
2546

Effective sensor properties and sensitivity considerations of a
dynamic co-resonantly coupled cantilever sensor
Julia Körner

Full Research Paper Open Access

Address:
University of Utah, 50 S. Central Campus Dr #2110, Salt Lake City,
Utah, 84112, USA

Email:
Julia Körner - julia.koerner2k@gmail.com

Keywords:
cantilever sensor; co-resonant coupling; effective sensor properties;
sensor sensitivity

Beilstein J. Nanotechnol. 2018, 9, 2546–2560.
doi:10.3762/bjnano.9.237

Received: 01 June 2018
Accepted: 22 August 2018
Published: 25 September 2018

Associate Editor: T. Glatzel

© 2018 Körner; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
Background: Co-resonant coupling of a micro- and a nanocantilever can be introduced to significantly enhance the sensitivity of

dynamic-mode cantilever sensors while maintaining the ease of detection. Experimentally, a low-stiffness nanocantilever is coupled

to an easy to read out microcantilever and the eigenfrequencies of both beams are brought close to one another. This results in a

strong interplay between both beams and, hence, any interaction applied at the nanocantilever alters the oscillatory state of the

coupled system as a whole and can be detected at the microcantilever. The amplitude response curve of the microcantilever exhib-

its two resonance peaks and their response to an interaction applied to the sensor depends on the properties of the individual beams

and the degree of frequency matching. Consequently, while an individual cantilever is characterized by its eigenfrequency, spring

constant, effective mass and quality factor, the resonance peaks of the co-resonantly coupled system can be described by effective

properties which are a mixture of both subsystem’s characteristics. These effective properties give insight into the amount of sensi-

tivity of the nanocantilever that can be accessed and, consequently, into the sensitivity gain associated with the co-resonance. In

order to design sensors based on the co-resonant principle and predict their behaviour it is crucial to derive a description for these

effective sensor properties.

Results: By modeling the co-resonantly coupled system as a coupled harmonic oscillator and using electromechanical analogies,

analytical expressions for the effective sensor properties have been derived and discussed. To illustrate the findings, numerical

values for an exemplary system based on experimental sensor realizations have been employed. The results give insight into the

complex interplay between the individual subsystem’s properties and the frequency matching, leading to a rather large parameter

space for the co-resonant system’s effective properties. While the effective spring constant and effective mass mainly define the

sensitivity of the coupled cantilever sensor, the effective quality factor primarily influences the detectability. Hence, a balance has

to be found in optimizing both parameters in sensor design which becomes possible with the derived analytic expressions. Besides

the description of effective sensor properties, it was studied how the thermal noise and, consequently, minimal detectable frequen-

cy shift for the co-resonantly coupled sensor represented by a coupled harmonic oscillator could be derived. Due to the complex
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nature of the coupled system’s transfer function and the required analysis, it is beyond the scope of this publication to present a full

solution. Instead, a simplified approach to estimate the minimal detectable frequency shift for the co-resonant system based on the

effective sensor properties is given.

Conclusion: By establishing a theoretical description for the effective sensor properties of a co-resonantly coupled system, the

design of such systems is facilitated as sensor parameters can easily be predicted and adapted for a desired use case. It allows to

study the potential sensitivity (gain) and detectability capabilities before sensor fabrication in a fast and easy way, even for large pa-

rameter spaces. So far, such an analysis of a co-resonantly coupled sensor was only possible with numerical methods and even then

only with very limited capability to include and understand the complex interplay between all contributions. The outlined calcula-

tion steps regarding the noise considerations in a coupled harmonic oscillator system can provide the basis for a thorough study of

that question. Furthermore, in a broader scope, the investigations presented within this work contribute towards extending and com-

pleting the already established theoretical basics of this novel co-resonant sensor concept and open up new ways of studying the

coupled system’s behaviour.
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Introduction
Dynamic-mode cantilever sensors are used for many different

applications which include the detection of smallest masses

[1,2], in situ observation of the growth of biological films [3],

detection of trace analytes in gases (”artificial nose”) [4] and the

investigation of properties of novel (nano)materials by scan-

ning probe methods or magnetometry [5-7]. In contrast to static-

mode operation, where the static bending of cantilever sensors

is used as a measurement signal, the dynamic mode is based on

exciting the beam to vibrations and monitoring its amplitude,

resonance frequency and phase shift. These properties can be

altered either due to a change of the cantilever’s properties

(spring constant, mass) or an external force gradient. The oscil-

lation detection is usually realized by laser-optical methods

such as interferometry or deflectometry [8].

In many cases, the shift of the cantilever’s resonance frequency

ω0 is measured and, hence, the sensitivity of a cantilever sensor

can be defined as the obtainable frequency shift with respect to

an external interaction. This interaction can either be a force

gradient represented by Δk or a mass change Δm (either point

mass at the beam’s end or distributed mass) which alters the

cantilever spring constant k and/or its effective mass meff. The

frequency shift Δω is then given by:

(1)

Assuming negligible mass change Δm compared to the effec-

tive mass, the frequency shift becomes (see Supporting Infor-

mation File 1 for details):

(2)

and for negligible change of the spring constant Δk and a homo-

geneously distributed mass change:

(3)

