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Abstract
We synthesized symmetrically insulated oligo(para-phenylene) and oligothiophene with a pseudo-linked [3]rotaxane structure by

full rotation of glucopyranose units via a flipping (tumbling) mechanism in the π-conjugated guest having two permethylated

β-cyclodextrin units at both ends. We also succeeded in the synthesis of an organic-soluble fixed [3]rotaxane by a cross-coupling or

complexation reaction of thus formed pseudo linked [3]rotaxane. Oligo(para-phenylene), oligothiophene, and porphyrin deriva-

tives were used as π-conjugated guests with stopper groups.
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Introduction
Insulated molecular wires (IMWs) [1,2], which feature π-conju-

gated polymer chains covered by protective sheaths, have

attracted considerable attention as next-generation mono-molec-

ular electronic devices because of their potential conductivity

and luminescent properties [3-5]. Cyclodextrin (CD) deriva-

tives are widely used as a protective sheath for the synthesis of

IMWs because they are easily obtainable and efficient in the

inclusion of various polymers into their cavity via hydrophobic

interactions in water [6,7]. General methods for the synthesis of

π-conjugated polymer-based IMWs using CD derivatives

involve (I) threading π-conjugated polymers through CD [8,9]

using a method developed by Harada for the synthesis of a

polyrotaxane [10], (II) polymerization of pseudo [2]rotaxane

monomer formed by self-inclusion of a π-conjugated guest with

CD [11], and (III) copolymerization of the thus-formed

pseudorotaxane with linker molecules [12]. These polymers are
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soluble in water but generally insoluble in organic solvents; this

is because the hydrophilic CD covers the organic soluble

π-conjugated polymer chains [13]. Uncovered sites are also

randomly present because of shuttling of CDs along the

π-conjugated chain and remnant water molecules; these affect

the charge-transport ability and are disadvantageous for the use

of these IMWs as electronic materials. Therefore, we decided to

use permethylated cyclodextrin (PMCD) provided by permethy-

lation of all the hydroxy groups of CD. However, the low solu-

bility of PMCD in water as compared with native CDs or other

randomly methylated CDs such as 2,6-dimethyl-β-cyclodextrin

impedes the formation of self-inclusion complexes via

hydrophobic interactions in water. To rise above this problem,

we prepared organic-soluble host–guest-linked PMCD deriva-

tives that can undergo intramolecular self-inclusion to form an

insulated molecule with an [1]rotaxane structure in methanolic

aqueous solutions, where PMCD derivatives are soluble in. We

recently developed a new method for synthesizing π-conju-

gated IMWs with polyrotaxane structures via polymerization of

π-conjugated [1]rotaxane monomers bearing PMCDs as macro-

cycles [14]. Further, we confirmed that such IMWs with

poly[1]rotaxane structure are highly soluble in a variety of

organic solvents and have good rigidity, photoluminescence

efficiency [15], and charge mobility [16,17]. A key step for the

synthesis of these IMWs is the preparation of insulated π-conju-

gated monomers with [1]rotaxane structures by self-inclusion of

π-conjugated monomer-linked PMCDs followed by elongation

of the π-conjugated units via cross-coupling in a hydrophilic

solvent, such as an aqueous 50% methanol solution [18]. For

this method, it is necessary that the molecular length of the

π-conjugated guest is less than the internal diameter of the CD

and similar to the depth of PMCD in order to form the self-

inclusion complex (Figure 1b). When the π-conjugated guest is

shorter than the depth of PMCD, the cross-coupling reaction is

strongly inhibited because the reaction has to occur in the

PMCD cavity (Figure 1a). On the other hand, a self-inclusion

complex does not form if the guest is longer than the internal

diameter of PMCD (Figure 1c). Thus far, we have succeeded in

the synthesis of insulated π-conjugated monomers with

[1]rotaxane structures using oligo(phenylene–ethylene) units,

which have the appropriate length, as the π-conjugated guests

for the fixation of self-inclusion complexes by elongation of the

guest unit via cross-coupling (Figure 1b). However, this method

can only be applied to the synthesis of insulated oligo(phenyl-

ene–ethylene) monomers. To synthesize other insulated

π-conjugated molecules, we became interested in another insu-

lation technique to replace this self-inclusion: full rotation of

the glucopyranose units of methylated cyclodextrin by alter-

ation of the relative orientation of the D-glucopyranoside rings

via a flipping (tumbling) mechanism as shown in Figure 2 [19-

22]. From the results of our study on the synthesis of organic-

soluble π-conjugated rotaxanes, we report herein the synthesis

of insulated oligo(para-phenylene) [23] and oligothiophene [24]

with linked [3]rotaxane structures via the flipping phenomenon

[25].

