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Abstract
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials

on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for

time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excita-

tion signal, e.g., light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation

frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge

carrier dynamics. Here, we show that such measurements are prone to artifacts due to frequency mixing, by performing numerical

dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the result-

ing time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have

a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier trans-

form (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attri-

buted to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces.

These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are

observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of

light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection

system. Finally, guidelines for avoiding such artifacts are given.
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Introduction
Kelvin probe force microscopy (KPFM) [1] has been widely

used for the characterization of metals, insulators, and semicon-

ducting materials on the nanometer scale [2]. The imaging

mechanism relies on the compensation of electrostatic forces by

application of a bias voltage that corresponds to the local con-

tact potential difference (CPD), the relative difference between

the work function of the tip and that of the sample area below

the tip. In most applications, spatial variations of the CPD are
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imaged in a static fashion, where variations in the CPD images

can have different origins. (i) Variations in the local surface

structure, chemistry, or material can affect the CPD by means of

a change in the surface dipole, the electron affinity, or the work

function [3-5]. (ii) The CPD can reflect spatial variations in the

charge density [6-8], individual localized charges [9], or even

partial charge densities within a single molecule [10,11].

Finally, (iii) doping type and charge-carrier concentration in

semiconductors will control the position of the Fermi level,

affecting the work function, which is defined as the energy

difference between the local vacuum level and the Fermi level

[12]. Usually, KPFM is used as a slow technique aiming at

imaging local variations in the CPD. The KPFM feedback

circuit applies a dc voltage to the tip (or the sample) to compen-

sate the electrostatic forces between tip and sample, where the

time constant of the KPFM controller is typically in the range of

milliseconds. However, especially in semiconductors, and in

view of points (ii) and (iii), the charge dynamics are of high

interest in materials and device characterization, and know-

ledge of the nanoscale charge-carrier dynamics can provide

valuable insight into device functionality and limitations in

device performance.

As a consequence, recently, several techniques for time-

resolved measurements with time resolution down to picosec-

onds have been developed. In the simplest approach, time-de-

pendent changes in the CPD are observed in real time in a point

measurement following an excitation pulse. Sadewasser et al.

[13] studied light-induced changes in a CuGaSe2 semiconduc-

tor used in photovoltaic applications. The authors measured the

surface photovoltage (SPV) – the difference between the CPD

under illumination and in the dark – after switching on and off a

laser light source. The CPD change resulting from the separa-

tion of the excited charge carriers was monitored in real time

over the course of several minutes. Similar experiments were

also performed using electrostatic force microscopy (EFM) on

organic photovoltaic blends [14-16]. By applying a bias pulse to

the atomic force microscopy (AFM) tip, Schirmeisen et al.

studied the ion transport in solid electrolytes [17]. By applying

bias pulses across organic field-effect transistors (OFETs) elec-

tronic transport in organic materials was studied [18-21]. The

time resolution in these approaches is limited by the KPFM

controller (to typically the millisecond range) or the response

time of the cantilever to changes in the sample’s CPD (on the

order of 100 μs [14]).

A better time resolution was achieved by using a light-intensity

modulated (IM) KPFM measurement, presented by Takihara et

al. [22]. Charge carriers are excited during the illuminated frac-

tion of the modulation, and decay during the subsequent dark

fraction of the modulation. If the modulation frequency is faster

than the response time of the KPFM controller, only an aver-

aged CPD will be measured, for which the value will depend on

how fast the changes in charge carrier separation follow the

light modulation. Thus, the average CPD carries information

about the charge carrier dynamics. This technique was subse-

quently used by various groups for the characterization of

organic devices [23-26] and, by using bias modulation (BM)

KPFM, also for the measurement of the minority carrier life-

time in epitaxial Si solar cell materials [27]. In a variation of the

bias or light modulation approach, a bias-based pump–probe

approach (pp-KPFM) was used to measure the charge-carrier

dynamics with a time resolution of 2 μs in pentacene-based

OFETs [28,29]. Similarly, light-based pp-KPFM was used to

measure a charge carrier lifetime in low-temperature grown

GaAs of ≈1 ps, currently the best time-resolution that has been

demonstrated experimentally for KPFM [30].