Please note that Equation 3 is derived from Equation 1 by a

Taylor series expansion for small Δm (see Supporting Informa-

tion File 1 for details). From Equation 2 and Equation 3 it is

evident that a small spring constant, small effective mass and

high resonance frequency of the cantilever are favorable, espe-

cially for small interactions. Therefore, a common measure to

increase the sensitivity of a cantilever sensor with regard to

force gradients is the use of very soft beams which is typically

achieved by reducing the cantilever dimensions, in particular

the thickness. In this regard, attonewton force sensitivity has

been demonstrated for very thin (≈100 nm) cantilever struc-

tures with a correspondingly low spring constant in the order of

few µN/m [5]. Size reduction is also a favorable approach in

terms of decreasing the effective cantilever mass. Another ap-

proach of reaching femtonewton force sensitivity has been

demonstrated for optomechanical cantilever sensors by optimiz-

ing cantilever design for high quality factors (in the order of

106). Consequently, cantilevers with rather high stiffness

(kN/m) can be used, avoiding the snap-to-contact instability of

very soft beams [9]. However, this experiment requires a highly

specialized setup to drive the cantilever by optical means. In

case of the typically used micromechanical cantilever sensors

with piezo-actuator excitation, the low force sensitivity is

achieved by reducing the beam’s size.

This reduction of the cantilever’s dimensions creates new chal-

lenges, not only for fabrication but also for oscillation detection

[10]. Although sophisticated setups exist which allow the detec-

tion of the oscillatory state of a nanocantilever [11,12], these
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challenge hinders the widespread use of highly sensitive cantile-

vers with state-of-the-art equipment. Therefore, new concepts

which access the high sensitivity of a nanocantilever but at the

same time preserve the ease of oscillation detection need to be

explored.

One approach is a recently introduced co-resonant measure-

ment principle which combines the ease of detection at a micro-

cantilever with the high sensitivity of a nanocantilever. The

co-resonance is introduced by coupling these two beams and

matching of their eigenfrequencies, i.e., they are brought close

to one another, resulting in a strong interplay between both can-

tilevers. Thus, any interaction applied at the highly sensitive

nanocantilever alters the oscillatory state of the coupled system

as a whole and can be detected by measuring the coupled

system’s amplitude response curve at the microcantilever

[13,14]. Details about the basic underlying sensing principle as

well as sensor fabrication with regard to coupling and eigenfre-

quency matching can for example be found in [13] and [15].

The sensor concept was tested experimentally in magnetic mea-

surements. In cantilever magnetometry, individual Co2FeGa

Heusler nanoparticles were studied with respect to their magnet-

ic properties. This led to the first time observation of magnetic

switching of these individual Heusler nanoparticles at room

temperature and with a comparatively simple setup (laser-

deflection detection) [16]. Other experiments in magnetic force

microscopy showed a likewise increase in sensitivity [17,18].

These first proof-of-principle experiments and applications

demonstrate the immense potential of the co-resonant sensor

concept but they also indicate that a further study of the impli-

cations of the co-resonance is necessary.

As Equation 2 and Equation 3 indicate, the frequency shift

response of an individual cantilever to an external interaction

depends on the cantilever’s properties, i.e., its resonance fre-

quency f, spring constant k, effective mass meff and also quality

factor Q (with regard to detectability [19]).

While a single cantilever only exhibits one resonance peak for

each of its oscillation modes, the coupled system’s amplitude

response curve features two resonance peaks which show a

differing frequency shift response to external influences on the

system, depending on the degree of eigenfrequency matching.

Furthermore, the frequency shift is always greater than that of

the individual microcantilever and smaller than that of the indi-

vidual nanocantilever. Consequently, the observation of the

coupled system’s behavior leads to the conclusion that each

resonance peak of the coupled system can be described by a set

of effective sensor properties which are influenced by the char-

acteristics of both individual beams and depend on the degree of

eigenfrequency matching. These effective properties ultimately

define the capabilities of the co-resonantly coupled system in

terms of sensitivity and detectability. It is therefore crucial in

view of sensor design and for evaluating sensor performance to

derive ways of describing these effective properties and their

dependence on the individual beam’s properties and the degree

of eigenfrequency matching. Here, we present the derivation of

simplified analytical formulas for the effective sensor proper-

ties of co-resonantly coupled sensor systems which will allow

an accurate and fast way of determining prospective sensor per-

formance. Furthermore, noise considerations within the coupled

system and implications of the effective properties on the sensi-

tivity and detectability of a co-resonantly coupled sensor are

outlined.

In the following, first the sensitivity definition of a cantilever

sensor will briefly be discussed and it will be evaluated how

this can be used to estimate the sensitivity of a co-resonantly

coupled cantilever system. This will allow to identify which

effective properties of the coupled system are important in addi-

tion to the effective spring constant and effective mass which

are already indicated by Equation 2 and Equation 3. In the next

section, the modelling approach will be introduced. Then, the

derivation of effective properties based on that model as well as

the resulting expressions will be presented. These allow to esti-

mate the potential performance and limitation of the system

(e.g., sensitivity for a given task) before fabricating it and give

new insights into the behaviour of co-resonantly coupled oscil-

lating systems. Additionally, the treatment of thermal noise

within the coupled system will be outlined.

Sensitivity of a Cantilever Sensor
The sensitivity of a cantilever sensor is given by its minimal

detectable frequency shift with respect to an external interac-

tion. It is influenced by various noise contributions which are

due to the cantilever itself (e.g., thermal noise, thermal frequen-

cy drift noise), the measurement principle (e.g., magnetic noise

in case of magnetic measurements) and the excitation and detec-

tion setup (e.g., oscillator noise, detector noise) [8,20]. Howev-

er, the lowest limit for a cantilever’s sensitivity is given by its

thermal fluctuations leading to a thermally induced average fre-

quency shift. This results in a minimal detectable frequency

shift signal that is usually given in terms of a minimal

detectable force gradient [5,8,21,22] or minimal detectable mass

[23]. The following discussion will therefore be focused on the

thermal noise limit and the minimal detectable frequency shift

as a representation for sensitivity.

