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Analytical equations to estimate the peak force will facilitate the interpretation and the planning of amplitude-modulation force

microscopy (tapping mode) experiments. A closed-form analytical equation to estimate the tip—sample peak forces while imaging

soft materials in liquid environment and within an elastic deformation regime has been deduced. We have combined a multivariate

regression method with input from the virial-dissipation equations and Tatara’s bidimensional deformation contact mechanics

model. The equation enables to estimate the peak force based on the tapping mode observables, probe characteristics and the mate-

rial properties of the sample. The accuracy of the equation has been verified by comparing it to numerical simulations for the arche-

typical operating conditions to image soft matter with high spatial resolution in tapping-mode AFM.

Introduction

Amplitude-modulation atomic force microscopy (AM-AFM) is
the most common method to generate atomic and molecular
resolution images of diverse materials in liquid environment
[1-15]. In AM-AFM (tapping mode) a sharp tip is attached at
the end of a microcantilever that oscillates at its fundamental
flexural resonant frequency while the amplitude is used as the
feedback parameter to record the topography while imaging.
When the tip is in close proximity to the sample the amplitude
and the phase shift of the oscillation change with the strength of
the tip—sample interaction forces. To image soft matter without

generating plastic deformations, it is necessary to determine

beforehand the force exerted to the sample. However, the force
is not a direct observable in AM-AFM. The force-inversion
methods offer an alternative but these methods provide the
force estimation on an a posteriori basis. Moreover, those
methods could be very time consuming to tune for non-expert
enthusiastic AFM experimentalists and their accuracy is under
debate within the dynamic AFM community [16,17].

Numerical simulations and analytical scaling laws are well-

established methods to estimate the interaction forces of a mea-

surement [9,18-26]. One of the latter methods is the estimation
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of the peak interaction forces [21-23,25-29]. The peak interac-
tion force determines the deformation on the sample and hence
the spatial resolution and the degree of invasiveness of the mea-
surement. The parametrical equation obtained by Raman et al.
has been based on the Hertzian mechanics for air and vacuum
environments [21]. It has been also adapted to estimate the ex-
perimental peak forces of viral capsids (ca. 1 GPa) in liquid
[22]. However, those parametrical approximations have not
been designed to describe the forces for finite soft-matter
systems in highly damping environments. In this article we use
the term soft matter to describe polymeric surfaces and/or bio-
logical systems (isolated or packed arrays of proteins) with
Young moduli in the range of 30-300 MPa [11,12,14,30,31].
Moreover, we provide the explicit method to obtain an analyti-
cal equation based on the relevant dynamic AFM operational

parameters.

Here, a parametrical equation to determine the peak interaction
force exerted by the AM-AFM on a finite soft material
immersed in a liquid environment has been deduced. Such
deduction has been based in the previous works by the author
[15]. The fact of reducing the electrostatic interactions of the
surface charge depends strongly on the ionic strength and
pH values of the liquid [32]. Thus, immersing the surface sam-
ple and the probe into a liquid with a certain salt concentration
that reduces the electrostatic interactions to a minimum are
assumed as medium conditions in this article [33]. The use of
Hertzian mechanics has been generalized to model the tip—sam-
ple interaction forces for relatively rigid materials [34]. Howev-
er, for finite soft matter Tatara’s contact mechanics model could
be more appropriate to describe the elastic interactions between
tip and sample. In particular when the sample is very soft and
has finite dimensions conditions that would imply that the de-
formation happens symmetrically at both, the tip—sample and
the sample—substrate interfaces [35-37].

Results and Discussion

Equation of motion and tip—sample forces

The dynamics of the microcantilever—tip system in AM-AFM
can be approximated by the second-order non-linear differen-
tial equation [38],

mz(t) = —kz(t)— mgo z'(t)+Fts (d)+F0 cos, (1)

where m is the effective microcantilever—tip mass that includes
the added mass of the fluid [39], and ®(, O, k and Fis are the
angular resonant frequency, quality factor, spring constant and
tip—sample interaction forces, respectively. The latter has been
modelled according to the Tatara contact mechanics [35-37]

which is given by
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where the indexes “t” and “s” stand for tip and sample, respec-
tively, in the above equations, § is the indentation, v is the
Poisson coefficient (v = 0.3 and v¢ = 0.4) and E is the Young’s
modulus with £y = 170 GPa. The effective Young’s modulus
E.¢r and radius R¢r are described elsewhere [28,29].

