BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Copper-catalyzed aminooxygenation of styrenes with *N*-fluorobenzenesulfonimide and *N*-hydroxyphthalimide derivatives

Yan Li, Xue Zhou, Guangfan Zheng and Qian Zhang*

Letter	Open Access		
Address:	Beilstein J. Org. Chem. 2015, 11, 2721–2726.		
Department of Chemistry, Northeast Normal University, Changchun 130024, China	doi:10.3762/bjoc.11.293		
	Received: 16 September 2015		
Email:	Accepted: 10 December 2015		
Qian Zhang [*] - zhangq651@nenu.edu.cn	Published: 24 December 2015		
* Corresponding author	This article is part of the Thematic Series "Copper catalysis in organic synthesis".		
Keywords:	•		
aminooxygenation of styrenes; copper catalysts;	Guest Editor: S. R. Chemler		
N-fluorobenzenesulfonimide; N-hydroxyphthalimide derivatives			
	© 2015 Li et al; licensee Beilstein-Institut.		
	License and terms: see end of document.		

Abstract

A copper-catalyzed aminooxygenation reaction of styrenes with *N*-fluorobenzenesulfonimide and *N*-hydroxyphthalimide derivatives has been developed. The aminooxygenation product could be converted into the corresponding alcohol or free amine through the cleavage of the N–O or C–N bond of the *N*-hydroxyphthalimide moiety.

Findings

Direct aminooxygenation of alkenes provides a straightforward and powerful approach to construct the 1,2-aminoalcohol skeleton [1], which is ubiquitous in bioactive compounds (such as the drugs bestatin (1) and tamiflu (2), the natural products Al-77-B (3) and hapolosin (4); Figure 1) [2] and has also been widely used as chiral ligands and auxiliaries in asymmetric synthesis [3]. Therefore, the development of a new aminooxygenation reaction is still highly attractive [4]. Most of the existing aminooxygenation reactions involve an intramolecular cyclization step [5-33] to provide various valuable cyclic compounds. Comparatively, methods for an intermolecular three-component aminooxygenation reaction are considerably less established. In 2006, Stahl and co-workers reported a Pd-catalyzed aminooxygenation reaction of alkenes with phthalimide and (diacetoxyiodo)benzene through *cis*-aminopalladation and S_N^2 C–O bond formation [34]. In 2013, Zhu and co-workers described an *n*-Bu₄NI-catalyzed aminooxygenation of inactive alkenes with benzotriazole and water which underwent a nitrogen-centred radical addition and a nucleophilic oxygen attack [35]. Very recently, Studer and co-workers presented an aminooxygenation of alkenes with *N*-fluorobenzenesulfon-imide (NFSI) and sodium 2,2,6,6-tetramethylpiperidine-1-olate (TEMPONa) via nitrogen-centred radical addition to the alkene followed by trapping of 2,2,6,6-tetramethylpiperidine-*N*-oxyl (TEMPO) [36].

NFSI is a very interesting reagent. Besides classic electrophilic fluorination reagent [37], it has been used not only as fluoride-

atom transfer reagent [38-40] but also as nucleophilic/radical amination reagent [41]. We are highly interested in the multiple reaction modes of NFSI [37-41], especially as a nitrogencentred radical. In this context, we have realized coppercatalyzed benzylic sp³ C–H amination [42], aminative multiple functionalization of alkynes [43], diamination, aminocyanation [44] and aminofluorination of alkenes [45], as well as amination of allenes [46]. Encouraged by these results, we try to develop copper-catalyzed aminooxygenation of alkenes by using NFSI. Herein, we report a simple and efficient coppercatalyzed three-component aminooxygenation reaction of styrenes with NFSI and *N*-hydroxyphthalimide (NHPI) derivatives (Scheme 1).