A cantilever can be described by a harmonic oscillator model

with varying parameters for each of its eigenfrequencies [24]
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Table 1: Numerical values for micro- (1) and nanocantilevers (2) based on experimental implementations of co-resonantly coupled sensors. Please
note that the values are given for the initial state before frequency matching for the individual subsystems (columns 2 and 3). The two right-hand side
columns summarize the values for both resonance peaks (a - left peak, b - right peak) of the coupled system in case of +2% eigenfrequency devia-
tion Δfe between micro- and nanocantilever (f1 = 200 kHz, f2 = 204 kHz) and have been calculated based on the model in Figure 1c.

Individual subsystems Coupled system, Δfe = +2%

Parameter Micro (1) Nano (2) Left peak (a) Right peak (b)

Frequency f 200.0 kHz 400.0 kHz 198.3 kHz 205.8 kHz
Spring constant k 1 N/m 0.001 N/m 0.0044 N/m 0.0013 N/m
Quality factor Q 10000 800 2670 1008
Effective mass meff 6.33 × 10−13 kg 6.09 × 10−16 kg 2.83 × 10−15 kg 7.77 × 10−16 kg

which is the basis used for the sensitivity considerations. The

minimal detectable frequency shift ∂ωth of an individual cantile-

ver represented by a harmonic oscillator is given by [8]:

(4)

with the Boltzman constant kB, temperature T, measurement

bandwidth Bw and the cantilever parameters spring constant k,

quality factor Q, eigenfrequency ω0 and oscillation amplitude A.

Equation 4 is derived based on the equipartition theorem for a

harmonic oscillator with one degree of freedom as outlined in

[25] and [26]. It may also be applied to estimate the minimal

detectable frequency shift and, hence, sensitivity of the coupled

system based on the hypothesis that each of the resonance peaks

of the coupled system can be represented by an effective

harmonic oscillator with effective properties as outlined in [14].

Consequently, that requires the derivation of expressions for

effective spring constant, resonance frequency and quality

factor and a discussion about the oscillation amplitude of the

co-resonant system.

Modelling Approach
The derivation of analytical expressions for the effective prop-

erties of the co-resonant system will be based on a modelling

approach which has been discussed extensively in [13] and [14]

and will therefore only briefly be outlined here. As mentioned

above, the co-resonant cantilever system can be described as a

coupled harmonic oscillator, consisting of a damping element

d1,2, spring k1,2 and effective mass m1,2 for each subsystem.

Please note that m1,2 still denotes the effective mass but the

subscript eff was omitted to keep the descriptions short. The

model furthermore allows to study external interactions on the

coupled system and in Figure 1 a force gradient represented by

an additional spring k3 is exemplarily considered.

By employing electromechanical analogies and the conventions

force F ≡ current I and velocity v ≡ voltage U, the mechanical

model can be transformed into an electric circuit [14]. The

respective models are depicted in Figure 1 together with an

experimental sensor representation. The circuit model gives

the opportunity to utilize analytical (e.g., Laplace-space analy-

sis) and simulation tools (e.g., Spice) to study the system’s be-

haviour.

All following considerations will be based on this model. In

order to present some graphic representations of the analytical

formulas derived below, the exemplary parameters given in

Table 1 for a micro- and a nanocantilever will be used. They are

based on sensor parameters which have been observed for ex-

perimental realizations of the co-resonantly coupled system

such as depicted in Figure 1a.

Furthermore, please note that the following naming convention

will be used to distinguish between the properties of the indi-

vidual subsystems and those of the coupled system. For the

individual subsystem, the indices 1 and 2 indicate micro- and

nanocantilever, respectively. Indices a and b will be employed

for the coupled system’s parameters, where a always refers to

the left resonance peak (the one with the lower resonance fre-

quency) and b to the right resonance peak (higher resonance fre-

quency). To visualize these definitions, Figure 2 shows the

amplitude response curve of the coupled system calculated for

the microcantilever based on the circuit model from Figure 1c

and for the values in Table 1 and +2% eigenfrequency devia-

tion between micro- and nanocantilever. Additionally, most

expressions will be derived in dependence on the angular fre-

quency ω but in some cases this will be recalculated into the

frequency f by ω = 2πf.

Results and Discussion
Derivation of effective sensor properties
The effective sensor properties which characterize each reso-

nance peak are the resonance frequency fa,b, the effective spring
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Figure 1: (a) Scanning electron microscopy image of a sensor realization consisting of a silicon microcantilever and a carbon nanotube nanocan-
tilever. (b) Sensor’s representation by a coupled harmonic oscillator model and (c) corresponding electric circuit model. m1,2 denote the effective
mass, d1,2 the damping and k1,2 the spring constant of each individual beam. The potential external interaction applied at the nanocantilever is
modelled by an additional spring k3 (representing a force gradient) [14]. The system is excited via a periodic force F applied at the microcantilever.

