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Abstract
The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar

devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell

blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophene)s and poly(3-

octylthiophene) (F-P3OT-b-P3OT). Two block co-polymers with varying block lengths were prepared via sequential monomer ad-

dition under Kumada catalyst transfer polymerisation (KCTP) conditions. We compare the behavior of the block copolymer to that

of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the

UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case,

non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature

dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the cor-

responding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active

layers based on similar systems.
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Introduction
With thin-film microstructure playing such a key role in the

optoelectronic and charge transport properties of conjugated

polymers, block copolymers naturally appear as useful tools for

tailoring the thin-film morphology [1-5]. The propensity of

some block copolymers to phase segregate at the nano-scale is

of particular interest in the field of organic photovoltaics

(OPV), where separation of the electron donor and acceptor

domains on the order of the exciton diffusion length (5–10 nm)

is required [1,6-9]. Many approaches have been reported to

tether two or more light-absorbing polymers to form a block
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copolymer [1,10-15], with some attempts focusing on one block

being the donor and the other the acceptor [16-18]. The main

objective is that the blocks spontaneously “phase-separate“ on

the necessary length scales for efficient charge separation,

transport and collection. With the thermal stability of all-

polymer and polymer-fullerene blend microstructures being

particularly problematic [19], block copolymers present a

potential solution. Indeed, it has been shown that when block

copolymers are used as additives in bulk heterojunction

donor–acceptor blend layers, the morphology of the resulting

ternary blend film can be more stable over long periods of time,

even under thermal annealing [14,20,21].

However, the synthesis of block copolymers can be difficult to

control, particularly in the case of step-growth polymerizations

that are often used to synthesize conjugated polymers. In these

polymerizations, such as Stille or Suzuki polycondensations,

one approach to the block copolymer synthesis is the addition of

a well-defined polymeric end-capper, commonly bromine

terminated poly(3-hexylthiophene). An issue with this ap-

proach can be the formation of a mixture of di- and triblock

copolymers, which adds to the complexity of the system and

makes batch-to-batch reproducibility difficult [1,2]. Particular-

ly problematic is the lack of control over the block lengths and

molecular weight for the step-growth polymerization. Indeed,

the relative block lengths play a key role in the morphology

control and the self-assembly behavior of these polymers

[7,22,23]. The Grignard Metathesis (GRIM) polymerization,

also known as the Kumada catalyst transfer polymerisation

(KCTP), is a popular method to synthesize conjugated block

copolymers because its chain growth behavior avoids any issues

of triblock copolymers, and also provides good control over the

molecular weight and relative block lengths [24-31]. In addi-

tion to enabling the formation of a diblock copolymer via

sequential monomer addition, the KCTP can lead to controlled

end-functionalization [1,28,32]. This has been used as a handle

for further applications such as macroinitiation [7,10,21,31,33],

endcapping [34], and grafting [35-39]. Despite the KCTP

having somewhat limited scope and functional group tolerance,

its advantages in terms of synthetic control mean that it is one

of the most common methods for synthesizing fully conjugated

block copolymers.

Since the backbone flexibility of each block has a crucial

impact on the self-assembly of a block copolymer [7,40], the

properties of polythiophene-based block copolymers can poten-

tially be tuned by backbone fluorination which increases back-

bone rigidity [41,42]. As an initial exploration, this contribu-

tion presents the synthesis and purification of two block copoly-

mers of poly(3-octylthiophene) (P3OT) and poly(3-fluoro-4-

octylthiophene) (F-P3OT) with different relative block lengths.

The thermal behavior of the polymers’ UV–visible absorption

and Raman scattering spectra are compared with those of the

corresponding blends of P3OT and F-P3OT, as well as the

homopolymers. The results of this study suggest that the teth-

ering of P3OT and F-P3OT blocks may not lead to spontaneous

large-scale phase separation behavior, but critically increases

the thermal stability of intramolecular order, as observed by

temperature dependent Raman spectroscopy studies.

Results and Discussion
Synthesis
The monomers and homopolymers P3OT and F-P3OT were

synthesized via KCTP from the activated monomers 2 and 4, as

reported in our previous work (Scheme 1) [42]. The precipitat-

ed polymers were purified by Soxhlet extraction, washing

sequentially with methanol, acetone and hexane (and chloro-

form for F-P3OT). P3OT was then extracted using chloroform,

and F-P3OT with chlorobenzene.

The P3OT-b-F-P3OT copolymers were also synthesized by

KCTP using a method analogous to that used for thiophene-

selenophene block copolymers [26]. Due to the much lower

solubility of F-P3OT compared to P3OT, the more soluble

P3OT block was grown first from the activated monomer 2, fol-

lowed by the addition of 4 to the P3OT macroinitiator. Relative

block lengths were controlled by varying the relative feed ratios

of 2 to 4. In order to probe the effect of block lengths on the

polymer properties, 1:3 and 3:1 feed ratios of 2 to 4 were used,

respectively. True block-lengths as determined by 1H NMR

(vide infra) were found to be 1:4 and 2:1, and the polymers will

be referred to as such hereafter.