Figure 1: Synthesis of [1]rotaxane by self-inclusion of a host–guest-
linked molecule: a) short molecular length, b) appropriate molecular
length, c) long molecular length.

Results and Discussion
Kano and co-workers reported the synthesis of a linked pseudo

[3]rotaxane involving a water-soluble porphyrin unit with

carboxylate groups as the guest unit by double self-inclusion via

sequential flipping of permethylated β-cyclodextrin (PM β-CD)

in water [26]. To synthesize an organic-soluble insulated

π-conjugated rotaxane, we applied this technique to the syn-

thesis of an insulated porphyrin without water-soluble func-

tional groups. The synthetic route to the PM β-CD based linked

[3]rotaxane precursor with a 5,15-di([1,1'-biphenyl]-4-yl)por-

phyrin backbone as the guest unit is shown in Scheme 1. In

order to fix the pseudo [3]rotaxane structure, we introduced two

bromo groups (cross-coupling reaction point) at both terminal

positions of the 5,15-di([1,1'-biphenyl]-4-yl)porphyrin unit and

two PM β-CD groups at meta position to the bromo groups.

7-O-Monotosyl PM β-CD 1 was synthesized from a native

β-cyclodextrin in two steps using an established protocol [27].

Reaction of 1 with 5-bromo-2-iodophenol (2) afforded benzene-

linked PM β-CD 3. The 2:1 Suzuki cross-coupling reaction of

thus-formed 3 with dipinacolborane porphyrin derivative 4 gave

rise to precursor of pseudo [3]rotaxane 5. It should be noted that

pseudo-linked [3]rotaxane 6 formed quantitatively via

double self-inclusion through flipping of 5 in an aqueous 50%

methanol solution.

This unique phenomenon has been characterized by 1H NMR in

different solvents (Figure 3). The 1H NMR spectrum in CD2Cl2

reveals that the 5,15-di([1,1'-biphenyl]-4-yl)porphyrin moiety is
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Figure 2: Synthesis of an insulated molecule via flipping phenomenon.

Scheme 1: The synthetic route to the PMβ-CD based linked [3]rotaxane with a 5,15-di([1,1'-biphenyl]-4-yl)porphyrin backbone.
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Figure 3: The aromatic region of the 1H NMR spectra of 5 at 25 °C: 1) CDCl3, 2) CD3OD, and 3) CD3OD:D2O 1:1.

excluded from the cavity of the PM β-CD, while the 1H NMR

spectrum in CD3OD reveals a mixture of exclusion and inclu-

sion complexes. On increasing the hydrophilicity of the solvent,

the formation of double inclusion complex 6 predominated.

When we added D2O in order to increase hydrophilicity, the

exclusion complex completely converted into inclusion com-

plex 6 in CD3OD:D2O = 1:1 solutions.

To synthesize an organic-soluble linked [3]rotaxane, we then

fixed this pseudo rotaxane structure, which was only present in

50% methanol aqueous solution. The capping reaction by

Suzuki cross-coupling with pinacolboron derivative 7 bearing

PM α-CD as the bulky stopper group was carried out under the

same hydrophilic solvent conditions as in the formation of 6

(Scheme 2). The desired fixed [3]rotaxane 9 was isolated in

31% yield by preparative size exclusion chromatography using

CHCl3 as the eluent. The corresponding uninsulated compound

8 as a reference was also intentionally synthesized by the reac-

tion of 5 with 7 in hydrophobic solvent (toluene/H2O 5:1)

instead of hydrophilic solvent (CH3OH/H2O 1:1). Although the

MALDI–TOF mass spectrum of 8 and 9 exhibited the same

signal at m/z = 6097 corresponding to [8 or 9 + Na]+, each
1H NMR spectrum of those showed the pure single product but

completely different, respectively. These results suggest that we

succeeded in the selective synthesis of 8 and 9 by simply

changing the reaction solvent.

We next applied this synthetic method to other π-conjugated

guests. Scheme 3 shows the synthetic routes to precursor of PM

β-CD based insulated oligothiophene. Mono-6-desmethyl PM

β-CD alcohol 10 was synthesized from 1 using sodium

naphthalenide [27]. The reaction of the thus-formed

monoalcohol with 2-bromo-3-(bromomethyl)thiophene (11)

afforded thiophene-linked PM β-CD 12. Pd-catalyzed Stille

cross-coupling of 12 with bithiophene 13 bearing a silyl-

protected alkynyl group afforded trithiophene-linked PM β-CD

14. After the deprotection of the triisopropyl group of 14 and

the Glaser dimerization reaction of 15, symmetrical oligothio-

phene 16 bearing two PM β-CDs was obtained. Treatment of 16

with Na2S and KOH followed by dibromination by N-bromo-

succinimide formed dibromo-heptathiophene 17 with two

PMCDs.