Multivariate regression method to find a
parametrical equation for the peak forces in
tapping mode AFM on finite elastic soft

matter systems

Asymptotic approximation methods have been used to deduce
parametrical equations of physical quantities in dynamic
systems. In amplitude-modulation AFM these theoretical
approximations have been applied to derive a parametrical
equation for determining the peak force based on the addition of
repulsive Hertzian and attractive van der Waals interactions in
low-damping environments [21]. Here we have conceived a
multivariate regression analysis to obtain a parametrical equa-
tion of the peak interaction forces according to a bidimensional
elastic contact mechanics model, namely Tatara’s one (see
Equation 2). The main method's assumption is that the peak
interaction force can be expressed as a sixth-order multivariate

cascade function [40,41] of the aggregated AFM parameters,
Fpeak = f(Eeff (Reff (Q(k(AO (Asp ))))D )

where Agp, is the set-point amplitude. Other variables have been
previously described in Equation 1 and Equation 3. Equation 5
reflects a highly complex function relating the independent
operational, probe and materials properties variables of the

intrinsic nonlinear system (AM-AFM).
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Table 1: Simulation parameters defined for the multivariate regression analysis

Rs = 0.8R; and fp = 25 kHz.

parameters Eg (MPa) Ag (nm) k (N/m)
range 30-300 1-10 0.1-1.0
steps 270 20 10

One strategy to reduce the order of the cascade function (Equa-
tion 5) is to base our modelling on top of one available analyti-
cal approach to determine Fi in dynamic AFM [21,42,43]. We
have applied the virial-dissipation method [19] to determine an
initial equation for the peak force as a function of the relevant
amplitudes. Hence, Equation 5 is reduced to

1/2
2
Ap

(0)
A

Fpeak =Py |1-

where

B= f(Eeff (Reff(Q(k))))

is a force coefficient that depends on the four aggregated AFM
variables Eqff, Reef, O, and k. The multivariate regression is a
systematic method to perform regressions in a certain given se-
quence. Such method applied to  begins by building a one-
variable regression of & then continues with Q, R.¢r and finally
Ecgr. These multiple regressions were based on the numerical
simulations results for the operational, probe and materials

properties values given in Table 1, letting,
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. In all cases the values of the ratio between tip and sample are

Asp Q R (nm)
(0.7-0.95)A 1-5 5,7.5,10
6 5 —

with a cumulative coefficient of determination of R% =~ 0.85,
which is acceptable for a sixth-order multivariate regression
analysis. However, such coefficient of determination has been
applied to a fourth-order multivariate regression only. Hence,
by applying a loop of regressions while maximizing R? based
on the power variable x in the expression [1 — (ASP/AO)Z]X. The

R? = 0.91 and Equation 7 becomes

cumulative coefficient of determination can be enhanced to
3/4 23
J EV4 pl/4

[T o

Dependence of the peak forces parametrical

equation on the samples Young’s moduli
To verify the theoretical predictions for Fpe,i (Equation 8), we
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have compared them to numerical simulations for the operating
conditions needed to image soft samples with high spatial reso-
lution [28,29]. Whereby the peak forces are minimized by using
small free amplitudes of 1 to 4 nm and soft cantilevers with
k= 0.1 N/m. Note that those parameters are constrained to the
range of operational, probe and materials properties described
in Table 1. Nonetheless, this range could be extended for some
probe and/or operational parameters such as &, Ay and/or R;.
However, for such extensions a new cumulative correlation
coefficient must be obtained.

In Figure la, the simulated force behavior as a function of the
time is shown for two different materials with Young’s moduli

(b) 90
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o
& 50
T Elll?]l
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Figure 1: (a) The dependence of the forces on the normalized time for two different Young moduli 30 MPa (light gray line) and 300 MPa (dark gray
line). (b) The dependence of the peak forces on the sample Young modulus for the parametrical equation of Equation 8 (full line plots) and the corre-
sponding numerical simulations for Tatara’s contact mechanics (dashed line plots). Parameters defined for (a) and (b) are: Ag = 1 nm, Agp = 0.9A0,
Q=2,k=0.1N/mand R;=5nm.
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Figure 2: The dependence of the peak forces on the sample Young’s modulus for the parametrical equation of Equation 8 (full line plots) and the cor-
responding numerical simulations for Tatara’s contact mechanics model (dashed line plots). (a) Asp = 0.9A¢ and (b) Asp = 0.7Ag. Parameters defined

for (a) and (b) are: Ap =4 nm, Q=2, k=0.1 N/m and Ry =5 nm.

of 30 and 300 MPa, respectively. For each material the peak
force is defined as the maximum repulsive interaction of the
time domain curves observed in Figure 1a. We quantitatively
explored through simulations how the contact time increases
with the lower Young’s modulus values of the material.
Figure 1b shows the comparison of the parametrical equation
and numerical simulations for the whole range of Young moduli
between 30 and 300 MPa for 4, = 0.94,.

Figure 1b and Figure 2 compare the parametrical equation of
Equation 8 and the corresponding numerical simulations for
Tatara’s contact mechanics model. The comparisons cover
Young’s moduli in the range of 30 to 300 MPa, and two fixed
set-point amplitudes, namely 0.94( and 0.74. In addition, the
spring constant is fixed to £ = 0.1 N/m and the free oscillation
amplitudes are 1 nm (Figure 1b) and 4 nm (Figure 2). The peak
force increases monotonically with the Young’s modulus of the
sample. These results are consistent with previous numerical
simulations [28,29].