The block copolymers were initially purified by Soxhlet extrac-

tion, washing sequentially with methanol, acetone and hexane.

In order to remove any P3OT homopolymer that may have been

produced through chain termination prior to the addition of 4,

the P3OT-b-F-P3OT polymers were washed with a solvent that

could selectively dissolve P3OT, but not dissolve the block-

copolymers. Since the F-P3OT block decreases the overall solu-

bility of the polymers, this was easily achieved in the case of

the polymer resulting from a 1:3 feed. Indeed, this diblock

polymer being insoluble in chloroform and P3OT exhibiting

excellent solubility in this solvent, the P3OT homopolymer was

simply removed by Soxhlet extraction with chloroform.

On the other hand, the comparatively smaller difference in solu-

bility between P3OT and the P3OT-b-F-P3OT resulting from a

3:1 feed meant that this approach was not feasible. In that case,

washing with dichloromethane resulted in a demonstrable

removal of P3OT homopolymer, as indicated by the differential

scanning calorimetry (DSC) thermogram (see Figure 1). Indeed,
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Scheme 1: Grignard metathesis polymerization method of synthesizing the diblock copolymer. Relative block lengths are modified by changing the
feed ratio of 2 to 4.

the melting peak around 190 °C, apparent in the crude block

copolymer and attributable to free P3OT, is clearly reduced

upon washing. It is worth noting that shallow thermal transi-

tions in the regions expected for P3OT are still present in this

block copolymer, and this may be due to a small fraction of

higher molecular weight P3OT that could not be fully removed

by dichloromethane washing.

Figure 1: Differential scanning calorimetry thermogram (second cycle,
10 K/min) of P3OT-b-F-P3OT 2:1 before (black) and after (red)
washing with dichloromethane. The reduction in the thermal transi-
tions occurring below 200 °C, attributed to P3OT, indicate that a sub-
stantial amount of P3OT homopolymer was present in the crude
polymer, but was removed by extraction.

The true relative block lengths were calculated from the
1H NMR spectra of the purified polymers, based on the relative

intensities of the signals assigned to the methylene protons adja-

cent to the thiophene ring (Figure 2). Due to the reduced solu-

bility of the polymers, the spectra were recorded in 1,1,2,2-

tetrachloroethane-d2 at 403 K. The chemical shifts of the meth-

ylene protons for the fluorinated and non-fluorinated polymers

are distinct, with the fluorinated block apparent as a triplet at

2.82 ppm, in very close agreement to the signal observed for the

pure F-P3OT. In comparison, the non-fluorinated block occurs

as a distinct triplet at 2.89 ppm, demonstrating the shielding

effect of the ortho-fluorine. The 19F NMR (see Supporting

Information File 1, Figures S1 and S2) shows a single peak in

both cases, demonstrating that these polymers are indeed

regioregular block copolymers with little mixed region within a

polymer chain. Integration of the methylene regions in the
1H NMR indicates that the ratio of the two blocks deviates from

the feed ratio, with a ratio P3OT-b-F-P3OT 2:1 and P3OT-b-F-

P3OT 1:4 found (cf., 3:1 and 1:3 feed ratios, respectively).

We note that the peaks around 2.65 ppm are likely related to

regiochemical defects such as head-to-head or tail-to-tail

couplings in the backbone [43], as well as the methylene region

from the chain end [44]. Integration of this region with respect

to the overall methylene region gives approximate regioregular-

ites of 92 and 97% for P3OT-b-F-P3OT 2:1 and P3OT-b-F-

P3OT 1:4, respectively. The higher regioregularity for the

dominant F-P3OT block polymer may result from the fact that a

single isomer is formed during the Grignard metathesis reac-

tion for 2,5-dibromo-4-fluoro-3-octylthiophene [42], whereas

the equivalent non-fluorinated monomer gives an approximate

4:1 mixture of regioisomers [45,46]. Although this mixture of
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Figure 2: Selected region of the 1H NMR (d2-TCE at 403 K) of P3OT-b-F-P3OT produced with 3:1 (a) and 1:3 (b) monomer feed ratios. The signals
correspond to the methylene protons adjacent to the thiophene ring.

isomers can afford good regularity under certain conditions, it

can be expected to have a detrimental effect on regioregularity

[47]. For this reason most block co-polymers utilize a regio-

chemically pure organomagnesium reagent prepared from

2-bromo-5-iodo-3-alkylthiophene [28].

The reason for the large discrepancy between the feed ratio and

the true block lengths in P3OT-b-F-P3OT 2:1 may be attributed

to unexpected chain termination during the growth of the P3OT

block. This theory is consistent with the large amount of P3OT

homopolymer that was removed from the crude product upon

Soxhlet extraction, as indicated by DSC. In the case of P3OT-b-

F-P3OT 1:4, the discrepancy likely arises from the fact that the

activated M–H monomer is intrinsically comprised of ca. 20%

of a regioisomer which is relatively unreactive towards KCTP

when using 1,2-bis(diphenylphosphino)propane as ligand

[32,46,48,49]. This results in a reduced effective concentration

of 2 relative to 4, since in the case of 4 the regioselectivity of

the monomer activation is over 95% [42].

