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The present work addresses the development of an eco-friendly and cost-efficient protocol for the oxidation of primary and second-

ary alcohols to the corresponding aldehydes and ketones by mechanical processing under air. Ball milling was shown to promote

the quantitative conversion of a broad set of alcohols into carbonyl compounds with no trace of an over-oxidation to carboxylic

acids. The mechanochemical reaction exhibited higher yields and rates than the classical, homogeneous, TEMPO-based oxidation.

Introduction

Aldehydes and ketones constitute some of the most powerful
and versatile building blocks that are available for a variety of
synthetic transformations [1]. The reason for this lies in the
capability of the carbonyl group to generate other possible func-
tional groups through more or less complex chemical transfor-
mations [2]. The ubiquity of the carbonyl group in biomole-
cules adds further value to its chemistry, which is crucial for

strategic areas of science related to biochemistry and biotech-
nology [3,4].

In principle, the oxidation of alcohols represents a convenient
option for preparing aldehydes and ketones, as alcohols are
among the most abundant naturally occurring organic com-
pounds [5,6]. Although the literature provides a plethora of
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generic indications and detailed recipes on this subject [7-10],
the selective oxidation of primary alcohols to the correspond-
ing aldehydes is one of the most difficult transformations to
control because of the marked propensity towards over-oxida-
tion to the respective carboxylic acid [11,12]. In addition, the
appeal of this reaction is reduced by the need to use stoichio-
metric amounts of strong oxidising agents that are extremely
toxic, hazardous, and expensive [13-17]. The use of the stable
tetraalkylnitroxyl radical TEMPO (2,2,6,6-tetramethylpiperi-
dine 1-oxyl) as the catalytic oxidising agent (Anelli-Montanari
reaction) has been the main driving force behind the successful
development of greener oxidation procedures [18,19]. The
classic Anelli-Montanari oxidation requires aqueous NaOCl
(bleach) as a co-oxidant, and it works in a CH,Cl,/H,O two-
phase system buffered at pH 8.5-9.5 [20]. Over the years,
bleach has been replaced with an impressively long list of other
co-oxidants [21], which are sometimes very expensive, and ex-
hibit a wide spectrum of effectiveness (Scheme 1) [22,23].
Recently, Stahl [24] developed a practical Cul/TEMPO-based
catalyst for the selective oxidation of primary alcohols to alde-
hydes under ambient aerobic conditions (Scheme 1) [25,26].
The procedure is operationally simple and extremely effective
in terms of both chemoselectivity and reaction yield [27,28].
Gao (2016) further improved this methodology by replacing the
bpy/Cul/NMI catalyst system with Fe(NO3)3-9H,0, a cheaper,
ligand-free co-oxidant (Scheme 1) [29,30]. This made the oxi-
dative process more appealing for pharmaceutical applications,
and specifically beneficial in the preparation of fragrances and
food additives [31].

Anelli-Montanari protocol

=0

Stahl protocol
R1J\R R™ "R

Gao protocol

Scheme 1: TEMPO-catalysed aerobic oxidative procedures of alco-
hols. a) Anelli-Montanari protocol: NaOCI (1.25 mol equiv), TEMPO
(1-2 mol %), KBr (10 mol %), NaHCO3 (pH 8.6), CH2Clo/H20. b) Stahl
protocol: [Cu(MeCN)4](OTf) (5 mol %), bpy (5 mol %), TEMPO

(5 mol %), NMI (10 mol %), CH3CN, air. ¢) Gao (2016) protocol:
Fe(NO)3-9H20 (10 mol %), 9-azabicyclo[3.3.1]nonan-N-oxyl (ABNO,
1-3 mol %), CH3CN, air.

Despite the advances, the choice of solvent for TEMPO-based
oxidative procedures remains a crucial issue in the develop-
ment of greener alternatives to traditional alcohol oxidation

reactions [32-34]. In particular, the lack of a green option sig-
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nificantly decreases the attractiveness of the proposed synthetic
routes, as the solvent is the main component of the reaction
system and, thus, the main source of waste in organic synthesis
[35]. By far, performing the oxidation of alcohols under sol-
vent-free conditions represents the best strategy to radically
eliminate possible drawbacks in regard to waste disposal
[36,37]. In this respect, the mechanical activation of solids [38-
42], in the absence of solvents [43], or in the presence of cata-
lytic amounts of liquid [44,45], holds significant promise [46-
58].

