and the segregation parame-

ter  corresponds to the tricritical point.

Now we consider the possibility of changing the character of

the orientational transition from the homeotropic to the angular

phase, to which the field hr+ corresponds (see Figure 3). The

Landau expansion of the free energy (Equation 4) in the vicinity

of hr+ has the form

(27)

Here

(28)

Minimizing Equation 25 with respect to φm we obtain

(29)

It can be seen that the transition of the suspension from the

homeotropic to the angular phase with increasing magnetic field

must be a second-order transition when real solutions of Equa-

tion 29 exist for h ≥ hr+ (see Figure 3), i.e.,  since α+ > 0

and . For  the transition from the homeotropic to

the angular phase is a first-order transition. The quantity 

corresponds to the tricritical value of the segregation parameter

κ.

In Figure 5, the tricritical segregation parameters  and  are

given as functions of the coupling energy of CNTs with the LC

matrix, σ, for different values of the parameter γ.  grows with

increasing σ and γ (Figure 5a). The dependence of  on σ and

γ is analogous to that of  (Figure 5b) with the exception of

the small region near σ ≈ σm (right edge of the curves), where

the  decreases with growing σ.

Equation 12 and Equation 16 allow us to determine only the

threshold fields of the second-order transitions. To find the

fields of the first-order equilibrium transitions, it is necessary to

use the conditions for the equality of the free energy of the non-

uniform state (Equation 4) and the free energy of the planar

phase, Fc, or of the homeotropic phase, Fr, respectively.
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Figure 5: Dependence of the tricritical segregation parameters (a)  and (b)  on the coupling energy of CNTs with the LC matrix, σ, for different
values of the parameter γ for k = 1.5: curve 1 – γ = 0.1, σm1 = 0.285; curve 2 – γ = 0.5, σm2 = 0.847.

Conclusion
The orientational phase transitions in a suspension of CNTs in

an NLC in a magnetic field perpendicular to the boundaries of

the layer are studied. The possible phase states of the suspen-

sion in the magnetic field are established: a uniform phase with

planar coupling of CNTs with the LC matrix, a non-uniform

angular phase and a uniform phase with homeotropic coupling.

Transitions between these phases occur when the magnetic field

reaches certain threshold values. Analytical expressions that de-

termine the fields of transitions between the uniform planar and

non-uniform angular phases, as well as between the angular and

the uniform homeotropic phases are found. It is shown that

orientational transitions in the suspension occur at field

strengths smaller than the Fréedericksz transition field of the

pure NLC.

Furthermore, it is shown that when the CNTs are weakly

coupled to the LC matrix reentrant transitions, planar phase –

angular phase – homeotropic phase – angular phase, are possi-

ble under an increasing magnetic field. In the case of strong

coupling the initial planar phase undergoes a Fréedericksz tran-

sition to the non-uniform angular phase with a growing magnet-

ic field.

It is also shown that segregation takes place in the suspension of

CNTs in the LC, i.e., under the influence of the magnetic field

the CNTs are redistributed over the layer, so that the CNT con-

centration increases in those regions of the layer where the sum

of their magnetic energy and the orientation energy of coupling

to the LC matrix is minimum. It is found that, depending on the

intensity of the segregation effects associated with the redistrib-

ution of CNTs over the layer thickness, all orientational transi-

tions exhibit tricritical behavior, i.e., they can be transitions of

both first- or second-order. The analytic expressions for the

tricritical values of the segregation parameter are obtained.

The present paper is an extension to several studies of LC

suspensions doped with dipole (ferromagnetic) particles [39,41-

44]. Here we discuss the similarity and difference in the orienta-

tional behavior of dipole (ferromagnetic) and quadrupole

(diamagnetic) particles in LC suspensions.

In the present paper we consider a physical system that, unlike

ferronematics, does not have a dipole response to the applied

magnetic field. We study LC suspensions with anisometric

diamagnetic particles. Thus, the present theory describes the

behavior of quadrupolar particles embedded in an LC. We

analyze another possible way to enhance the anisotropy of

diamagnetic susceptibility of LCs by doping them with diamag-

netic CNTs.

In the magnetized ferronematics (in which the magnetic

moments of the ferroparticles are aligned in one direction) with

planar coupling of impurity particles to the LC matrix, the mag-

netic field induces non-threshold Fréedericksz transition for

suspensions based on NLC with negative [42] or positive [39]

anisotropy of the diamagnetic susceptibility. As we have shown

above, in LC suspensions of CNTs this transition has threshold

behavior. The next general feature of all considered systems is

the possibility of existence of uniform homeotropic phases. In

ferronematics with negative diamagnetic anisotropy of the LC

matrix, the homeotropic phase remains stable with increasing

field, while for positive diamagnetic anisotropy the transition

from the homeotropic to the non-uniform angular phase occurs

like for the CNT suspension. For all kinds of suspensions, the

transitions between the angular and the homeotropic phases can

be of first or of second order depending on the segregation in-

tensity.

The so-called compensated ferronematics, which have equi-

probable distributions of the particles parallel and antiparallel to
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the LC director in the absence of a field [43], show a magneto-

orientational response which is similar to that of CNT suspen-

sions in LCs. The compensated ferronematics exhibit a quadru-

pole response to the magnetic field applied perpendicularly to

the initial alignment of the magnetic subsystems. They exhibit a

threshold Fréedericksz transition from the initial compensated

phase (planar phase) to the non-uniform angular phase, like the

CNT suspensions. For weak coupling of magnetic particles and

LC matrix the following sequence of reentrant transitions takes

place: initial uniform compensated phase (planar phase) – non-

uniform phase (angular phase) – uniform saturation phase

(homeotropic phase) – non-uniform phase (planar phase). For

strong coupling of ferroparticles with the LC matrix there is an

analogous response of the LC director and magnetization to the

external magnetic field, and the sequence of transitions is:

uniform compensated phase (planar phase) – non-uniform

phase. There are some very important differences between

compensated ferronematics and the suspension of CNTs in the

LC. For compensated ferronematics the Fréedericksz transition

can be only a second-order transition, while for the CNT

suspension this transition can be of first or of second order,

depending on the segregation parameter. The other feature is

that the transition fields for compensated ferronematics depend

on the segregation parameter, while for magnetized ferrone-

matics and for LC suspensions of CNTs there is no such depen-

dence [39,42,43].

In [44] we studied the orientational response of a magnetized

ferronematic liquid crystal to magnetic and electric fields. In

contrast to the above-mentioned works, we considered the

bistable coupling between the particles and LC matrix. It is

shown that apart from magnetic impurity segregation, the first-

order orientational transitions can be due to the bistable orienta-

tional coupling.

Another approach for studying the LC suspensions of the

dipolar (ferromagnetic) particles was proposed in [45,46]. This

approach is based on the mean-field theory, and allows for an

investigation of the influence of temperature and magnetic field

on a suspension, including the phase transition from the ordered

phase into the nematic or paranematic state. We plan to propose

such a theory for LCs doped with diamagnetic particles.
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