Gel-permeation chromatography (GPC) measurements in hot

(80 °C) chlorobenzene gave the number average molecular

weight (Mn) of P3OT-b-F-P3OT 2:1 as 55 kg/mol against poly-

styrene standards. Although this is higher than the theoretical

Mn (ca. 39 kg/mol for a monomer:catalyst ratio of 200:1), it is

likely due to the removal of lower molecular weight oligomers

during Soxhlet extraction as well as the known overestimation

of molecular weight for polythiophenes when measured by GPC

against polystyrene standards [50,51]. Accounting for the

purification, the Mn of P3OT-b-F-P3OT 2:1 is in reasonable

agreement with the ratio of H and F blocks as determined by
1H NMR, and the molecular weight of a crude sample taken

prior to the addition of 4, which showed an Mn of 31 kg/mol

(theoretical Mn 29 kg/mol, Supporting Information File 1,

Figure S3).

Despite having slightly better solubility than the homopolymer

of F-P3OT, the solubility of P3OT-b-F-P3OT 1:4 in chloroben-

zene was nevertheless too low to allow the molecular weight to

be measured on our GPC instrument. A sample taken prior to

the addition of 4 gave the molecular weight of the P3OT block

as Mn 15 kg/mol (theoretical Mn 10 kg/mol), which would

afford a final Mn at ca. 75 kg/mol when accounting for the
1H NMR ratios of H to F blocks.

Optoelectronic properties
Our previous study on fluorinated poly(3-alkylthiophene)

demonstrated that backbone fluorination leads to a ca. 0.3 eV

increase in the ionisation potential (IP) compared to the non-

fluorinated polymer [42]. In order to probe this effect in block

copolymers, the IPs of P3OT-b-F-P3OT 2:1 and P3OT-b-F-

P3OT 1:4 were measured by photoelectron spectroscopy in air

(PESA). The results suggest that the IP in this system is mostly

defined by the most abundant block. Indeed, the 2:1 block

copolymer has an IP of 4.83 eV, slightly higher than that of

P3OT (4.70 eV) measured by the same technique [42], while

the 1:4 copolymer had an IP of 5.03 eV, which is within experi-

mental error (±0.05 eV) of the IP of F-P3OT (4.99 eV) [42].

To investigate the influence of the block compositions on the

optical properties, the UV–visible absorption spectra of thin

films spin-cast from hot 1,2,4-trichlorobenzene were measured.

The thin film UV–visible absorption of polythiophene deriva-

tives can provide some information about the molecular order

of the polymer chains, via the interpretation of the vibronic

shoulders [52-55]. In the case of mixtures and block copoly-

mers this is somewhat complicated by the different overlapping

absorption profiles of the components. The absorption spec-

trum of a polymer blend typically corresponds to the sum of the

absorptions of the component polymers (assuming complete

phase separation occurs). Making use of complementary
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Figure 3: Thin film UV–visible absorption spectra of 2:1 (a) and 1:4 (b) P3OT-b-F-P3OT polymers (red line), overlaid with the UV–visible absorption
spectra of a blend of P3OT and F-P3OT in the same ratio (blue line). The dotted line indicates the corresponding sum of the UV–visible absorption of
P3OT and F-P3OT, weighted according to the composition. Thin films were spin cast from hot 1,2,4-trichlorobenzene.

absorption profiles for optimized harvesting of the solar spec-

trum is thus one of the main advantages of all-polymer photo-

voltaic devices [19,56-58]. The absorption spectra of block

copolymers vary according to the system studied and process-

ing conditions, since spontaneous phase separation is more

difficult than in the case of polymer blends due to the chro-

mophores being tethered. For example, in a polythiophene-

polyselenophene block copolymer, isothermal recrystallization

of the film results in an absorption profile that perfectly matches

the linear combination of the homopolymers [26]. On the other

hand, the absorption spectra of as spun block copolymers of

P3HT with an analogue containing a ketone-functionalized side

chain do not seem to linearly correlate to the composition ratio

[59,60].

Figure 3 shows the absorption spectra of P3OT-b-F-P3OT in

2:1 and 1:4 ratios, as spun (see Figure 4 for overlay of both

block copolymers and their corresponding blends). Also

presented in Figure 3 are the absorption profiles of spin coated

blends of P3OT and F-P3OT in the same ratios, as well as the

weighted linear combination of the as spun absorption spectra

of pure P3OT and F-P3OT polymers. All films were spin cast

from hot 1,2,4-trichlorobenzene for comparison purposes. In the

2:1 ratio, all absorption profiles appear subtly different, both in

terms of the peak positions and the vibronic structure. The

block and blend films exhibit a slightly blue-shifted absorption

maxima compared to the linear combination of homopolymers,

as well as a more pronounced vibronic structure. Since F-P3OT

homopolymer has a blue-shifted absorption with more vibronic

structure than P3OT (vide infra), it can be deduced that the

absorption profile of the block and blends are dominated by

F-P3OT sections of the mixture, despite it having a lower con-

centration. Unsurprisingly therefore, the films in 1:4 ratios have

approximately the same absorption profile, with the peak posi-

tions being nearly identical to the F-P3OT homopolymer. Al-

though the multicomponent nature of the systems likely compli-

cates the interpretation of the vibronic structure in relation to

the order in the thin film, it is worth noting that the vibronic

structure of the block copolymers in both cases is less pro-

nounced than for the corresponding blend. Considering the afor-

mentioned link between the vibronic structure and aggregation,

this likely indicates less inter- and intrachain coupling, and

possibly a frustration of the crystallization and phase separation

in the case of these block copolymers.