Figure 2: Calculated microcantilever amplitude response curve of the co-resonantly coupled system based on the values in Table 1 and for +2%
eigenfrequency deviation between micro- and nanocantilever. The amplitude has been normalized to the maximum value of the curve.

constant  and effective quality factor . Furthermore, as

described above, the relevant measured amplitude A of the

coupled system has to be defined in order to employ the known

sensitivity definition. This additionally warrants a discussion of

thermal noise in the coupled system and an evaluation of

how the thermally induced amplitude noise may be amplified

due to the co-resonance and how that may affect the detection

limit. In the following, the derivation of the effective properties
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based on the coupled harmonic oscillator model will be outlined

and the implication on sensitivity and detectability will be dis-

cussed.

Resonance frequencies of a co-resonantly coupled
system
To analytically derive the resonance frequencies for the co-reso-

nantly coupled system, the circuit model in Figure 1c is consid-

ered. The resonance frequencies are found by determining the

frequencies where the maxima of the amplitude response curve

for subsystem 1 (microcantilever) A1(ω) = |v1/v0| and/or

subsystem 2 (nanocantilever) A2(ω) = |v2/v0| occur. Previous in-

vestigations have shown that both amplitude response curves

exhibit the same resonance frequencies, hence, only subsystem

1 will be considered in the following. Please note that the

derivations are exactly the same if subsystem 2 is used [14].

Considering the damped coupled harmonic oscillator results in

very complex expressions for the amplitude response curves

(see [14]). Analytical calculation of the resonance frequencies

would involve the derivative of the amplitude response curve to

be zero which results in a sixth degree polynomial expression

that can only be solved numerically.

Consequently, for an estimate of the resonance frequencies, we

consider the model from Figure 1c without the damping ele-

ments d1,2. The validity of this assumption is supported by com-

parison of simulation results for the damped and undamped

circuit model which show that the position of the resonance

frequencies is only minimally influenced, even for high

damping, i.e., low quality factors [14].

This can be understood by following the reasoning of [27]. In

case of viscous damping, one has to distinguish between the

angular natural frequency (eigenfrequency) ω0 and the angular

frequency of damped vibration (resonance frequency) ωd. The

former remains unchanged in case of damping as it only

depends on the properties spring constant k and effective mass

meff of the system itself, i.e.,  = k/meff. The resonance fre-

quency ωd is shifted compared to the eigenfrequency,

depending on damping, hence ωd =  Thereby, n

denotes the ratio between damping coefficient d and effective

mass meff, i.e., n = d/2meff. Employing this together with d =

/Q leads to:

(5)

From Equation 5 it can be concluded that, even for low quality

factors, the assumption from above gives a good approximation

for the resonance frequencies of the coupled system.

In that case, the expressions for the amplitude response curves

of micro- and nanocantilever read:

(6)

(7)

Here, B(ω) denotes an amplification factor between the ampli-

tude of micro- and nanocantilever which is also frequency-de-

pendent.

The corresponding resonance frequencies ωa,b for left a and

right peak b, respectively, are found by determining the poles of

Equation 6, resulting in [13,28]:

(8)

with the squared combined frequencies:

(9)

(10)

Please note that the radical term in Equation 8 is subtracted to

calculate the left resonance peak a and the plus sign refers to

resonance peak b with the higher resonance frequency. This is

to ensure consistency with the definition of the resonance peaks

given above.

By employing the relation ω2 = k/m, Equation 8 can be

expressed by the eigenfrequencies ω1,2 of micro- and nanocan-

tilever:

(11)

with

(12)
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Figure 3: (a) Resonance amplitudes of both resonance peaks of the
coupled system calculated for the microcantilever (index 1) and
(b) resonance frequencies of both resonance peaks of the coupled
system in dependence on the eigenfrequency deviation
Δfeigen = Δωeigen/2π based on Equation 11 for the values given in
Table 1. (c) Magnification of the resonance frequencies of both reso-
nance peaks of the coupled system for small eigenfrequency deviation
with added eigenfrequencies of micro- and nanocantilever to illustrate
the effect of the co-resonance.

(13)

By assuming a constant eigenfrequency of subsystem 1, i.e.,

ω1 = const, and that only the eigenfrequency of subsystem 2 is

varied, the coupled resonance frequencies can be derived in de-

pendence on the degree of eigenfrequency matching Δωeigen

(see Supporting Information File 1 for details):

(14)

Please note that Δωeigen is a dimensionless quantity which will

be used to generate all following graphs. Figure 3 depicts

the resonance frequencies for both resonance peaks of the

coupled system in dependence on the eigenfrequency deviation

Δfeigen = Δωeigen/2π based on Equation 11 as well as the ampli-

tudes of the resonance peaks. In case of negative eigenfre-

quency deviation, i.e., f2 < f1, the lower left branch corresponds

to the left resonance peak a which has a small amplitude and

whose resonance frequency is changing because it corresponds

to the nanocantilever. The upper left branch corresponds to the

resonance peak b which has a high amplitude and is mainly cor-

responding to the microcantilever. For f2 ≈ f1 (see magnifica-

tion in Figure 3c), the resonance frequencies for the coupled

system clearly deviate from the eigenfrequencies of micro- and

nanocantilever, which is also the region where the interplay be-

tween both beams is strongest. Hence, in that region, the effec-

tive properties of the coupled system’s resonance peaks will

have a significant contribution of both individual beam’s prop-

erties. Please note that this is also the region where the so called

”avoided crossing” of the resonance frequencies is clearly

visible which has already been described for coupled oscil-

lating systems [29] and for the co-resonant approach in particu-

lar in [14]. In case of positive eigenfrequency deviation, i.e.,

f2 > f1, the upper right branch in Figure 3a corresponds to the

left resonance peak a which now has the higher amplitude and

is approaching the eigenfrequency of and mainly corresponding

to the properties of the microcantilever. The lower right branch

in Figure 3a corresponds to the right resonance peak b whose

amplitude is decreasing with increasing eigenfrequency devia-

tion and whose properties increasingly correspond to that of the

nanocantilever. Please note that the discussion of the ampli-

tudes is only valid if the amplitude response curve of the micro-

cantilever is studied. If the nanocantilever would be considered,

the amplitude of the smaller resonance peak would be signifi-

cantly increased but the conclusions regarding coupled reso-

nance frequencies and effective properties are the same as for

the microcantilever’s amplitude response curve.