In these fast KPFM approaches relying on the application of a

modulated excitation signal (light, bias, or any signal that

results in a respective CPD change), there is a possibility that

for specific frequencies the excitation signal interferes in an

unwanted way with the cantilever oscillation or the ac-voltage

that is usually applied for the detection of the CPD. Such inter-

ference can be expected to affect the correct measurement of the

CPD, leading to an artifact that could be misinterpreted as a

sample property. To address this important issue, we have per-

formed numerical dynamics simulations of the cantilever oscil-

lation in KPFM subjected to a bias-modulated signal. We

consider square bias pulses, as well as exponentially raising and

falling pulses. For square pulses, the resulting time-dependent

electrostatic forces are very complex and result in intricate

mixing of frequencies that may in some cases have a compo-

nent at the detection frequency (cantilever resonance

frequency). When this happens, the measured CPD deviates

from the expected value. Additionally, we performed fast

Fourier transform (FFT) analyses that match the results of the

numerical dynamics simulations. Small differences are ob-

served in the measured CPD that can be attributed to transients

and higher-order Fourier components, as a consequence of the

intricate nature of the cantilever driving forces. Measurements

on a model system (metal-coated tip and Au sample) confirm

the simulation results. Furthermore, additional artifacts are

observed due to an undesired influence on the z feedback

controller and on the photodiode of the beam-deflection system

in case of light modulation.

Results and Discussion
Simulations
Numerical simulations of the cantilever motion were performed

using a C code. The cantilever tip dynamics are governed by the

equation of motion:
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(1)

where m is the effective mass, z the vertical tip position above

the sample surface (z = 0), t is the time, k the effective spring

constant of the cantilever, ω the natural angular frequency of the

cantilever, and Q the quality factor. The first three (i = 1,2,3)

eigenmodes of the cantilever are used. Only the electrostatic

forces relevant for electrostatic and Kelvin probe force micros-

copy are considered according to [2]:

(2)

(3)

(4)

Here, Vdc is the applied dc voltage, Vac the ac-detection voltage,

fac the frequency of the ac-detection voltage and VCPD the

contact potential difference. In our numerical simulations, no

z feedback is considered and the z position of the cantilever tip

is only influenced by electrostatic forces. This was done in

order to focus on the effect of the electrostatic forces.

To realize time-resolved KPFM a bias modulation in the form

of a square voltage pulse train Vpulse(t) is introduced as a pertur-

bation to the tip–cantilever system by replacing Vdc in

Equation 2 and Equation 3 with Vdc(t) = Vdc + Vpulse(t), where:

(5)

and Vpulse is the amplitude of the square voltage pulse, p is the

period of the voltage modulation, and n is an integer (counter).

To explore any effects of the bias modulation in the CPD deter-

mined in a KPFM measurement, the CPD is considered con-

stant, and for a given period, pulse amplitude, and dc bias

voltage, the equation of motion is numerically solved and the

amplitude of the tip oscillation at the ac-detection frequency

(fac) is extracted. This simulation is repeated for up to 30 differ-

ent dc voltages in a range between −3 V < Vdc < +3 V. The ex-

pected v-shaped dependence according to Equation 3 is ob-

served, where the minimum is extracted, which corresponds to

the VCPD that will be measured with the applied modulated

square voltage pulses.

Typical values for the cantilever parameters were used, as given

in Table 1. The simulations considered two typical cases: either

the ac-detection voltage is applied on the (i) fundamental reso-

nance frequency, or (ii) on the frequency of the second oscilla-

tion mode of the cantilever. We note that the quality factors

used in the presented simulation results are rather small, even

smaller than typical values obtained for AFM operation in

ambient air. We used these small values since the calculation

time depends on the quality factors and for larger values the

duration of the simulations became rather long. Nevertheless, in

several occasions, we tested the validity by using typical values

as obtained in ultra-high vacuum conditions and always ob-

tained the same results.

Table 1: Typical values used for the cantilever parameters in the simu-
lations reported here.

Parameter Value

force constant (N/m) 4.0
quality factor of fundamental eigenmode 750
quality factor of second eigenmode 450
quality factor of third eigenmode 150
capacitance gradient (N/V2) 1.0 × 10−9

The simulations of the tip–cantilever dynamics were performed

for a variation of dc-bias voltages (to extract the measured

VCPD) and for a variation of the period of the modulated bias

voltage. While the simulations consider a direct modulation of

the sample bias, this can correspond to experimental situations

where the sample surface potential is modulated by an applied

modulated bias, by modulated light pulses, or any other modu-

lation that results in a modulation of the sample surface poten-

tial.