Scheme 4 shows the synthetic route to the precursor of PM

β-CD-based insulated oligo(para-phenylene) 20. Sequential

Suzuki cross-coupling of 3 with unsymmetrically protected

benzene-1,4-diboronic acid derivative 18 and diiodobiphenyl

gave rise to hexa(para-phenylene) derivative 20.

Pseudo linked [3]rotaxanes 21 and 22 were also formed

quantitatively in an aqueous 50% methanol solution via

double self-inclusion through flipping of 17 and 20, respective-

ly (Scheme 5). The formation of these inclusion complexes
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Scheme 2: Selective synthesis of fixed [3]rotaxane by Suzuki cross-coupling reaction.

Scheme 3: The synthetic routes to precursor of PM β-CD based insulated oligothiophene.
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Figure 4: The aromatic region of the 1H NMR spectra of 5 at 25 °C: 1) CDCl3, 2) CD3OD, and CD3OD/D2O 1:1.

Scheme 4: Synthesis of dibromohexa(para-phenylene) with two
PMCDs 20.

were also confirmed by 1H NMR spectroscopy in different

solvents (Figure 4 and Figure 5, Supporting Information File 1,

Figure S2). These linked [3]rotaxanes can be key monomers for

synthesizing organic soluble IMWs bearing polythiophene or

poly(para-phenylene) as backbone units.

We next fixed the pseudo rotaxane structure by complexation

instead of cross-coupling reaction (Scheme 6). First, we

introduced pyridyl groups at the terminal positions of

hexa(para-phenylene) precursor 20 by Suzuki cross-coupling

with para-pyridylboronic acid to generate 23. After confirma-

tion of the formation of pseudo [3]rotaxane 24 via flipping of

23 in CD3OD/D2O 1:2 solution by 1H NMR analysis, we

capped this pseudo [3]rotaxane structure by reacting 24 with

rhodium porphyrin complex 25 in chloroform to form fixed

[3]rotaxane 26 in 17% isolated yield [28]. The structure of 26

was confirmed by 1H NMR analyses in CDCl3. The results

suggest that 26 maintains a [3]rotaxane structure even in

organic solvents because it is capped with sterically bulky por-

phyrin units, which impede the reverse flipping of the PM β-CD

units.

As shown in Figure 6, the unique fixed [3]rotaxane structure of

26 was confirmed by 2D 1H ROESY NMR analysis: there are

obvious nuclear Overhauser enhancements (NOEs) between the

protons on the hexa(para-phenylene) unit and the H3 and

H5 protons on the interior of the permethylated cyclodextrin

[29]. These experimental results indicated that the rotaxane

structure was constructed between PM β-CDs and para-phenyl-

ene as hosts and guest, respectively.

Conclusion
We developed the synthesis of symmetrically insulated π-conju-

gated molecules with pseudo linked [3]rotaxane structure via
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Figure 5: The aromatic region of the 1H NMR spectra of 20 at 25 °C: 1) CDCl3, 2) CD3OD, and CD3OD/D2O 1:1.

Scheme 5: Synthesis of pseudo-linked [3]rotaxanes via double self-inclusion through flipping.
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Scheme 6: Synthesis of fixed [3]rotaxane via complexation with rhodium porphyrin.

Figure 6: Partial ROESY NMR spectrum of 26 (400 MHz, CDCl3)
showing the NOEs between aromatic protons of the axial hexa(para-
phenylene) and inner protons of cyclodextrins.

flipping of a glucopyranose unit of permethylated β-cyclodex-

trin. In this method, oligo(para-phenylene), oligothiophene, and

porphyrin derivatives were used as π-conjugated guests. After

cross-coupling or complexation of the pseudo linked

[3]rotaxane with capping molecules, the fixed [3]rotaxane was

isolated in chloroform solution. The formation of the fixed

[3]rotaxane was confirmed by NMR analysis. Experiments are

now in progress towards synthesizing IMWs bearing polythio-

phene or poly(para-phenylene) as backbone units by polymer-

ization of these linked [3]rotaxanes as monomers.

Supporting Information
Supporting Information File 1
Experimental and analytical data.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-10-297-S1.pdf]
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