Initially, we conducted the three-component amnooxygenation of styrene **1a** with NFSI and NHPI (**2a**). After the reaction of **1a** (0.3 mmol), NFSI (0.3 mmol, 1.0 equiv) and **2a** (0.45 mmol, 1.5 equiv) was performed in the presence of $Cu(OTf)_2$ (10 mol %) in dichloromethane (DCM, 2 mL) under nitrogen atmosphere at 70 °C for 10.0 h, the desired aminooxygenation product **3a** was obtained in 39% yield (Table 1, entry 1). A variety of copper salts such as CuCl, CuBr, CuI, [(CH₃CN)₄Cu]PF₆, CuCN, Cu(acac)₂, Cu(OAc)₂, CuBr₂ and CuCl₂ were examined (Table 1, entries 2–10). We found that CuCl₂ was the most effective catalyst, affording **3a** in 55% yield (Table 1, entry 10). No reaction was observed in the absence of copper salts (Table 1, entry 11). Next, the reaction solvents were scanned. 1,2-Dichloroethane (DCE) and CH₃CN were not efficient solvents, providing **3a** in 9% and 20% yields, respectively (Table 1, entries 12 and 13). Using CHCl₃ as the solvent, only a trace amount of **3a** was observed (Table 1, entry 14). No reaction occurred in the solvents DMF, DMSO and THF (Table 1, entries 15–17). A relatively lower temperature (45 °C) only afforded a trace amount of **3a** (Table 1, entry 18). Increasing the temperature to 90 °C or 110 °C, **3a** was obtained in 45% and 40% yields, respectively (Table 1, entries 19 and 20). The ratio of substrates distinctly influenced the reaction (Table 1, entries 21–23). Changing the ratio from 1:1:1.5 (**1a**:NFSI:**2a**) to 1:2:2 or 1:2:3 (**2a**:NFSI:**1a**) led to much better yields (Table 1, entries 21 and 22). To our delight, when the ratio was 1:4:3 (**2a**:NFSI:**1a**), **3a** was obtained in 76% yield (Table 1, entry 23).

With the optimized reaction conditions in hand (Table 1, entry 23), the scope of this copper-catalyzed aminooxygenation reaction was examined (Figure 2). Styrenes with electron-withdrawing (1a–f) or electron-donating (1h and 1i) groups were viable, providing the corresponding 1,2-aminoalcohol derivatives in good yields. It is worth noting that functionalities such as F, Cl, Br, CN, and NO₂ groups, which could easily undergo further transformations, were intact after the reaction (3a–e). The structure of 3e was confirmed by X-ray crystallographic analysis [47]. The substituent at the *ortho* (3j and 3k) or *meta* (3l) position of the aromatic ring did not hinder the reaction (41–55% yields). Similarly, for disubstituted (1m) and trisubstituted (1n) substrates, the aminooxygenation underwent smoothly, providing the corresponding products 3m (51%) and 3n (53%). The *trans*- β -methylstyrene (1o) afforded the desired

: The optimization	of reaction conditions ^a .				
$CI \xrightarrow{(PhO_2S)_2N} CI (PhO_$					
	1a 2a	a	3a		
Entry ^a	Catalyst	Solvent	Temp (°C)	Yield ^b (%)	
1	Cu(OTf) ₂	DCM	70	39	
2	CuCl	DCM	70	48	
3	CuBr	DCM	70	43	
4	Cul	DCM	70	30	
5	[(CH ₃ CN) ₄ Cu]PF ₆	DCM	70	50	
6	CuCN	DCM	70	16	
7	Cu(acac) ₂	DCM	70	48	
8	Cu(OAc) ₂	DCM	70	51	
9	CuBr ₂	DCM	70	54	
10	CuCl ₂	DCM	70	55	
11	none	DCM	70	NR ^c	
12	CuCl ₂	DCE	70	9	
13	CuCl ₂	CH ₃ CN	70	20	
14	CuCl ₂	CHCl ₃	70	trace	
15	CuCl ₂	DMF	70	NR ^c	
16	CuCl ₂	DMSO	70	NR ^c	
17	CuCl ₂	THF	70	NR ^c	
18	CuCl ₂	DCM	45	trace	
19	CuCl ₂	DCM	90	45	
20	CuCl ₂	DCM	110	40	
21 ^d	CuCl ₂	DCM	70	70	
22 ^e	CuCl ₂	DCM	70	73	
23 ^f	CuCl ₂	DCM	70	76	

^aReaction conditions: **1a** (0.3 mmol), NFSI (0.3 mmol, 1.0 equiv), **2a** (0.45 mmol, 1.5 equiv), catalyst (10 mol %), solvent (2.0 mL), N₂, 10.0 h. ^bIsolated yields. ^cNR: no reaction. ^d**1a**:NFSI:**2a** = 2.0:2.0:1.0 ^e**1a**:NFSI:**2a** = 3.0:2.0:1.0. ^f**1a**:NFSI:**2a** = 3.0:4.0:1.0.

product **30** in a low yield (15%). In addition, NHPI derivatives **2b** and **2c** were suitable nitrogen sources and the desired **3p** and **3q** were obtained in 56% and 64%, respectively. For 4-methoxystyrene (**1r**), no aminooxygenation reaction occurred.