The numerical simulations only consider a slow Kelvin

controller that cannot follow the applied bias modulation and

therefore measures an average VCPD. With this in mind, the ex-

pected measured VCPD would correspond to the sum of the

predefined CPD and the time-averaged voltage from the modu-

lated bias, which for a 50% duty cycle is half the amplitude

Vpulse: CPD + Vpulse/2. Any deviation from this expected value

can be assigned to an unwanted interference of the bias modula-

tion with the oscillating tip–cantilever system.

Figure 1a shows a typical bias modulation applied to the sam-

ple in the simulations with a pulse period of 6.67 μs, corre-
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Figure 1: (a) Perturbation signal with a square pulse shape, exemplarily shown for a period of 6.67 μs, a pulse width of ½ the period (3.33 μs), and an
amplitude of 0.5 V. (b) Total electrostatic driving force acting on the cantilever for the application of the above pulse plus a dc-bias voltage of
−250 mV. (c) Tip oscillation for three different conditions as indicated in the legend, showing that not in all cases a dc voltage can be found to reduce
the tip oscillation to zero. (d) FFT spectra of the tip oscillation for the two cases shown in (c). (e) Simulated oscillation amplitude as a function of
applied dc voltage showing the expected v-shape of the amplitude. (f) Pulse shape with exponential raise (τrise = 100 ns) and fall (τfall = 100 ns) used
in some of the presented simulations.

sponding to twice the cantilever’s fundamental frequency, with

a duration of 50% of the period. Considering this modulation

voltage and the addition of a dc-bias voltage of −250 mV

(added in order to offset the time average of the bias modula-

tion), the total time-dependent driving force acting on the canti-

lever according to Equations 2–4 is shown in Figure 1b. The

shape of this driving force is rather complex. The tip–cantilever

motion is affected by this driving force, leading to an imperfect

compensation of the electrostatically excited oscillation in some

cases. Figure 1c shows the tip oscillation for three different

cases. For pulses applied at the same frequency as the ac bias,

the oscillation amplitude can be effectively reduced to zero for

the expected CPD. However, for the case where the pulse fre-

quency is twice the resonance frequency, this condition cannot

be achieved by any dc voltage. The tip–cantilever motion can

be analyzed in the form of a fast-Fourier transformation (FFT),

namely FFT[fdc(t) + fac(t) + f2ac(t)], as shown in Figure 1d. Due

to the complexity in the shape of the driving forces, the FFT

may be non-zero at the detection frequency even if the applied

dc voltage equals the time average of the pulse, as in these par-

ticular cases. Specifically, one would expect that the applica-

tion of a dc bias of −250 mV should nullify the fac component

of the driving force Fac of Equation 3, if the modulation fre-

quency is much faster than the Kelvin controller. However, this

is only true if the FFT of the total driving force is zero at fac,

which Figure 1d shows is not the case for this example. The
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Figure 2: Frequency spectra for square pulse perturbation signal (Vpulse = 0.5 V, wpulse = ½ period) with the detection ac frequency on the (a) funda-
mental cantilever eigenmode (fac = f0 = 71.429 kHz) and (b) second cantilever eigenmode (f0 = 74.626 kHz, fac = f2 = 466.4125 kHz). In both cases
Vac = 0.5 V was used, along with a dc bias of −250 mV.

complexity of the driving forces, whereby the usual KPFM

driving forces (Fdc, Fac, and F2ac) are convoluted with the

voltage pulse, makes it difficult to draw analytical generaliza-

tions beyond the observation of the value of the FFT at the

detection frequency. Figure 1e shows the obtained tip oscilla-

tion amplitudes as a function of the applied dc voltage for the

cases illustrated in Figure 1c. When the pulse frequency equals

fac, the oscillation amplitude reduced to zero for the expected

CPD. However, at pulse frequency twice the ac frequency, the

amplitude cannot be reduced to zero and exhibits a minimum at

a dc voltage different from the expected CPD.