Effective spring constant
Based on the expressions for the resonance frequencies of the

coupled system, the effective spring constants for both reso-

nance peaks  can easily be derived by using Equation 2.

Figure 4 gives an overview of the calculation steps.

Equation 2 is originally given for a single cantilever (harmonic

oscillator) but can be employed for a coupled harmonic oscil-

lator by using the resonance frequencies of the coupled system

and the effective spring constants  instead of k. The first

step is the calculation of both resonance frequencies ωa,b of the

coupled system, with and without an interaction Δk = k3. As

shown in [15], it is crucial to choose k3 to be much smaller (at

least two orders of magnitude) than the smallest spring constant

of the coupled system. Otherwise, the effective spring constant
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Figure 4: This diagram represents the necessary calculation steps to determine the effective spring constant  for both resonance peaks of the
coupled system.

Table 2: Overview of amplitude and effective spring constants of both resonance peaks of the coupled system in dependence on the eigenfrequency
deviation. Seven general sections of the curve depicted in Figure 5 can be identified. Please note that the result for section iv has already been de-
scribed by T. Mühl [31] and in [8].

Section Frequency relation Amplitude relation Left peak Right peak 

i f2 << f1 Aa << Ab = k2 = k1

ii f2 < f1 Aa < Ab ≈ k2 2k2 <  < k1

iii f2 ≈ f1 Aa < Ab k2 <  < 2k2 2k2 <  < k1
iv f2 = f1 Aa ≈ Ab = 2 · k2 = 2 · k2

v f2 ≈ f1 Aa > Ab 2k2 <  < k1 k2 <  < 2k2

vi f2 > f1 Aa > Ab 2k2 <  < k1 ≈ k2

vii f2 >> f1 Aa >> Ab = k1 = k2

will strongly depend on k3 [30]. Please note that this is the case

for any cantilever sensor and not a feature of the co-resonantly

coupled system.

Rearranging Equation 2 results in:

(15)

with

(16)

By substituting ω2 as given in Equation 14, the effective spring

constants for the co-resonantly coupled system can be given as

a function of the degree of eigenfrequency matching (see Sup-

porting Information File 1 for details). Figure 5 depicts the

effective spring constants for left (a) and right (b) resonance

peak of the coupled system based on Equation 15 for the values

given in Table 1.

In Figure 5, different sections can be identified which are sum-

marized in Table 2. These sections are of general nature and not

specific for the exemplary values given in Table 1. However, it

is important to note that the width of the sections depends on

Figure 5: Effective spring constants for both resonance peaks of the
coupled system in dependence on the eigenfrequency deviation
Δfeigen = Δωeigen/2π based on Equation 15 for the values given in
Table 1. Different sections can be identified which are summarized in
Table 2 and sections ii to vi are depicted in the graph.

the properties of both subsystems and that the slope of the tran-

sition region, i.e., sections ii, iii, v and vi is dependent on the

ratio of the individual beam’s spring constants. The greater the

difference between the individual spring constants, the steeper

the slope.

Furthermore, a slight asymmetry can be found in the curve

which is due to the very different properties of the individual

subsystems, and, consequently, leads to an asymmetric energy

distribution in the coupled system which is reflected in the
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effective sensor properties. That is not only the case for the

effective spring constants but also for the effective quality

factor as well as amplitude considerations.

Although the expressions without damping have been used, a

comparison of effective spring constants obtained by Spice

simulations of the damped co-resonantly coupled system and

the undamped analytical calculations based on Equation 15

shows a good agreement, even for rather large damping, i.e.,

low quality factors. For the exemplary values given in Table 1

and with quality factors below 100 for both subsystems, the de-

viation between the effective spring constants for undamped

and damped case was less than 5%. Experimentally, the spring

constant of a cantilever can be determined by various ap-

proaches such as thermal noise, Sader, Cleveland (added mass)

methods [32,33] but they all have an uncertainty of at least 10%

[33]. These comparisons indicates that the simplified expres-

sions based on the undamped case give a good estimate for the

effective spring constants of the coupled system.

Effective quality factor
The quality factor can either be defined as the ratio of total

energy to dissipated energy per oscillation period [34] or as the

bandwidth of the resonance curve. In the latter case, the band-

width is given by the difference of the two frequencies at which

the amplitude has been decreased to 1/  times the resonance

amplitude [35]. Both definitions are equivalent for sufficiently

low damping [36]. However, for the following derivation of the

effective quality factor  for both resonance peaks a, b of the

co-resonantly coupled system, the definition based on energy

dissipation will be used, hence:

(17)

with Ea,b denoting the total energy stored in the system and

ΔEa,b the dissipated energy per oscillation period. Please note

that the absolute value for the dissipated energy (often consid-

ered with a negative sign) is used as only the relation between

total and dissipated energy is relevant for the quality factor.