Based on these experimental results and our previous investigations [42-46,48], a plausible mechanism for the coppercatalyzed three-component aminooxygenation of styrenes with NFSI an NHPI is shown in Scheme 2. Initially, the oxidation of Cu(I) with NFSI provided F–Cu(III)–N complex I, which could transform into a copper(II)-stabilized benzenesulfonimide radical II through a redox isomerization equilibrium. Next, the intermolecular radical addition of II to styrene 1g took place, producing benzylic radical III and Cu(II)–F species IV. The combination of the intermediates III and IV gave the Cu(III) species V having a C–Cu bond, which reacted with 2a to generate Cu(III)–O species VI, along with the loss of HF. Finally, the reductive elimination of VI afforded aminooxygenation product 3g.

Finally, we tried to investigate the synthetic value of our new aminooxygenation method. Then, the selective reduction of **3g** was conducted (Scheme 3). The cleavage of the N–O bond in **3g** readily occurred with $Mo(CO)_6/Et_3N$ at 80 °C to give alcohol **4** [36] in 67% yield. Treatment of **3g** with NH₂NH₂·H₂O under mild conditions (25 °C) in CHCl₃/MeOH gave free amine **5** in 70% yield.

In summary, we have developed a novel copper-catalyzed three-component aminooxygenation reaction of styrenes with NFSI and NHPI derivatives. Furthermore, the aminooxygenation product could be easily converted into the corresponding

alcohol or free amine through the cleavage of the N–O or C–N bond of the NHPI moiety. Further studies are underway in our lab.

Supporting Information

Supporting Information File 1

Experimental part.

[http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-11-293-S1.pdf]

Acknowledgements

We acknowledge support for this work from the National NSF of China (21172033, 21372041 and 21302017).

References

 Bergmeier, S. C. *Tetrahedron* 2000, *56*, 2561–2576. doi:10.1016/S0040-4020(00)00149-6

- Shimojima, Y.; Hayashi, H. J. Med. Chem. 1983, 26, 1370–1374. doi:10.1021/jm00364a007
- Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835–876. doi:10.1021/cr9500038
- Donohoe, T. J.; Callens, C. K. A.; Flores, A.; Lacy, A. R.; Rathi, A. H. Chem. – Eur. J. 2011, 17, 58–76. doi:10.1002/chem.201002323
- Noack, M.; Göttlich, R. Chem. Commun. 2002, 536–537. doi:10.1039/b111656h
- Szolcsányi, P.; Gracza, T. Chem. Commun. 2005, 3948–3950. doi:10.1039/b506731f
- Cochran, B. M.; Michael, F. E. Org. Lett. 2008, 10, 5039–5042. doi:10.1021/ol8022165
- Muñiz, K.; Iglesias, A.; Fang, Y. Chem. Commun. 2009, 5591–5593. doi:10.1039/B912139K
- Borsini, E.; Broggini, G.; Fasana, A.; Galli, S.; Khansaa, M.; Piarulli, U.; Rigamonti, M. Adv. Synth. Catal. 2011, 353, 985–994. doi:10.1002/adsc.201000889
- Broggini, G.; Barbera, V.; Beccalli, E. M.; Chiacchio, U.; Fasana, A.; Galli, S.; Gazzola, S. *Adv. Synth. Catal.* **2013**, *355*, 1640–1648. doi:10.1002/adsc.201300104
- 11. Liu, G.-S.; Zhang, Y.-Q.; Yuan, Y.-A.; Xu, H. J. Am. Chem. Soc. 2013, 135, 3343–3346. doi:10.1021/ja311923z