Thermal behavior
Differential scanning calorimetry
Fluorination of P3OT has previously been shown to result in a

50–60 °C increase in the melting and crystallization tempera-

tures, an effect that was predominantly attributed to the in-

creased backbone planarity and rigidity in combination with the

increased aggregation it engenders [42]. In order to probe the

crystallization behavior of the block copolymers and blends in

thin films, DSC was therefore performed. Rather than investi-

gating the melting transitions of bulk polymer powders, which

are not always representative of films cast from solution, films

were cast and then scraped off the substrate to be measured.

Due to the poor solubility of the polymers with high fluorine

content, the film thicknesses achievable when spin coating were

low, and dropcasting onto a hot substrate was therefore used.

The DSC thermograms of the resulting films are shown in

Figure 4b.
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Figure 4: Overlay of thin film UV–visible absorption spectra (a) of the two block copolymers and the corresponding P3OT/F-P3OT blends. Thin films
were spin cast from hot 1,2,4-trichlorobenzene. Differential scanning calorimetry thermograms (b) of dropcast films of the same samples. For compari-
son, thermograms of P3OT and F-P3OT as dropcast films are also included. Only the heating curve (first cycle, 10 °C/min) is shown. Note that the
peak observed at ca. 85 °C in all traces is an artefact resulting from the instrument.

Immediately obvious from these thermograms is the promi-

nence of a high-temperature (>240 °C) melting transition, in all

cases except pure P3OT (ca. 180 °C). This transition can

reasonably be attributed to the fluorinated block/polymer

portion, due to its close proximity with the melting point of the

F-P3OT homopolymer. As in the UV–visible absorption spec-

tra, the domination of F-P3OT features is evident, particularly

in the 2:1 blend which, despite containing twice the amount of

P3OT than F-P3OT, still shows a much sharper and evident

higher temperature melting transition characteristic of F-P3OT.

The fact that the 2:1 blend undergoes two melts closely corre-

sponding to each component polymer suggests that it has

sufficient phase separation to allow both polymers to crystal-

lize in discrete domains. On the other hand, in the 1:4 blend

the melting transition of P3OT is absent. These observations

may be explained by the greater melting enthalpy of the crys-

talline phase of F-P3OT compared to P3OT (28 and 17 J/g, re-

spectively [42]), which could result in a masking of the P3OT

melt in the baseline. However, the apparent suppression of the

P3OT melt could also be explained by some degree of

frustration of the P3OT crystallization, likely due to the earlier

precipitation of the less soluble F-P3OT during the film forma-

tion.

P3OT-b-F-P3OT in a 1:4 ratio displays much the same melting

behavior as the corresponding blend, although the onset of

melting is slightly lower. This may be explained by the short

P3OT segments, which although they may be too short to cause

phase separation and crystallize themselves, likely cause some

disruption to the crystallization of the F-P3OT segment [59,61].

In the case of P3OT-b-F-P3OT 2:1, there are two distinct

melting transitions which match those of P3OT and F-P3OT.

Since it cannot be said with full confidence that all P3OT

homopolymer was removed during purification, it is unclear

whether these two transitions indicate phase separation and

therefore separate melting transitions for each block, or are

simply due to the residual P3OT impurity. However, the low

melting enthalpies of both peaks and the lower melt onset of the

F-P3OT block suggests that crystallization is frustrated even for

the fluorinated block.

Influence of annealing temperature on UV–visible
absorption
The influence of annealing temperature on the optical absorp-

tion spectra of the polymers was also investigated. Here films

were annealed at the specified temperature for 20 minutes on a

hotplate under argon before rapid quench cooling. The evolu-

tion of the thin film UV–visible absorption spectra with increas-

ing annealing temperature (see Figure 5) partly reflects the ther-

mal behavior of the samples as observed by DSC. In all cases,

the low energy shoulder decreases in intensity with increasing

annealing temperature, until a critical point when the absorp-

tion profile dramatically blue shifts and loses all or most of its

vibronic structures. The broad absorption exhibited by the sam-

ples beyond this critical point is reminiscent of the absorption of

fully solvated polythiophene derivatives, and therefore suggests

that beyond this point the polymers have essentially been

quenched in the melt state with disordered backbones and little

inter- and intrachain coupling. This is further supported by the

fact that these critical temperatures are in good agreement with

the melt temperatures exhibited by the dropcast samples (see

Table 1).
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Figure 5: Thin-film UV–visible absorption spectra of a) P3OT, b) F-P3OT, c) P3OT-b-F-P3OT 2:1, d) P3OT-b-F-P3OT 4:1, e) P3OT/F-P3OT blend in
a 2:1 ratio, and f) P3OT/F-P3OT blend in a 4:1 ratio. Films were annealed at the temperatures indicated for 20 min, then quench cooled and the
UV–visible absorption spectrum measured. The same films were used for subsequent annealing at higher temperatures. Thin films were spin cast
from hot 1,2,4-trichlorobenzene.