Based on the coupled harmonic oscillator representation, the

total energy of the system can be approximated by the potential

energy given by [37]:

(18)

depending on the spring constants k1,2 and the amplitudes

A1,2(ωa,b) at the resonance frequencies ωa,b.

The dissipated energy per oscillation cycle is defined by the

damping coefficient d1,2 which contains all intrinsic and

extrinsic damping contributions, and the oscillation speed

v1,2(t):

(19)

Assuming a deflection of u1,2(t) = A1,2·cos(ωt), the velocity of

each oscillator is given by:

(20)

and hence, the dissipated energy is:

(21)

Employing d1,2 = /Q1,2, m1,2 = k1,2/  and the

amplitude relation A2(ωa,b) = Ba,b·A1(ωa,b) results in an effec-

tive quality factor for each resonance peak:

(22)

At this point it is necessary to discuss the factor Ba,b in more

detail. It relates the amplitudes A1 and A2 of both subsystems as

discussed above and for a model with integrated damping

would be a complicated expression, resulting in a complex

formula for the effective quality factor. To give a simplified

estimate for the effective quality factor, the undamped relation

is assumed which has been shown to be a reasonably good esti-

mate. Therefore, Ba,b can be derived from Equation 7 for k3 = 0

and at the two resonance frequencies ωa,b:

(23)

Equation 22 can also be expressed as a function of the eigenfre-

quency deviation Δωeigen by substituting ω2 with the expres-

sion given in Equation 14, leading to:

(24)
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Figure 6 depicts the effective quality factors for both resonance

peaks of the coupled system based on Equation 24 for the

values given in Table 1. It shows a similar behaviour as the

effective spring constants, leading to comparable sections as

identified in Table 2.

Figure 6: Effective quality factor for both resonance peaks of the
coupled system in dependence on the eigenfrequency deviation
Δfeigen = Δωeigen/2π based on Equation 24 for the values given in
Table 1.

In order to better understand the behaviour of the system in

terms of the effective quality factor, it is instructive to make

some assumptions. Two subsystems with the same quality

factor, i.e., Q1 = Q2 = Q, are considered. This results in the

following expression for the effective quality factor 

(25)

with

(26)

(27)

All expressions in that case show a dependence on the ratio of

the individual subsystem’s spring constants k2/k1 and Figure 7

illustrates the general behaviour of the effective quality factor

of the co-resonantly coupled system’s resonance peaks for

varying ratios of k1 and k2 and within an eigenfrequency devia-

tion range of ±100%.

Figure 7: Qualitative behaviour of the effective quality factor for both
resonance peaks of the coupled system in dependence on the eigen-
frequency deviation Δfeigen = Δωeigen/2π for the special case of
Q1 = Q2 = Q and varying ratio of the effective spring constants (see
Equation 25).

The case k2/k1 = 1 results in two different effective quality

factors, one of which is smaller than Q and the other one is

greater than Q:

(28)

(29)
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For k2/k1 < 1 the clearly separated lines from k2/k1 = 1 start to

approach each other for greater frequency deviation but have a

minimum/maximum respectively around zero eigenfrequency

deviation. These extrema vanish for k2/k1 << 1 resulting in

the two effective quality factors being identical and equal to Q.

This particular result has also been described by T. Mühl [31].

For the reversed case of k2/k1 > 1 the same behaviour as for

k2/k1 = 1 is found but with increasing spacing between the two

almost parallel lines when the difference between the two

spring constants increases.

In general, i.e., without any assumptions for the individual

subsystem’s properties, the slope of the curves for the effective

quality factor depends on the ratio of the spring constants as

well as the quality factors of the individual subsystems and dif-

ferent curve shapes can be found by varying the relations be-

tween all these parameters.

Furthermore, the effective quality factors calculated by the

derived analytical expression from Equation 22 have been com-

pared to values obtained by numerical circuit simulations of the

coupled system with the software LTSpice. Thereby, a two step

approach was used where first the amplitude response curve of

the coupled system was simulated for varying properties of the

subsystems and degree of frequency matching. In a second step,

the quality factor of each resonance peak was determined by the

definition based on the bandwidth. A wide range of parameters

was simulated, for both, quality factors and spring constants of

the subsystems and in all cases, a very good agreement was

found between the analytical solution and the simulation.

Although the comparison between an analytical formula and

simulations is somewhat limited by the parameter space covered

in the simulation, the results strongly indicate that the derived

analytical expression gives a very good estimate for the effec-

tive quality factors of a co-resonantly coupled system. Another

conclusion drawn from the above discussion is that a more thor-

ough study of the effective quality factor of co-resonantly

coupled systems based on the obtained analytical expression

will be necessary, especially with regard to tuning parameters

for a sensor application. Here, only the case of Q1 = Q2 was dis-

cussed in detail and other relations will lead to a different be-

haviour compared to what is described above for this specific

case. However, this is beyond the scope of this publication

which aims at giving the basic relations for describing the

coupled system’s effective properties.

Measured amplitude and thermal noise
Equation 4 contains another parameter which is the oscillation

amplitude A of the cantilever. The amplitude response curve of

the coupled system is still measured at the microcantilever as in

the case of an individual cantilever sensor. Therefore, no ”effec-

tive” value is required and the actual oscillation amplitude of

the microcantilever can be used for the coupled system.

At this point, all effective properties of the coupled system have

been derived and can be used to estimate the minimal detectable

frequency shift for each resonance peak of the co-resonantly

coupled system based on Equation 4. The important point which

needs to be stressed here is that this approach is only valid

under the assumption that each resonance peak of the co-reso-

nant system can be modelled as an effective harmonic oscil-

lator with effective properties.