Rooted in ancient practices from the dawn of civilization, a thin
historical thread twisting across human history connects powder
metallurgy and mineralurgy with science and engineering at the
cutting edge of research in the fields of materials science and
chemistry [59]. Presently, mechanochemistry is one of the
fastest growing areas of investigation that aims to provide alter-
native methods to traditional syntheses in organic and inorgan-
ic chemistry [49,60,61]. Mechanochemistry is also used in
supramolecular chemistry [62] and metal-organic chemistry
[63].

In this work, we show that mechanical processing by ball
milling can represent a viable solution to the selective oxida-
tion of alcohols to aldehydes. Specifically, we investigated the
potential of a mechanically activated TEMPO-based oxidative
procedure [64].

Results and Discussion

We began our investigation with an attempt to replicate Gao’s
procedure in a stainless steel reactor of a commercial ball mill
in the presence of stainless steel balls and air, and in the
absence of solvent. The oxidation of solid 4-nitrobenzyl alcohol
(1a) to 4-nitrobenzaldehyde (2a) was selected as a model reac-
tion. Unfortunately, the alcohol-to-aldehyde conversion was
very low (<15%), and the use of larger amounts of the catalyst
as well as molecular oxygen instead of air did not result in a
significant improvement (Scheme 2, left side). To our great
surprise, using Stahl’s catalyst, the mechanically activated oxi-
dation of the model substrate 1a under solvent-free conditions
proceed so quickly and selectively that it was complete within
just a few minutes. The progress of the reaction was monitored
by TLC and GC-MS analysis until the completion of the reac-
tion. The experimental protocol involved two stages, namely the
preparation of the catalytic system and the final oxidation reac-
tion. During the first stage [Cu(MeCN)4]OTf (5 mol %), 2,2'-
bipyridine (5 mol %), NMI (10 mol %), and TEMPO (5 mol %)
were milled (1 min) in a stainless steel reactor using four stain-
less steel balls of different sizes. Following the mechanical
treatment, the catalyst uniformly covered the reactor walls

forming a dark red/brown thin film. Subsequently, solid
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Fe(NO)3:9H,0 (10 mol %),
cHo ABNO or AZADO (5-10 mol %),
air or O,

& (8 x 15 min)

Gao's protocol under ball-milling conditions

OyN :

2a (trace)
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[Cu(MeCN)4](OTf) (5 mol %),
bpy (5 mol %), TEMPO (5 mol %),
NMI (10 mol %), air

& (2 x 7 min)

Stahl's protocol under ball-milling conditions

O,N

2a (94%)

Scheme 2: TEMPO-assisted oxidation of 4-nitrobenzylic alcohol under mechanical activation conditions [65].

4-nitrobenzyl alcohol (1a, 2 mmol) was added together with
two more stainless steel balls (12 mm @), and the resulting mix-
ture was milled until the starting alcohol was completely
oxidized. Despite the poor reactivity of the 4-nitrobenzyl
alcohol, the reaction smoothly reached completion in only 14
minutes (two cycles of 7 minutes each). GC-MS analysis of the
crude reaction mixture only showed the presence of the desired
aromatic aldehyde, indicating that over-oxidation did not occur
(Scheme 2, right side). Prolonged milling did not result in the

formation of detectable amounts of the carboxylic acid.