The critical temperature in the case of P3OT is near 181 °C,

which is above the onset of melting transition, and all the

vibronic structure is lost from the absorption when annealed

well above the melt at 210 °C. Higher temperature annealing

simply shifts the absorption to higher energy, consistent with

more disordered backbones as is observed in heated solutions of

polythiophenes [42]. In the case of F-P3OT, annealing just

under the melting onset (238 °C) leads to a significant shift in

the vibronic structure. The large increase in the intensity of the

high-energy part of the spectrum suggests an increase in the
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Table 1: Melting point of dropcast films taken as the maximum (onset in parentheses), and critical annealing temperature of spin cast films at which
vibronic structure is mostly lost from the UV–visible absorption.

P3OT-b-F-P3OT P3OT blend with F-P3OT

P3OT F-P3OT 2:1 1:4 2:1 1:4

Melting point (°C) 190 (177) 254 (242) 193 (178) / 243 (235) 253 (243) 194 (180) / 261 (240) 261 (241)
Critical annealing
temperature (°C) 181 267 238 238 238 267

proportion of disordered polymer [55,62], as expected at the

onset of a melt, while the decreased intensity of the 0–0

shoulder may be indicative of a greater degree of interchain

coupling and therefore the formation of H-aggregates [63].

Annealing at temperatures higher than the melt disrupts these

aggregates, and although minor vibronic shoulders are still

present, these are likely due to some degree of aggregation

during the cooling prior to the measurement of the spectrum.

The blend and block copolymers behave in a similar manner to

each other, with dramatic shifts in the vibronic structure near

the onset of the melting transition and then a blue shift and loss

in the vibronic structure when annealed beyond the highest tem-

perature melt. In the 2:1 ratio samples, phase separation is sug-

gested by the additional small changes in the vibronic structure

seen when annealing is performed at 210 °C, beyond the low

temperature transitions associated with P3OT domains melting,

but below the onset of the F-P3OT melt. In the 1:4 ratio sam-

ples, the dominance of F-P3OT in the absorption profile means

such small changes are not obvious. The only suggestion of

P3OT chains melting is the small increase in absorption that is

seen in the high-energy (ca. 400 nm) region of the spectra. The

fact that this progression is more pronounced than in the case of

pure F-P3OT may indicate phase separation since pure P3OT

domains would be fully melted and disordered at such tempera-

tures, and thus result in increased absorption in the high-energy

region.

It is interesting to note that the vibronic structure is more resis-

tant to higher annealing temperatures in the blends, perhaps in-

dicating that in the block copolymers the disorder of the melted

P3OT sections help break up the F-P3OT rich aggregates, or

that these polymers do not phase separate as much, and may

even produce co-crystals with lower melt onsets.

Temperature dependent Raman spectroscopy
Having probed the effect of temperature on the intermolecular

interactions of the samples using DSC and UV–visible absorp-

tion spectroscopy, we performed in situ Raman spectroscopy

measurements, similar to those previously carried out on P3OT

and F-P3OT [42] in order to observe the evolution of intramo-

lecular order with temperature, and compare the block copoly-

mers with the polymer blends. The room temperature Raman

spectra (see Supporting Information File 1, Figures S4–S6)

show four strong peaks in the range 1300 cm−1 to 1700 cm−1,

associated with stretching modes of the conjugated polymer

backbone. These peaks can be readily assigned to the P3OT and

F-P3OT blocks of the polymer chain by comparison with the

homopolymer spectra. We identify the 1381 cm−1 and

1446 cm−1 peaks as the stretching modes of the P3OT block,

corresponding with symmetric C–C and C=C collective bond

stretches. In the F-P3OT block, a similar pair of modes is ob-

served with peaks at 1416 cm−1 and 1491 cm−1, whose natures

appear to be comparable to the non-fluorinated case and so can

also be described as C–C and C=C collective stretches, respec-

tively [42].

The Raman spectra of both the 2:1 diblock and blend films

resemble a linear combination of the spectra for the neat homo-

polymers, where the peak positions are the same as for the

homopolymers, but the intensities of the F-P3OT modes are

stronger than those of the P3OT modes, contrary to what is ex-

pected from the molar ratio. This indicates that the Raman scat-

tering cross-sections for these modes in the F-P3OT polymer

are greater than for the corresponding modes in P3OT (by a

factor of ≈2). As a result, the Raman spectra for both the 1:4

diblock and blend samples are dominated by the F-P3OT peaks,

with minimal distinct contributions from the P3OT modes.

The temperature dependent Raman spectra of the pure homo-

polymers have been reported previously, and the blend and

diblock samples display similar trends [42]. Specifically, as the

temperature increases, all four main peaks move towards lower

Raman shifts; the overall scattering Raman scattering intensity

gradually reduces; and the intensities of the C–C modes

(1381 cm−1 and 1416 cm−1) reduce with respect to the corre-

sponding C=C modes (1446 cm−1 and 1491 cm−1, respectively).