While this is a reasonable assumption as shown in [14], the

sensitivity discussion inevitably leads to the question of how the

co-resonance is actually affecting thermal noise distribution in

the coupled system and how that may affect the minimal

detectable frequency shift. Finding an answer to that requires a

derivation based on the equipartition theorem and transfer func-

tion for the coupled harmonic oscillator in a similar way as it is

outlined in [25] for the individual harmonic oscillator. Howev-

er, for the coupled system it has to be noted that while the com-

plete system has to be considered in the derivation, any oscilla-

tion detection takes place at the microcantilever and therefore

its amplitude is the quantity of interest.

The equipartition theorem states that, in thermal equilibrium,

each independent quadratic term in the system’s total energy

(i.e., each degree of freedom) equals a mean value of thermal

energy 1/2kBT [26]. The coupled harmonic oscillator consti-

tutes a two-degree of freedom system, hence the equipartition

theorem in that case is:

(30)

with the mean square displacement noise amplitudes  and

spring constants k1,2 of subsystem 1 and 2. Rearranging Equa-

tion 30 and substituting  the mean square thermal

noise amplitude of the microcantilever becomes:

(31)

Please note that Λ12 is only equal to the previously used ampli-

tude amplification factor Ba,b between micro- and nanocan-

tilever in case of neglected damping. If the complete coupled

harmonic oscillator model including damping is considered, the

amplification factor becomes more complicated and a deriva-

tion thereof can be found in [14].
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Following the reasoning of [25], the next steps involve the

calculation of the white thermal noise density and the mean

square displacement noise by integrating over the coupled

system’s transfer function G(f) = A1/A0. By using the electric

circuit model from Figure 1, G(f) = v1/v0 which can be found in

[14]. The ansatz to be used for the noise calculation is:

(32)

with the thermal oscillator noise density Nth,osci and the excita-

tion white thermal noise density Nth,exc. This represents the

filtering of the excitation white thermal noise due to the reso-

nance characteristics of the coupled harmonic oscillator system.

Integration of the squared thermal oscillator noise density from

Equation 32 over the complete frequency range [0,∞] and

relating that to the expression for the mean square amplitude

noise obtained from the equipartition theorem (Equation 31 for

the coupled harmonic oscillator) allows to derive the excitation

white thermal noise density according to:

(33)

However, this involves solving the integral for the squared

transfer function G2(f). While an antiderivative exists for the

single harmonic oscillator, no solution is available for the

coupled harmonic oscillator. Hence, numerical treatment is re-

quired and, based on this, it has to be studied if it is possible at

all to find an approximation for an antiderivative for the given

boundary conditions in the coupled case.

Integrating the oscillator noise over the relevant measurement

bandwidth from flow to fhigh finally gives the mean square dis-

placement noise according to

(34)

In case of a dynamic-mode cantilever which is excited at or

close to its resonance frequency f0, the transfer function

becomes G2(f0) = Q2 for a single harmonic oscillator. Again

there is no solution for the co-resonantly coupled harmonic

oscillator available yet.

The final derivation of the minimal detectable frequency shift is

based on the ansatz:

(35)

For a sensor working point close to the resonance frequency,

the inverse slope of the amplitude response curve can be ap-

proximated by ΔA/Δf0 ≈ f0/QA for a single harmonic oscillator

[25]. It has to be studied in more detail but it is likely that this

approximation still holds for the coupled harmonic oscillator

since the resonance peaks in that case are measured in the

same way as for the single harmonic oscillator. However,

in this case Q would have to be replaced by the effective quality

factor for the resonance peak measured and A = A1 since the

amplitude of subsystem 1 (microcantilever) is used. Further-

more ΔA =  and hence:

(36)

As Equation 36 and the above considerations show, two main

questions have to be studied in order to derive an expression for

the minimal detectable frequency shift of a co-resonantly

coupled cantilever sensor represented by a damped coupled

harmonic oscillator:

1. Derivation of an antiderivative or approximation formula

thereof for the coupled system’s squared transfer func-

tion G2(f), including incorporation of the relevant bound-

ary conditions

2. Approximation of inverse slope of the amplitude

response curve close to the resonance frequency for each

resonance peak

By solving these questions and following the steps outlined

above, a complete analytical solution for the minimal detectable

frequency shift and, consequently, the sensitivity of a co-reso-

nantly coupled cantilever sensor may be derived. However, due

to the co-resonantly coupled system constituting a two-degree

of freedom system with a complex transfer function, the actual

solution goes far beyond the scope of this publication which

aims at providing simplified expressions for relevant sensor

properties. The sensitivity calculation of a system represented

by a coupled harmonic oscillator will therefore have to be part

of future work as it will potentially involve numerical solutions

and elaborate approximations and assumptions. Nonetheless,
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Table 3: Minimal detectable frequency shift and related force gradient and mass load for individual micro- and nanocantilever and both resonance
peaks of the coupled system represented by effective properties. For the calculation, Equation 4 has been used, assuming measurement bandwidth
Bw = 1 Hz and room temperature T = 293 K.

Individual subsystems Coupled system, Δfe = +2%

Parameter Micro (1) Nano (2) Left peak (a) Right peak (b)

Amplitude A 100 nm 1000 nm 100 nm 100 nm
Freq. shift Δftherm 1.6 mHz 18.1 mHz 46.6 mHz 142.2 mHz
Min. force gradient kmin 1.6 × 10−8 N/m 1.8 × 10−10 N/m 2.1 × 10−9 N/m 1.8 × 10−9 N/m
Min. mass mmin 1.0 × 10−20 kg 1.1 × 10−22 kg 1.3 × 10−21 kg 1.1 × 10−21 kg

the steps outlined here can provide the basis for such an investi-

gation.

