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The intramolecular C—H insertion of the Mes*-substituted phosphanylidenecarbene [Mes*P=C:] (Mes* = 2,4,6--Bu3CgH,) and
physicochemical properties of the cyclized product, 6,8-di-tert-butyl-3,4-dihydro-4,4-dimethyl-1-phosphanaphthalene were studied

based on ab initio calculations. Whereas the alternative Fritsch—Buttenberg—Wiechell-type rearrangement requires almost no acti-

vation energy, the intramolecular cyclization needs an activation energy of 12.3 kcal/mol at the MP2(full)/6-31G(d) condition. DFT

calculations supported that the optimized structure of the cyclization product of Mes*P=C: suggests remarkable conjugation effects

between the nearly coplanar P=C skeleton and the aryl moiety.

Introduction

Sterically demanding groups on the phosphorus atom play an
important role in the chemistry of low-coordinate phosphorus
compounds and the supermesityl (Mes* = 2,4,6-tri-tert-
butylphenyl) group was successfully applied to stabilize and
characterize a diphosphene (Mes*P=PMes*) for the first time
[1]. The effect of the Mes* group on the stabilization of various
kinds of unusual phosphorus compounds has been clarified so
far [2-4]. Phosphanylidenecarbene [RP=C:], a heavier congener
of alkylidenecarbene (phosphaisonitrile) has been an intriguing

reaction intermediate containing a low-coordinated phosphorus
atom, and afforded a number of unique organophosphorus
compounds [5,6]. The phosphorus version of Fritsch—Butten-
berg—Wiechell (FBW) reaction [7-10] of Mes*P=C(X)Li
(X = halogen, Mes* = 2,4,6-t-Bu3CgH,) affording an air-stable
phosphaalkyne Mes*C=P is a typical example for under-
standing the chemistry of a phosphanylidenecarbenoid
(Scheme 1) [11-13]. The phosphorus version of FBW

rearrangement showed considerable stereospecificity in
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affording phosphaalkyne, which could be explicable by plau-
sible reaction mechanisms including formation of the phos-
phavinyl anion intermediate without generation of phosphanyli-
denecarbene [10,14].

’ NaOEt
£=C Ar—C=C-Ar
Ar Cl EtOH
heat
(b)
Mes*\ /X
P=C\ _ —Lix Mes*—C=P
Li
t-Bu
Mes* = t-Bu
t-Bu

Scheme 1: (a) The original FBW rearrangement reaction and (b) the
phosphorus version of FBW rearrangement.

As an alternative reaction of phosphanylidenecarbenoid, we
have previously found the intramolecular cyclization reaction
affording 6,8-di-tert-butyl-3,4-dihydro-4,4-dimethyl-1-phos-
phanaphthalene (2) putatively through formation of phos-
phanylidenecarbene 1 generated from Mes*P=C(Br)Li
(Scheme 2) [15]. In contrast to the selective formation of
Mes*C=P from (E)-Mes*P=C(CI)Li [11,12], facile removal of
the bromide ion in Mes*P=C(Br)Li might be critical for the
C—H insertion. The C-H insertion of carbene has been studied
well [16], and thus intensive studies on the intramolecular
cyclization of 1 would be necessary to develop the chemistry of
reactive intermediates containing low-coordinated heavier main
group elements [17]. Additionally, the structure of 2 is expected
to be quite unique as the P=C n-system is nearly coplanar with
the aromatic ring. In our previous paper, unique photo-absorp-
tion properties of 2 were discussed in comparison with the
Mes*-substituted phosphaalkenes where the P=C and the Mes*

aryl moieties are almost perpendicular [14].

Mes? /X
P=C [ Mes*—P=C: ]—» /
'L - LiX t-Bu P
1
t-Bu
2

Scheme 2: Intramolecular C—H insertion of phosphanylidenecarbene.

Results and Discussion
In this paper we discuss the intramolecular cyclization of 1 and

the structural aspects of 2 based on theoretical calculation data.
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Ab initio and DFT calculations were carried out with the
Gaussian 09 program package [18].