A distinct transition is observed in the Raman spectra at around

260–270 °C for P3OT and at 300–310 °C for F-P3OT, where

the Raman scattering intensity reduces dramatically and the

C=C peaks move towards higher Raman shifts (1469 cm−1 for

P3OT and 1505 cm−1 for F-P3OT). These effects are found to
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Figure 6: Temperature dependent Raman spectra measured during heating showing the main C–C and C=C stretches of a) P3OT-b-F-P3OT 2:1,
b) P3OT/F-P3OT blend in a 2:1 ratio, c) P3OT-b-F-P3OT 4:1, and d) P3OT/F-P3OT blend in a 4:1 ratio. The main peaks are assigned to the
fluorinated (F-P3OT) and nonfluorinated (P3OT) segments in a) based on the homopolymer spectra [42].

be largely reversible upon cooling (see Supporting Information

File 1, Figure S7).

Below the transition, the observed reduction in Raman scat-

tering intensity is consistent with a thermally-induced reduction

in the ground vibrational state population, and the shifts in

Raman peak position are associated with a combination of

anharmonic ‘softening’ of the vibrational modes as well as con-

formational planarization of the polymer backbone [64,65]. The

observed transition at 260–310 °C was previously assigned to

overcoming the energetic barrier to rotation around the inter-

ring C–C bond, resulting in a loss of effective π-conjugation as

well as the Raman peaks associated with highly ordered

polymer phases (in particular the lower energy contribution to

the main C=C peak) [42].

The temperature dependent Raman spectra of the diblock and

blend films presented in Figure 6, show broadly the same fea-

tures and trends as their component homopolymers: all four

main peaks move towards lower Raman shifts with increasing

temperature and the intensity of the C–C peaks also decrease

with respect to the C=C peaks. The same transition is also ob-

served in the range of 270–290 °C, for all of the samples, except

for the 4:1 blend film. Since the Raman scattering from all of

these samples is dominated by the F-P3OT component, the

P3OT thermal transition temperature range is not distinct, how-

ever, it is striking that the F-P3OT transition is observed at a

lower temperature for both diblocks and the 1:2 blend samples

than for neat F-P3OT. In fact, the observed temperature range

of the transition is comparable with that of the neat P3OT

homopolymer (≈260 °C), which suggests that the event occur-

ring within the P3OT chains promotes a similar event in the

F-P3OT sections. In the block copolymers, where the F-P3OT

and P3OT segments are tethered and electronically conjugated

this is perhaps less surprising. However the 2:1 blend, which

shows evidence of phase separation from the DSC measure-

ments, also exhibits a 20–40 °C depression in the temperature

of the Raman transition of the F-P3OT signals. The conclusion
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from this observation is that the structural event that leads to the

Raman transition may be somewhat cooperative, even between

polymer domains.

With previous reports of block copolymers stabilizing morphol-

ogy (see Introduction), it is interesting to note that the P3OT-b-

F-P3OT 2:1 exhibits greater thermal stability than the corre-

sponding blend, when probed using the temperature dependent

Raman spectrum. In this case, we consider the intensities of the

strongest peaks measured for the P3OT (1446 cm−1) and

F-P3OT chains (1416 cm−1). Since the intensities of these peaks

correspond with the degree of conjugated backbone planarity

for their respective chain segments, the ratio I1446/I1416 gives an

indication of the relative planarity of the P3OT part compared

with the F-P3OT. This ratio is plotted as a function of tempera-

ture for both the 2:1 blend and diblock films in Figure 7. We

find that this ratio drops consistently with temperature for the

2:1 blend film up to ca. 175 °C, where a more dramatic de-

crease is observed. In contrast, for the diblock copolymer, the

ratio remains almost constant up to a similar temperature (ca.

175 °C) before decreasingly more sharply. At temperatures

above ≈250 °C the intensity ratios for both films are similar. It

is noteworthy, that the onset of the change in decay rate of this

ratio at around 175 °C occurs at a similar temperature to the

onset of the P3OT melting transition in the DSC thermogram.

The increased thermal stability of the diblock over the blend

sample in this case does not appear to affect the melting temper-

ature significantly, rather the stabilization relates to the molecu-

lar conformational order and particularly the planarity of the

conjugated polymer backbone. This result indicates that the

diblock copolymer is able to maintain ordered P3OT domains to

a higher temperature than the equivalent blend film, and sug-

gests that this is a viable strategy for enhancing morphological

stability at elevated temperatures.

Conclusion
In order to investigate the effects of partial planarization of the

polymer backbone through fluorination on the physical and

optoelectronic properties of the P3OT system, two block

copolymers were synthesized via sequential monomer addition

under by Kumada catalyst transfer polymerisation (KCTP)

conditions. Diblock polymers with a large and small F-P3OT

block were therefore synthesized. The P3OT-b-F-P3OT poly-

mers were compared to their analogous blends of the corre-

sponding homopolymers.