In typical experiments of time-resolved KPFM [22,24,25,27,28,

30], spectra as a function of the modulation frequency are re-

corded. We simulated the spectral dependence of the CPD as a

function of the period of the modulated bias. In our simulations,

the amplitude of the modulated bias is set to 0.5 V and the

period is changed over a range of 3 orders of magnitude from

100 ns to 100 μs. This range was chosen as it contains the

frequencies of the fundamental and second resonance mode, as

well as many of their multiples. Figure 2 shows the result of

simulations where the preset dc bias was set to −0.25 V, such

that the time averaged square bias pulse leads to an expected

measured CPD of 0 V. Over most of the spectral range, the ex-

pected CPD is indeed obtained. However, in the case of using

the fundamental resonance f0 several deviations are observed

(see Figure 2a). A strong deviation is seen at a modulation

period of 7 μs, corresponding to twice the selected fundamental

resonance frequency of 71.429 kHz, and therefore equal to

twice the Kelvin detection ac-frequency. Smaller deviations are

observed at the frequencies 2/m·f0, where m is an odd number.

The strong deviation at 2·f0 can be attributed to a capacitive

coupling according to Equation 4. Analysis of the total electro-

static driving force for the cases where the pulse frequency is

2/m·f0 (not shown) reveals that the shape of the driving force

contains similar features in all cases, and the FFT analysis

confirms that there is indeed a non-zero driving force at the

detection frequency in all cases, with its magnitude decreasing

as m increases.

Experimentally, the frequency of the second resonance mode of

the cantilever is often used to apply the Kelvin ac-detection

voltage: fac = f2 [2]. We therefore also simulated the corre-

sponding case, which is shown in Figure 2b. As in the above

case, a deviation from the expected CPD is observed at 2/m·f2,

while no additional deviations are detectable. We note that there

is also no deviation detected at the fundamental resonance fre-

quency, indicating that the pure capacitive excitation of the can-

tilever at its fundamental resonance does not have any impact

on the CPD measurement.

In addition to a square pulse shape of the modulation bias, we

also considered pulses with an exponential rise and fall (see

Figure 1f), a case which resembles the effect of charge genera-

tion, separation, and recombination. Thus, the pulse shape with

exponential rise and fall is closer to what is expected to be ob-

served in an experiment [25,30]. Figure 3a shows the resulting

simulated frequency spectrum of a modulated bias with expo-

nential rise and fall slopes with a characteristic time constant of

τrise = τfall = 100 ns, and a dc bias of −250 mV. The obtained

spectrum shows deviations from the expected CPD at the same

modulation frequencies as in the case of the square bias pulses,

i.e., at fmod = 2/m·f0 (with m = 1,3,5,7,…). Thus, frequency

mixing also affects the simulated CPD for modulated bias
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Figure 3: (a) Frequency spectrum for bias modulation with exponential rise and fall shape, as illustrated in Figure 1f. The characteristic time constant
of the exponential rising and falling slopes are τrise = τfall = 100 ns. The pulse height and width are Vpulse = 0.5 V and wpulse = ½ period, respectively.
As in previous cases, a dc-bias voltage of −250 mV is included. The detection ac frequency was applied at the fundamental cantilever resonance
(fac = f0 = 71.429 kHz). (b) Normalized amplitude of the CPD deviations as a function of the factor m (see text for details).

Figure 4: Experimental frequency spectra with a square shaped bias pulse (Vpulse = 0.2 V) of 50% duty cycle. (a) Spectrum taken with the z feed-
back and the cantilever oscillation switched off and (b) with the cantilever mechanical oscillation at the 2nd resonance mode (f2 = 465.207 kHz) and z
feedback switched on. In both cases the Kelvin detection ac bias (Vac = 0.2 V) is applied at the fundamental resonance frequency (f0 = 73.680 kHz).

pulses with exponential rise and fall shape. The deviation from

the expected CPD shows a systematic dependence on the factor

m, where the deviation is largest when the modulation frequen-

cy corresponds to twice the frequency of the ac detection fre-

quency of the Kelvin signal. Figure 3b shows the normalized

amplitude of the simulated spectra of Figure 2a,b, and

Figure 3a, which are in agreement with FFT analyses.

Experiments
To corroborate the results from the simulations, we carried out

experiments of tr-KPFM with bias and light pulses on a model

system consisting of a Au(111) sample. Different experimental

conditions were realized to reflect the different simulation

scenarios and also typical experimental conditions.