Next, we replaced the starting stainless-steel grinding jar and
balls with a zirconia jar (45 mL) and six zirconium oxide balls
(5 and 12 mm @) with the aim of avoiding contamination due to
metal release. Under these conditions, it was possible to reduce
the loading of [Cu(MeCN)4]OTH, 2,2'-bipyridine and TEMPO
to 3 mol % and NMI loading to 7 mol % without affecting the
reaction time or the product yield. Interestingly, the alcohol-to-
aldehyde oxidation under ball milling conditions was faster
(15 min overall) than that in solution (1 h) [25]. In addition, the
absence of a solvent facilitated the purification of the final alde-
hyde. Specifically, the reaction crude was transferred from the
reactor into a beaker containing an aqueous 10% citric acid
solution [66,67], and the desired product precipitated as a solid.
If necessary, the crude product could be further purified via
filtering on a short pad of silica gel to give final aldehyde 2a
with a higher degree of purity (>95% as determined by GC-MS
analysis). Since most common alcohols are, unfortunately,
liquids at room temperature, their mechanical activation
requires using a versatile dispersant. Ideally, a dispersant should
not interfere with the oxidation reaction, and should be inexpen-
sive and eco-friendly, if possible. As a first choice, we
dispersed benzyl alcohol (1b) on alumina and silica gel. How-
ever, the reaction did not go to completion. In contrast, it
proceeded smoothly (10 min) and in high yields when Na,;SOy4
and NaCl [68] were used as dispersants. Furthermore, the use of
sodium chloride (500 mg per mmol of alcohol) facilitated the
transfer of the reaction mixture from the reactor to the sepa-
rating funnel containing the aqueous 10% citric acid solution.
On the microscale (2 mmol), the full recovery of benzaldehyde

was only achieved after solvent extraction. A minor modifica-

tion to the synthetic protocol, involving the use of additional
zirconia balls (four balls x 5 mm @, 7 balls x 12 mm @) and
opening the jar (3 min) to air during the time interval between
two consecutive cycles, gave 2b in 96% overall yield even on
the gram scale. On the gram scale, the mechanical activation no
longer required an additional solvent to recover the final alde-
hyde during purification. With the optimized reaction condi-
tions in hand, a series of common benzyl alcohols 1b—n with
different functional groups was then tested in order to examine
the scope of the reaction (Scheme 3). To our satisfaction, very
high yields (>90%) were obtained with all tested compounds,
except 2n (39%).

Benzyl alcohols containing alkyl or aryl groups on the aromatic
ring were all transformed into the desired products in quantita-
tive or nearly quantitative isolated yields (compounds 2¢—f in
Scheme 3). The position of the hydrocarbon (—R) on the ring
did not significantly affect the aldehyde yield (aldehydes 2c—e
in Scheme 3). Substrates bearing electron-donating and elec-
tron-withdrawing functional groups on the aromatic ring of the
benzyl alcohol were also viable, giving the corresponding aro-
matic aldehydes in high yields regardless of the electronic
nature of their substituents (aldehydes 2g—k in Scheme 3). Sur-
prisingly, and contrary to Stahl’s original solution procedure
[24], the oxidation of 2-hydroxybenzyl alcohol under mechani-
cal activation conditions provided the salicylaldehyde in nearly
quantitative yield (compound 2k in Scheme 3). The reaction
was also successfully expanded to heteroaromatic alcohol 11
(Scheme 3, 2-furylmethanol), giving furfural in a very good
yield (90%). The mechanically induced oxidative procedure
was also applied to allylic alcohol derivatives. Cinnamyl
alcohol (1m) was transformed into the corresponding o,p-unsat-
urated aldehyde in an excellent yield (96%) and with the stereo-
chemical retention of the double bond. Encouraged by these
promising results, we attempted to oxidise alkynols to the corre-
sponding propargylic aldehyde derivatives, which were not pre-
viously accessible via classical homogeneous phase methods
[25]. Contrary to our expectations, the ball milling protocol
proved to be an efficient approach for the synthesis of these
substrates, giving phenylpropargylaldehyde (2n) in a modest
yield (39%) after 4 cycles (15 min per cycle). Unfortunately,

2051



on  [Cu(MeCN)I(OTf) (3 mol %), bpy (3 mol %),
TEMPO (3 mol %), NMI (7 mol %), air j

Beilstein J. Org. Chem. 2017, 13, 2049-2055.

o

1b-n
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2b-n (39-98%)

s
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Scheme 3: Scope of primary alcohols in oxidation under ambient air.

prolonged milling times led to the decomposition of the final
aldehyde. These promising results prompted us to undertake ad-
ditional studies on secondary alcohols. The optimised ball
milling protocol was applied to alcohols 1o—v. Excellent yields
of the ketones 20—v were obtained (Scheme 4). Notably, the
product yield was not significantly affected by the position or

2m (96%)

2n (39%)

electronic nature of the substituents on the aromatic ring of the
alcohols.