The F-P3OT block dominates the UV–visible absorption spec-

tra, thermal behavior and Raman spectra, both in block copoly-

mers and blends. The crystallization in the block copolymers

appears to be slightly impeded, as suggested by the depressed

melting point and reduced vibronic structure in the UV–visible

Figure 7: Influence of temperature on the relative Raman scattering in-
tensities of the P3OT (1446 cm−1) and F-P3OT (1416 cm−1) C=C bond
stretching modes. The block copolymer appears to have a constant
relative intensity until ca. 175 ºC, while the blend appears less stable,
showing decay almost immediately upon heating.

absorption spectrum. The highest melting transition tempera-

tures for each polymer or blend matches well with the critical

annealing temperature at which the thin-film UV–visible

absorption spectra exhibit a dramatic blue-shift in the absorp-

tion, and a loss in vibronic structure. The block copolymers

have marginally lower critical temperatures than their blend an-

alogues, perhaps further signifying impeded crystallization due

to the P3OT segments disrupting the F-P3OT domains.

This is further corroborated by the fact that a thermal event,

evident in the Raman spectra, attributed to a significant change

in intramolecular order occurs in 3 of the 4 mixed systems at the

same temperature as for pure P3OT (ca. 260–270 °C), even for

F-P3OT segments (310 °C for pure polymer). Only in the 1:4

P3OT/F-P3OT blended film are the temperature dependent

Raman spectra unaffected by the presence of P3OT, as is the

case in the behavior measured using UV–visible absorption

spectroscopy and DSC.

In the case of the 2:1 block copolymer, the temperature depen-

dence of the Raman signals attributed to P3OT-rich polymer

chains is found to be substantially different to the correspond-

ing blend at temperatures below the thermal transition. While

the intensity of the thiophene C=C stretching mode steadily

decreases with increasing temperature in the case of the blend,

it remains constant in the block copolymer until temperatures

approaching the melting point of P3OT.

All the experimental data collected suggests that the increased

propensity of F-P3OT to aggregate translates to a domination of



Beilstein J. Org. Chem. 2016, 12, 2150–2163.

2160

the optoelectronic and temperature dependent properties of the

thin film, even as a minority component. P3OT and F-P3OT

blends are also found to behave like a mostly phase-separated

system, while the block copolymers exhibit signs of frustrated

crystallization and self-assembly. It is likely that optimizations

in the processing techniques, thermal annealing and solution

self-assembly may help to improve this self-assembly.

Experimental
General
Reagents and chemicals were purchased from commercial

sources such as Aldrich and Acros etc. unless otherwise noted.

P3OT and F-P3OT and the corresponding monomers were syn-

thesized according to our previous work [42]. The batch of

P3OT used in this study had Mn 26 kg/mol, Mw 33 kg/mol (as

measured by GPC in chlorobenzene at 80 ºC), while the

F-P3OT used Mn 53 kg/mol, Mw 98 kg/mol (as measured by

HT-GPC in 1,2,4-trichlorobenzene at 130 °C).

All reactions were carried out under argon using solvents and

reagents as commercially supplied, unless otherwise stated. 1H

and 19F NMR spectra were recorded on a Bruker AV-400

(400 MHz), using the residual solvent resonance of CDCl3 or

d2-1,1,2,2-tetrachloroethane and are given in ppm.

Number-average (Mn) and weight-average (Mw) were deter-

mined by Agilent Technologies 1200 series GPC running in

chlorobenzene at 80 °C, using two PL mixed B columns in

series, and calibrated against narrow polydispersity polystyrene

standards.

Films for PESA, UV–visible absorption and Raman spectrosco-

py, were prepared by spin-coating from hot (ca. 150 °C) solu-

tion in 1,2,4-trichlorobenzene (5 mg/mL) at 3000 rpm for

2 minutes. Dropcast films for DSC measurements were pre-

pared by dropcasting a hot (ca. 150 °C) 5 mg/mL solution in

1,2,4-trichlorobenzene onto hot glass substrates (ca. 120 °C)

and letting the solvent evaporate. The film was then scraped off

using a knife and the powder used for DSC analysis.

UV–visible absorption spectra were recorded on a UV-1601

Shimadzu UV–vis spectrometer. Each film was annealed (under

flow of Ar) for 20 min at the lowest temperature, then cooled on

a surface at room temperature before measuring the UV–visible

absorption spectrum. The same film was then annealed and

spectrum measured in a similar way for each subsequent tem-

perature.

Photo electron spectroscopy in air (PESA) measurements were

recorded with a Riken Keiki AC-2 PESA spectrometer with a

power setting of 5 nW and a power number of 0.5. Samples for

PESA were prepared on glass substrates by spin-coating.

Differential scanning calorimetry (DSC) measurements: ≈2 mg

material was used for the DSC experiments, which was con-

ducted under nitrogen at a scan rate of 10 °C/min with a TA

DSC-Q20 instrument.