Implications on sensor sensitivity and
detectability
Until a solution for the above open questions is found, the sensi-

tivity based on the minimal detectable frequency shift of the

co-resonantly coupled system can be estimated by using Equa-

tion 4 for each resonance peak based on the derived expres-

sions for effective sensor properties. That furthermore allows to

analyze the sensitivity gain induced by the co-resonant cou-

pling in comparison to an individual cantilever sensor. For the

exemplary values given in Table 1, the minimal detectable fre-

quency shift can be calculated and consequently the minimal

detectable force gradient and mass load for both individual

subsystems as well as the resonance peaks of the coupled

systems, in that case for +2% eigenfrequency deviation. For the

calculations, Equation 2 and Equation 3 have been used with

Δf/f0 being substituted by the expression in Equation 4. The

results are listed in Table 3 and illustrate how the co-resonant

concept allows to access the high sensitivity of the nanocan-

tilever.

Please note that the estimates presented here are very conserva-

tive, as for example a rather high stiffness of the nanocantilever

and room temperature were assumed. A decrease in stiffness,

especially of the nanocantilever, and low temperatures will lead

to much more gain in sensitivity. With the derived expressions

within this work, a fast and easy way to estimate the potential

sensitivity is given.

However, the co-resonantly coupled system’s frequency shift

response to an external interaction is only one aspect. The other

equally important aspect is the detectability, i.e., how well the

oscillatory state of a dynamic-mode cantilever sensor can be

detected. That is limited by the signal-to-noise ratio (SNR) for

frequency, amplitude and phase measurements. It mainly

depends on the cantilever’s quality factor which directly influ-

ences the phase noise and resolution of the resonance peak [19].

With decreasing cantilever dimensions, the quality factor

usually decreases, hence, detectability deteriorates [38]. As the

considerations for the effective quality factor of the co-reso-

nantly coupled system show, this effect is, at least partly, coun-

teracted by the co-resonance. While the high sensitivity of the

nanocantilever is accessible, the usually higher quality factor of

the microcantilever becomes beneficial for detectability. Hence,

if always the resonance peak with the higher amplitude is

measured, the effective quality factor will never be below

approximately twice the smallest individual quality factor of the

system. Furthermore, as the graphs for effective quality factor

and spring constant show, the regions of small eigenfrequency

deviation (not perfectly matched) might be the most promising

in terms of sensor design as the effective quality factor can be

relatively high, i.e., ensure good detectability, while still very

good sensitivity is achieved by a low effective spring constant.

A more detailed study of the relation between detectability and

sensitivity of the co-resonant system based on the derived

expressions is necessary in order to fully understand the behav-

iour of the coupled system in this regard. That will eventually

lead to design criteria with respect to different sensor applica-

tions.

Conclusion
Coupling and eigenfrequency matching of a micro- and

nanocantilever has experimentally been demonstrated to lead to

a significant increase in sensitivity of cantilever sensors while

maintaining the ease of detection. This co-resonant measure-

ment principle allows to access the high sensitivity of a

nanocantilever as it induces a strong interplay between both

individual beams, resulting in an amplitude response curve

comprised of two resonance peaks which can be measured at

the microcantilever. It was found that these two resonance

peaks can be described by effective sensor properties which

depend on the individual beam’s properties and the degree of

eigenfrequency matching. Consequently, a small eigenfre-

quency deviation between micro- and nanocantilever results in

effective properties for both resonance peaks that are strongly

influenced by the nanocantilever’s characteristics. With increas-

ing eigenfrequency deviation, the effective properties of the

resonance peaks start to approach those of the individual beams,
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i.e., one peak is becoming increasingly similar to the single

microcantilever while the other one is approaching the nanocan-

tilever’s characteristics. When measuring the coupled system’s

amplitude response curve at the microcantilever, this secondly

mentioned resonance peak will eventually not be detectable

anymore. For sensor design and evaluation of prospective

sensor performance it is therefore crucial to analyze and under-

stand the effective sensor properties in order to advance the

measurement principle towards sensor implementations for dif-

ferent applications. In this publication, the derivation of analyti-

cal expressions for the effective sensor properties resonance fre-

quency, spring constant and quality factor were presented for

both resonance peaks of the coupled system based on the

coupled harmonic oscillator model. These expressions, in com-

bination with considerations for resonance amplitude amplifica-

tion between micro- and nanocantilever, allow to easily esti-

mate the prospective sensor performance and gain in sensitivity

due to co-resonant coupling based on the parameters of micro-

and nanocantilever. This is a crucial contribution for advancing

the co-resonant measurement principle and can be the basis for

further investigations and applications of co-resonantly coupled

systems. Furthermore, it was studied how the thermal noise and

consequently the derivation of a minimal detectable frequency

shift has to be treated for a co-resonantly coupled system repre-

sented by a coupled harmonic oscillator. While calculation steps

could be outlined, the solutions are rather complicated due to

the complex transfer function of this two-degree of freedom

system and will potentially require numerical treatment and

elaborate assumptions and approximations. This will be the

subject of future investigations and here, a simplified approach

to estimate the minimal detectable frequency shift based on the

effective sensor properties was shown.
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