In Figure 1b, the agreement between the parametrical equation
and the numerical simulations in the explored range remains
close to a maximum relative error of 10%. This value can be
also considered as a worst case scenario in the a priori estima-
tion of the applied forces to soft matter. In Figure 2, a similar
comparison is performed but for a free amplitude 4y = 4 nm.
The accuracy of the parametrical equation shown for both cases
is fully within the 10% of relative error. However, the relative
error is slightly increased by decreasing the set-point amplitude
value from 0.94 (Figure 2a) to 0.74¢ (Figure 2b). The depen-
dence of the relative error on the set-point amplitude has been
previously argued about in another peak force parametrical
scaling law which is also based on asymptotical approxima-
tions [21,22].

Dependence of the peak forces parametrical

equation on the set point amplitudes

The dependence of the peak force with 4, (from 0.954¢ to
0.74y) is shown in Figure 3 and Figure 4. In general, we have
observed that the reduction of 4, leads to an increase in the
peak force [28,29]. Figure 3 describes the peak force for two
materials characterized by a Young’s modulus of 30 MPa
(Figure 3a,b) and 100 MPa (Figure 3c,d). The parametrical
equation shows a better agreement with the numerical simula-
tions for high A, values. Figure 3a,b shows that the accuracy
remains below a relative error of 10% only for set-point ampli-
tudes that do not involve a permanent contact between tip and
sample [15,28,29]. The permanent-contact regime depends on
the material softness and it does not hold when the Young’s
modulus is increased to 100 MPa (Figure 3c,d) within the set-
point amplitude values from 0.954 to 0.74.

In addition, good agreement between numerical simulations and
Equation 8 can be generally obtained for the range of set-point
amplitude values even below 0.74( by maintaining a relative
error of 10% (Figure 4b,d). However, it is important to note that
the reduction of 4, has been halted to 0.74¢. Smaller set-point
values (4, = 0.74¢) in materials with a Young’s modulus
below 60 MPa could imply a permanent-contact regime, which
increases the peak interaction force and could lead to a perma-
nent damage of the sample surface [28,29], in particular when
the quantitative imaging process involves only elastic mechani-

cal modeling.

The dependence of the peak forces with the microcantilever
spring constant follows a power-law dependence that monotoni-
cally increases by increasing the value of k£ as shown in
previous publications [28,29]. It is important to remark that by

increasing k, the multi-parametric configurational space for a
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Figure 3: The dependence of the peak forces on the set-point amplitude for the parametrical equation of Equation 8 (full line plots) and the corre-
sponding numerical simulations for Tatara’s contact mechanics (dashed line plots). (a) Material with a Young’s modulus of 30 MPa and Ag = 1 nm
(b) Material with the same Young's modulus as (a) and a higher free amplitude Ag = 4 nm. (c) Material with a Young’s modulus of 100 MPa and

Ao = 1 nm. (d) Material with the same Young’s modulus as (c) and a higher free amplitude Ag = 4 nm. Parameters are: Q = 2, k= 0.1 N/m and
R{=5nm.
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Figure 4: The dependence of the peak forces on the set-point amplitude for the parametrical equation of Equation 8 (full line plots) and the corre-
sponding numerical simulations for Tatara’s contact mechanics (dashed line plots). (a) Material with a Young’s modulus of 200 MPa and Ap = 1 nm.
(b) Material with the same Young’s modulus as (a) and a higher free amplitude Ag = 4 nm. (c) Material with a Young’s modulus of 300 MPa and

Ap =1 nm. (d) Material with the same Young’s modulus as (c) and a higher free amplitude Ag = 4 nm. Parameters are: Q = 2, k= 0.1 N/m and
Ri=5nm.
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non-invasive operational regime could be hindered. Hence,
Equation 8 and the available operational parameters besides k&
may require a new multi-parametric configurational space, in

other words the dependence of the force is proportional to
f(Eeff’ Retr, O, k, Ao, Asp)~

Conclusion

In short, we have deduced a closed-form equation that rapidly
reproduces the peak force exerted by the AFM tip while
imaging finite soft materials in liquid. The accuracy of this
equation has been verified by means of numerical simulations
for archetypical soft materials imaging conditions in AM-AFM
based on Tatara’s contact mechanics. Those conditions are
oscillation amplitudes in the range of 1-10 nm, and high set-
point amplitudes (above 0.84(). According to the Young’s
moduli of the materials the agreement between the parametrical
equation and the numerical simulations remain within a relative
error of 10%. However, the accuracy of the present equation
decreases when the set-point amplitude value is reduced below
0.84, in particular for soft materials with a Young modulus
below 60 MPa. The parametrical equation proposed here
extends the quantitative understanding of exerted forces by the
tip while imaging soft and elastic materials in liquid environ-
ment. It is useful to avoid sample damage while imaging soft
materials in liquid with tapping-mode AFM by providing a
multi-parametric configurational space. Furthermore this paper
provides a new method to deduce parametrical equations
applied to dynamic AFM, which can be rapidly extended to
further elastic models or different operational parameters.
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