- 12. Zhang, Y.-Q.; Yuan, Y.-A.; Liu, G.-S.; Xu, H. *Org. Lett.* **2013**, *15*, 3910–3913. doi:10.1021/ol401666e
- 13. Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc. 2005, 127, 7690–7691. doi:10.1021/ja051406k
- Sherman, E. S.; Fuller, P. H.; Kasi, D.; Chemler, S. R. J. Org. Chem. 2007, 72, 3896–3905. doi:10.1021/jo070321u
- Chemler, S. R. J. Organomet. Chem. 2011, 696, 150–158. doi:10.1016/j.jorganchem.2010.08.041
- Fuller, P. H.; Kim, J.-W.; Chemler, S. R. J. Am. Chem. Soc. 2008, 130, 17638–17639. doi:10.1021/ja806585m
- 17. Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009–3019. doi:10.1039/b907743j
- Sherman, E. S.; Chemler, S. R. Adv. Synth. Catal. 2009, 351, 467–471. doi:10.1002/adsc.200800705
- Paderes, M. C.; Chemler, S. R. Org. Lett. 2009, 11, 1915–1918. doi:10.1021/ol9003492
- 20. Karyakarte, S. D.; Smith, T. P.; Chemler, S. R. J. Org. Chem. 2012, 77, 7755–7760. doi:10.1021/jo3013226
- Paderes, M. C.; Chemler, S. R. Eur. J. Org. Chem. 2011, 3679–3684. doi:10.1002/ejoc.201100444
- 22. de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2011, 123, 936–940. doi:10.1002/ange.201005763
- Mancheno, D. E.; Thornton, A. R.; Stoll, A. H.; Kong, A.; Blakey, S. B. Org. Lett. 2010, 12, 4110–4113. doi:10.1021/ol101702w
- 24. Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50, 5678–5681. doi:10.1002/anie.201100362
- 25. Sanjaya, S.; Chiba, S. *Org. Lett.* **2012**, *14*, 5342–5345. doi:10.1021/ol302525m
- Desai, L. V.; Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46, 5737–5740. doi:10.1002/anie.200701454
- Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 11402–11405. doi:10.1021/ja204255e
- 28. Han, B.; Yang, X.-L.; Fang, R.; Yu, W.; Wang, C.; Duan, X.-Y.; Liu, S. Angew. Chem., Int. Ed. 2012, 51, 8816–8820. doi:10.1002/anie.201203799
- Sequeira, F. C.; Chemler, S. R. Org. Lett. 2012, 14, 4482–4485. doi:10.1021/ol301984b
- Michaelis, D. J.; Shaffer, C. J.; Yoon, T. P. J. Am. Chem. Soc. 2007, 129, 1866–1867. doi:10.1021/ja067894t
- Michaelis, D. J.; Ischay, M. A.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 6610–6615. doi:10.1021/ja800495r
- 32. Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570–4571. doi:10.1021/ja1013536
- Benkovics, T.; Guzei, I. A.; Yoon, T. P. Angew. Chem., Int. Ed. 2010, 49, 9153–9157. doi:10.1002/anie.201004635
- 34. Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179–7181. doi:10.1021/ja061706h
- 35. Xue, Q.; Xie, J.; Xu, P.; Hu, K.; Cheng, Y.; Zhu, C. ACS Catal. 2013, 3, 1365–1368. doi:10.1021/cs400250m
- Li, Y.; Hartmann, M.; Daniliuc, C. G.; Studer, A. Chem. Commun. 2015, 51, 5706–5709. doi:10.1039/C5CC00591D
- 37. Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1–PR43. doi:10.1021/cr800221v
- 38. Rueda-Becerril, M.; Sazepin, C. C.; Leung, J. C. T.; Okbinoglu, T.; Kennepohl, P.; Paquin, J.-F.; Sammis, G. M. J. Am. Chem. Soc. 2012, 134, 4026–4029. doi:10.1021/ja211679v
- 39. Halperin, S. D.; Fan, H.; Chang, S.; Martin, R. E.; Britton, R. Angew. Chem., Int. Ed. 2014, 53, 4690–4693. doi:10.1002/anie.201400420

- 40. Sibi, M. P.; Landais, Y. *Angew. Chem., Int. Ed.* **2013**, *52*, 3570–3572. doi:10.1002/anie.201209583
- 41. Li, Y.; Zhang, Q. *Synthesis* **2015**, *47*, 159–174. doi:10.1055/s-0034-1379396
- 42. Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li, Y.; Zhang, H.; Zhang, J.; Liu, Q. Angew. Chem., Int. Ed. 2012, 51, 1244–1247. doi:10.1002/anie.201107427
- 43. Zheng, G.; Li, Y.; Han, J.; Xiong, T.; Zhang, Q. Nat. Commun. 2015, 6, No. 7011. doi:10.1038/ncomms8011
- 44. Zhang, H.; Pu, W.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu, Q.; Zhang, Q. Angew. Chem., Int. Ed. 2013, 52, 2529–2533. doi:10.1002/anie.201209142
- 45. Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079–11083. doi:10.1002/anie.201406797
- 46. Zhang, G.; Xiong, T.; Wang, Z.; Xu, G.; Wang, X.; Zhang, Q. Angew. Chem., Int. Ed. 2015, 54, 12649–12653. doi:10.1002/anie.201506066
- 47. The X-ray crystallographic coordinates for the structure of compound 3e reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 1422654.
- 48. Sun, K.; Li, Y.; Zhang, Q. Sci. China: Chem. 2015, 58, 1354–1358. doi:10.1007/s11426-015-5385-y

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.11.293