In the above numerical simulations, the tip–sample distance is

maintained constant (the z feedback is inactive) and the ac-bias

voltage is applied at the fundamental resonance frequency of

the cantilever (results presented in Figure 2), while a frequency

spectrum with a square pulse shape is applied. Experimental

results reproducing these conditions are presented in Figure 4a;

AM-KPFM was used at the fundamental resonance frequency

of the cantilever. The detailed experimental conditions are given

in the figure caption. During the acquisition of the frequency

spectrum, the z feedback was deactivated and the cantilever

oscillation was turned off. Thus, any cantilever oscillation is

only induced by the ac-bias voltage when acquiring the frequen-

cy spectrum. Figure 4a shows the average (black curve) of 3

individual spectra (colored thin curves) taken under the same
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conditions at the same sample location. The expected relative

CPD in the experiment was VCPD = 0 V and a clear deviation is

observed at 1/fac = 6.7 μs, corresponding to twice the resonance

frequency of the cantilever (f0 = 73.680 kHz). This finding is in

agreement with the results from the simulation (see Figure 2a).

However, the simulations show an additional deviation (about

4–5 times smaller) at 2/3 times the resonance frequency of the

cantilever, where the experimental data does not show this devi-

ation from the expected CPD. Considering the small deviation

observed at 2·f0, it is possible that the deviation at 2/3·f0 may be

within the noise level of the experimental data. Nevertheless,

two additional deviations from the expected CPD are found at

frequencies not related to the cantilever eigenmodes, namely at

500 Hz and at 1428 Hz. We speculate that these deviations are

due to possible capacitive cross talk between the ac voltage and

the piezo cables or the photodetector. We can disregard these

deviations since they are not related to the cantilever eigen-

modes and have a different origin, possibly related to the specif-

ic setup used for the experiments.

As the above experimental conditions are far from a realistic ex-

periment, we also performed experiments with an active cantile-

ver oscillation and active z feedback. Since the fundamental

resonance is used for the ac bias of the Kelvin setup, we chose

to use the second eigenmode of the cantilever for the mechani-

cal oscillation and the z feedback. The results are shown in

Figure 4b and are in excellent agreement with the experiment

where the cantilever oscillation and z feedback were switched

off (Figure 4a). As detailed above, they are also in agreement

with the simulation results, thus demonstrating that neglecting

the cantilever oscillation and z feedback in the simulations does

not have a significant impact on the results, which confirms the

validity of the simulations.

While the above experiments aim at reproducing the conditions

used in the simulations presented in the previous section, a

typical experiment would use the fundamental eigenmode for

the z feedback and either use the second eigenmode for the

Kelvin feedback in AM-KPFM (by applying the detection ac

bias on the second eigenmode) or use FM-KPFM and apply an

ac bias for the Kelvin detection in the range below ≈1 kHz. We

thus used FM-KPFM to test the effect of the frequency spectra

for time-resolved KPFM in realistic experimental conditions.

For the experiments, a cantilever with a fundamental resonance

frequency of f0 = 165.448 kHz was used and the ac-bias voltage

for the FM-KPFM detection was applied at 377 Hz with Vac =

200 mV. A frequency spectrum with a square-shaped bias pulse

was applied with 50% duty cycle. In case of a disabled z feed-

back, the spectrum shows a slight deviation from the otherwise

nearly featureless CPD spectrum at the fundamental resonance

frequency, as shown in Figure 5a. In the case of an active z

feedback, the deviation from the expected CPD at the funda-

mental resonance frequency is significantly larger, as shown in

Figure 5b. This much stronger deviation is due to a strong

impact on the cantilever oscillation, which leads to a sizable

effect on the z feedback and thus the tip–sample distance, as

was confirmed by monitoring the z-piezo position. Therefore,

the origin of the artifact in the frequency spectrum in the

present case is different from the case shown in Figure 4, where

no effect on the z-piezo position was observed.

Several research results on time-resolved KPFM have been

presented that used intensity-modulated (IM) laser illumination

to trigger a SPV change and thereby study the dynamics of

charge generation, separation, and recombination. To investi-

gate potential artifacts of IM laser illumination we also carried

out similar experiments to the above frequency spectra with a

IM laser instead of applying a pulsed bias. As the experiments

use an Au(111) sample and a PtIr-coated tip and cantilever, no

SPV due to the laser illumination is expected. However, as seen

in Figure 5c and Figure 5d, a clear deviation from the flat CPD

spectrum is again observed at the fundamental resonance fre-

quency of the cantilever. This artifact can be explained by

considering that part of the IM laser illumination reflects from

the cantilever back side and the sample onto the position sensi-

tive photodetector for the AFM detection, thereby leading to an

artificial modification of the measured cantilever oscillation.