Encouraged by the facile oxidation of benzyl alcohols, the
scope of the reaction was finally extended to the formation of
more challenging aliphatic aldehydes. Unfortunately, non-acti-

OH [Cu(MeCN)4]J(OTf) (3 mol %), bpy (3 mol %),

R1
TR
4

1o0-v

o)
TEMPO (3 mol %), NMI (7 mol %), air F{O)L

D
NaCl (adsorbent),& (2 x 5-7 min) =

20-v (90-98%)

Q*E%@)Y@b

(95%) (97%)

(93%) 2r (98%)

> P

2s (96%) 2t (92%)

Scheme 4: Scope of secondary alcohols in oxidation under ambient air.

2u (90%)

2v (91%)
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vated aliphatic alcohols did not react efficiently under the reac-
tion conditions, and very low alcohol-to-aldehyde conversions
occurred. The extension of milling times to 3 h failed to result
in improved yields of all tested substrates: 3-phenyl-1-propanol,
cyclohexanol and nonanol. Despite several attempts to improve
the alcohol-to-aldehyde conversion, by, for instance, milling
under an oxygen atmosphere and the use of more reactive
co-oxidant catalysts [69], no significant improvements were ob-

served.

Conclusion

We have developed a TEMPO-based oxidative procedure for
the air oxidation of primary and secondary benzyl alcohols to
the corresponding aldehydes and ketones under ball milling
conditions. A library of common alcohols was efficiently con-
verted into carbonyl compounds with no trace of over-oxida-
tion to the carboxylic acids. The final products could be easily
separated/purified from the crude reaction mixture without
using toxic organic solvents. Under mechanical activation
conditions, the reactions provided better yields and proceeded
faster than classical, homogeneous phase TEMPO-based oxida-
tions. Studies are underway to identify more effective TEMPO-
based catalysts that are also capable of promoting the oxidation
of non-activated alcohols.

Experimental

General procedure to prepare carbonyl compounds 2a-v.
2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO, 9.4 mg,
0.06 mmol, 3 mol %), 2,2'-bipyridyl (9,4 mg, 0.06 mmol,
3 mol %), [Cu(CN)4]OTf (22.6 mg, 0.06 mmol, 3 mol %) and
I-methylimidazole (NMI, 11.5 mg, 11.2 pL, 0.14 mmol,
7 mol %) were placed in a zirconia-milling beaker (45 mL)
equipped with four balls (two balls X 5 mm @, two balls x
12 mm @) of the same material. The jar was sealed and ball-
milled for 1 min. Then, benzyl alcohol (216.3 mg, 207 uL,
2.0 mmol), NaCl (1.0 g) together with other two zirconia balls
(12 mm @) were added and the reaction mixture was subjected
to grinding for further 10 minutes overall (two cycles of
5 minutes each). The first milling cycle was followed by a break
of 2 min leaving in the meantime the uncovered jar in open air.
The progress of the reaction was monitored by TLC analysis
(heptane/AcOEt 9:1 v/v) and GC-MS analysis on an aliquot of
the crude. Upon completion of the ball milling process, the jar
was opened, the milling balls were removed and the resulting
crude product (adsorbed on NaCl) was then easily transferred
into a separating funnel filled with an aqueous 10% citric acid
solution (20 mL). The aqueous phase was extracted with
cyclopentyl methyl ether (or alternatively with AcOEt)
(3 x 15 mL). The combined organic fractions were washed with
H,0 (25 mL) and brine (25 mL), then dried over Na;SOy4, and
concentrated in vacuo to give benzaldehyde in high yield

Beilstein J. Org. Chem. 2017, 13, 2049-2055.

(195 mg, 92%) and good purity (>93% by GC analysis). Alter-
natively, after completion of the reaction, the resulting crude
product (adsorbed on NaCl) can be also easily purified by a
short column chromatography on silica gel using heptane/ethyl
acetate (9:1 v/v) as the eluents to afford pure aldehyde 2b in
high yield (202 mg, 95%) as a colourless liquid.

Supporting Information

Supporting Information File 1
Experimental part and NMR spectra.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-13-202-S1.pdf]
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