Raman spectra were measured using a Renishaw inVia Raman

spectrometer with 785 nm diode laser excitation. Laser power at

the sample was 130 mW focussed to a 40 μm2 area. The photo-

luminescence background was subtracted from the spectra using

a polynomial baseline and then the spectra were normalized to

the main peak. A Linkam THMS600 hot-cold cell purged with

nitrogen was used to prevent polymer degradation as well as to

control the temperature of the sample. For room temperature

measurements the total laser exposure time was 25 s, the expo-

sure time for temperature dependent spectra was 10 s. Starting

from room temperature, the sample was heated at 10 °C/min to

300 °C, then cooled at the same rate. The temperature was

held for 1 minute at every 10 °C interval in order to measure

spectra.

Typical procedure for the synthesis of
Grignard monomer
To a solution of 2,5-dibromo-3-octylthiophene (361.2 mg,

1.02 mmol) in dry THF (2.86 mL) at room temperature was

added isopropylmagnesium chloride lithium chloride complex

(0.78 mL, 1.3 M in THF) dropwise. After 30 min, the resulting

Grignard monomer solution (0.28 M in THF) was ready for use

as indicated by the near total consumption of starting material

(<3% remaining by quenching a sample with methanol and

analysing by GC–MS).

Synthesis of P3OT-b-F-P3OT 2:1
In a sealed dry 2–5 mL microwave vial charged with

dichloro(1,3-bis(diphenylphosphino)propane)nickel (2.27 mg,

0.5 mol %) was added Grignard solution freshly prepared from

2,5-dibromo-3-octylthiophene (2.25 mL, 0.28 M in THF), and

the reaction mixture was stirred at 40 °C for 1 h. GPC analysis

of an aliquot quenched with methanol/HCl indicated

Mn 31 kg/mol, Mw 43 kg/mol. A Grignard solution freshly pre-

pared from 2,5-dibromo-3-fluoro-4-octylthiophene (0.75 mL,

0.28 M) was added to the reaction mixture, and the reaction

heated to 70 °C for 2 h before being poured into methanol

(200 mL) acidified with a few drops of conc. HCl. The precipi-

tate was filtered through a cellulose thimble, and the solid puri-

fied by Soxhlet extraction with methanol, acetone, and hexane.

In order to determine if substantial amounts of P3OT homo-

polymer still remaining in the sample, a DSC was run on a sam-

ple, and after confirmation that this was indeed the case, the

solid was further washed with dichloromethane and finally

extracted with chloroform, before precipitation into methanol

and filtration. The resulting solid was dried under vacuum to



Beilstein J. Org. Chem. 2016, 12, 2150–2163.

2161

give P3OT-b-F-P3OT 2:1 (50 mg, 25%). Mn 55 kg/mol,

Mw 60 kg/mol; 1H NMR (400 MHz, TCE-d2, 403 K, δ) 7.05 (s,

1H), 2.94–2.85 (m, 1.8H), 2.85–2.77 (m, 0.9H), 1.90–1.66 (m,

3H), 1.56–1.35 (m, 15H), 1.03–0.90 (m, 4.2H); 19F NMR

(376 MHz, TCE-d2, 403 K, δ) −122.94 (s).

Synthesis of P3OT-b-F-P3OT 1:4
In a sealed dry 2–5 mL microwave vial charged with

dichloro(1,3-bis(diphenylphosphino)propane)nickel (2.27 mg,

0.5 mol %) was added Grignard solution freshly prepared from

2,5-dibromo-3-octylthiophene (0.75 mL, 0.28M in THF), and

the reaction mixture was stirred at 40 °C for 1 h. GPC analysis

of an aliquot quenched with methanol/HCl indicated

Mn: 15 kg/mol, Mw: 18 kg/mol. A Grignard solution freshly

prepared from 2,5-dibromo-3-fluoro-4-octylthiophene

(2.25 mL, 0.28 M) was added, and the reaction heated to 70 °C

for 2 h before being poured into methanol (200 mL) acidified

with a few drops of conc. HCl. The precipitate was filtered

through a cellulose thimble, and the solid purified by Soxhlet

extraction with methanol, acetone, hexane and chloroform. The

solid was dried and reprecipitated from 1,2,4-trichlorobenzene

into methanol and filtered. The solid was dried under vacuum to

give P3OT-b-F-P3OT 1:4 (104 mg, 64%). Molecular weight

could not be measured due to lack of solubility. 1H NMR

(400 MHz, TCE-d2, 403 K, δ) 7.05 (s, 1H), 2.93–2.86 (m,

1.8H), 2.85–2.76 (m, 8.3H), 1.91–1.64 (m, 10.9H), 1.58–1.27

(m, 56.9H), 1.06–0.89 (m, 15.1H); 19F NMR (376 MHz,

TCE-d2, 403 K, δ) −122.94 (s).

Supporting Information
1H and 19F NMR of P3OT-b-F-P3OT 2:1 and

P3OT-b-F-P3OT 4:1, gel permeation chromatography trace

for P3OT-b-F-P3OT 2:1, room temperature Raman spectra

of P3OT and F-P3OT, room temperature Raman spectra of

P3OT-b-F-P3OT 2:1 and P3OT-b-F-P3OT 1:4, room

temperature Raman spectra of blends of P3OT and F-P3OT

in 2:1 and 1:4 ratios, and temperature dependent Raman

spectra measured during cooling.

Supporting Information File 1
Additional spectra.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-12-205-S1.pdf]
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