We could confirm an impact of the IM laser on the tip–sample

distance by monitoring the z-piezo position, which presumably

leads to the detected deviation from the expected CPD. It is

noteworthy that in the case of IM laser light and an active z

feedback we observed some variation in the size and sign of the

deviation from the expected CPD value (see, e.g., thin colored

lines in Figure 5). We attribute this variation to a different phase

shift between the cantilever oscillation and the IM laser, leading

to constructive or destructive interference between the AFM

detection laser and the IM illumination. We note that a shift of

the measured CPD with a variation of the phase between a me-

chanical and an electrostatic modulation signal at the funda-

mental resonance frequency has been reported previously in

conjunction with the so-called dissipation KPFM mode [31,32].

It is also important to note that the artifacts in time-resolved

KPFM observed in Figure 4 and Figure 5 have a different origin

from one another. In the latter case, a direct interference of the

applied bias or light pulses with the cantilever oscillation leads

to deviations in the measured oscillation and (in case of an

active z feedback) the tip–sample distance, thereby influencing

the CPD controller. In the experiments presented in Figure 4,

the observed artifact results from a frequency mixing of the

applied bias pulses with the KPFM ac detection voltage, and not
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Figure 5: Experimental frequency spectra with a square shaped pulse of 50% duty cycle measured by FM-KPFM (fac = 377 Hz, Vac = 200 mV). Bias
pulses applied to the Au(111) sample with the z feedback (a) disabled and (b) active, leading in both cases to some deviation from the expected CPD
at the fundamental resonance frequency of the cantilever. Light pulses lead to similar deviations for (c) disabled and (d) enabled z feedback.

directly from an influence on the cantilever oscillation at the

resonance frequency. In any experiment, both artifacts must be

considered, and can be avoided by excluding the resonance fre-

quency which is used for the z feedback and frequencies related

to the KPFM detection frequency. It is also a good practice to

perform the FFT of the total electrostatic driving force corre-

sponding to Equations 2–4 for the particular pulse configura-

tions used.

Conclusion
We have performed an analysis of possible artifacts in time-

resolved KPFM using a combined simulation and experimental

study. The simulations of time-resolved CPD spectra revealed a

deviation from the expected CPD at fractions of twice the ac

detection frequency used for the CPD. The experiments con-

firmed these observations. Furthermore, in typical experimental

measurement conditions, additional artificial CPD deviations

can appear due to a direct cross talk of the modulation signal

(bias, light, etc.) with the cantilever oscillation. Our results

provide the following guidelines to avoid artifacts in time-

resolved KPFM measurements: (i) during the acquisition of

CPD spectra, application of the modulation signal at the critical

frequencies should be avoided, and (ii) an FFT analysis of the

total electrostatic driving force is recommended to avoid misin-

terpretation of experimental data.

Experimental
Experiments were performed in an ultra-high vacuum atomic

force microscope (Omicron VT-SPM) at a base pressure below

1 × 10−10 mbar, controlled by a Nanonis controller. Two types

of PtIr-coated cantilevers (Nanosensors PPP) were used, with

the fundamental resonance frequency at ≈74 kHz or at

≈165 kHz. Typical oscillation amplitudes of ≈20 nm were

mechanically excited. For amplitude modulation (AM) KPFM

the second resonance mode of the cantilever was used (f2 ≈

465 kHz or f2 ≈ 1.027 MHz, respectively), while for frequency

modulation (FM) KPFM the ac bias was applied at fac =

377 Hz. In both cases Vac = 200 mV amplitude was used. The
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induced oscillating electrostatic forces are compensated by a dc

voltage that corresponds to the contact potential difference

(CPD).

The topography control (z feedback) was normally realized on

the fundamental resonance of the cantilever. However, in some

experiments the z feedback and the cantilever oscillation were

switched off during the pulse sequences and the tip was

retracted 50 nm. Control experiments with different tip retrac-

tions between 10 and 50 nm showed no dependence of the

results on the tip retraction. To allow Kelvin control on the

fundamental resonance frequency (by applying the Kelvin ac

voltage at f0) the topography control was applied on the second

resonance mode of the cantilever. The specific experimental

conditions are stated in the results section.

Time-resolved KPFM was realized by applying bias pulses

from a pulse generator (Agilent MSO-X-3014A) to a metallic

Au(111) sample with periods ranging from 100 ns to 1 ms and a

duty cycle of 50%. Thus the shortest pulses realized in the

present experiments were 50 ns. Using a metallic Au sample

ensures that carrier dynamics are not relevant in the present

study.
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