Structures of 1 in the singlet state and 2 were optimized at the
MP2(Full)/6-31G(d) level, and subsequently employed for
calculation of the transition state. DFT methods were avoided in
this calculation, as the Mes*—P—C angle was considerably bent
at the level, such as B3LYP/6-31G(d) [14]. The bent structure
optimized by the DFT method might reflect overestimation of
the sp2-type hybridization of the phosphorus atom because of
the sterically encumbered Mes* group [19]. Figure 1 displays
the DFT-optimized structure of the transition state (TS), and
Figure 2 shows the energy profile of the cyclization process.
Considerable elongation of the C—H bond of the corresponding
methyl group has been characterized, whereas the P=C length
was found comparable to that in 1 (vide infra). The optimized
activation energy (AE,) was 12.3 kcal/mol, and the Gibbs free
energy AG was estimated as 11.6 kcal/mol. Such energy profile
indicates a sharp contrast to the modeled FBW rearrangement
of phosphanylidenecarbene requiring no activation energy [20],
and would be partially explicable for the experimental result
that the phosphanylidenecarbenoid [Mes*P=C(Br)Li] afforded
both phosphaalkyne [Mes*C=P] and 2 [15]. The single imagi-
nary frequency was optimized for the transition state (Figure 3).

Figure 1: Optimized structure of the transition state (TS) for the
intramolecular C—H insertion of 1 [MP2(Full)/6-31G(d)]. Bond lengths
(A): P-C1 1.660, C1-H1 1.228, C2-H1 1.281, P-C3 1.865.

Figure 4 displays the optimized structure of 2 [MP2(full)/6-
31G(d)]. Relative energy (E)) and Gibbs free energy (G) of 2
to 1 were determined as 95.0 kcal/mol and 91.5 kcal/mol, res-
pectively. Whereas the P1-C1 distance is typical for phos-
phaalkenes [21], dihedral angle of the P=C and almost planar
benzene ring is close to co-planar due to the fused 6-membered
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Figure 2: Computationally characterized cyclization procedures of 1 affording 2 [MP2(full)/6-31G(d)]. Values in boldface correspond to relative ener-
gies (kcal/mol). Values in parentheses display Gibbs free energies (G, kcal/mol at 298.15 K).

Figure 3: Displacement vectors of the transition state
(v=216.93 icm™).

ring [t¢(C1-P1-C3-C4] = 22.9°, ¢(C1-P1-C3-C9) = 160.1°].
Steric encumbrance causes elongation of the C—C bonds of
C3—C4 and C8-C9.

Except for such as phosphinines (or phosphabenzenes), 2 would
be one of key compounds that are available for understanding
the conjugation effect between the heavier n-system and the
aromatic moiety. The P=C skeleton of 2 would interact with the
nearly coplanar benzene ring, and indeed, the UV absorption
spectra exhibited a large absorption coefficient in comparison
with the Mes*-substituted phosphaalkene. The HOMO and
LUMO orbitals of 2 indicate remarkable contribution of the
benzene ring for conjugation with the P=C n-system (Figure 5).
The TD-SCF calculation of 2 using CAM-B3LYP/DGDZVP

Figure 4: Optimized structure of 2 [MP2(full)/6-31G(d)]. Bond
distances (A): P1-C1 1.678, C1-C2 1.491, P1—C3 1.840, C2-C5
1.534, C3-C4 1.424, C4-C5 1.530, C4-C6 1.396, C6-C7 1.394
C7-C8 1.393, C8-C9 1.403, C3—-C9 1.427. Bond angle and dihedral
angles (°): C3-P1-C1 101.7, C1-P1-C3-C4 22.9, C1-P1-C3-C9
160.1.

conditions characterized the HOMO-LUMO transition at
289 nm with a relatively large absorption coefficient (= 0.162).
On the other hand, the absorption maximum of 2 was slightly
blue-shifted in comparison with that of the Mes*-substituted
phosphaalkenes, which corresponded the TD-SCF calculation
of Mes*P=CH, determining absorption at 292 nm. In the case
of Mes*P=CH,, the HOMO orbital is composed of the lone pair
of the phosphorus, which corresponds to the weak absorption
(f=0.0139) [15] (see also Supporting Information File 1).

Conclusion

In conclusion, the chemistry of the intramolecular C-H inser-
tion of phosphanylidenecarbene 1 affording 2 was studied by ab
initio and DFT calculations. The intramolecular cyclization
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Figure 5: HOMO (left) and LUMO (right) of 2.

requires an activation energy, whereas the phosphorus version
of the FBW rearrangement proceeded without an energetic
barrier. The optimized structure of 2 indicates the possible
conjugation between the P=C m-system and aromatic
substituent, which induces remarkably different physicochem-
ical properties for the Mes*-substituted phosphaalkenes, where
the P=C moiety is almost perpendicular to the aromatic plane.

Supporting Information

Supporting Information File 1

UV Spectra for 2 and Mes*P=C(H)Me and MO for 2 and
Mes*P=CH,.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-103-S1.pdf]

Supporting Information File 2

Calculation data for 1, TS, 2, Mes*P=CH, and [MeP=C:].
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-103-S2.pdf]
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