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Abstract
A cobalt–N-heterocyclic carbene (NHC) catalyst efficiently promotes an ortho C–H alkenylation reaction of pivalophenone N–H

imine with an alkenyl phosphate. The reaction tolerates various substituted pivalophenone N–H imines as well as cyclic and acyclic

alkenyl phosphates.
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Introduction
Transition-metal-catalyzed, directing group-assisted arene C–H

activation reactions have been extensively studied over the last

few decades to offer a broad array of atom and step-economical

methods for the synthesis of functionalized aromatic com-

pounds [1-6]. Among various C–H transformations, the intro-

duction of alkenyl groups into the ortho position of functionali-

zed arenes has attracted significant attention because of the syn-

thetic versatility of alkenyl groups. The C–H alkenylation has

been achieved most extensively by way of the dehydrogenative

Heck-type reaction of olefins [7-9]. Meanwhile, the hydroaryl-

ation of alkynes has also been explored as an alternative ap-

proach for C–H alkenylation [10]. Despite the significant

progress made, each of these C–H alkenylation manifolds has

some critical limitations. For example, the dehydrogenative

Heck reaction is often limited to activated monosubstituted

alkenes (e.g., acrylates), and is challenging with unactivated and

multisubstituted alkenes [11]. The hydroarylation of alkynes

does not allow for the introduction of cycloalkenyl groups

because of the unavailability of the corresponding alkynes. In

light of such limitations, a coupling between arene substrates

and alkenyl electrophiles would offer a complementary ap-

proach for the C–H alkenylation [12]. In particular, C–H

alkenylations by way of alkenyl C–O bond cleavage has at-

tracted much attention because of the ready accessibility of the

corresponding alkenyl electrophiles (e.g., acetate, phosphate)

from ketones [13-17].

Over the last several years, we and others have developed a

series of directed arene C–H functionalization reactions with

organic electrophiles under low-valent cobalt catalysis [18-21].
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Scheme 1: Cobalt–NHC-catalyzed C–H alkenylation reactions with alkenyl electrophiles.

In particular, our group and the Ackermann group have inde-

pendently demonstrated that the combination of a cobalt–N-

heterocyclic carbene (NHC) catalyst and a Grignard reagent

allows for the arene C–H functionalization with organic halides

and pseudohalides under the assistance of nitrogen directing

groups [17,22-27]. In this connection, Ackermann developed a

mild and efficient C–H alkenylation of N-pyrimidylindoles and

pyrroles with alkenyl acetates using a cobalt–NHC catalyst

(Scheme 1a) [17]. The same catalytic system also promoted the

alkenylation using alkenyl carbamates, carbonates, and phos-

phates. More recently, we have achieved an N-arylimine-

directed arene C–H alkenylation reaction with alkenyl phos-

phates using a different cobalt–NHC catalyst (Scheme 1b) [28].

Meanwhile, we have also demonstrated that pivaloyl N–H

imine serves as a powerful directing group for cobalt-catalyzed

arene C–H functionalization reactions such as the hydroaryl-

ation of alkenes and alkylation/arylation using organic halides

[29,30]. These previous studies have prompted us to expand the

scope of cobalt catalysis for the C–H alkenylation and thus to

develop an ortho C–H alkenylation reaction of pivalophenone

N–H imine with alkenyl phosphates using a new cobalt–NHC

catalyst, which is reported herein (Scheme 1c). The present

alkenylation features a mild reaction temperature and displays

applicability to a variety of substituted pivalophenone N–H

imines and alkenyl phosphates. It should be emphasized that

pivalophenone N–H imines and related bulky N–H imines can

be readily prepared from the corresponding aryl nitriles and

organolithium or Grignard reagents, while analogous N-substi-

tuted imines are nontrivial to synthesize because of sluggish ke-

tone/amine condensation. As such, the present reaction would

complement the N-arylimine-directed alkenylation.

Results and Discussion
The present study commenced with screening of the reaction

conditions for the coupling between pivalophenone N–H imine

1a and cyclohexenyl phosphate 2a (Table 1). Thus, the reaction

was performed in the presence of CoBr2 (10 mol %), ligand

(10–20 mol %), and t-BuCH2MgBr (2 equiv) in THF at room

temperature. While monodentate phosphines such as PPh3 and

PCy3 were entirely ineffective (Table 1, entries 1 and 2),

common bulky NHC precursors such as 1,3-bis(2,4,6-trimethyl-

phenyl)imidazolium chloride (IMes·HCl) and 1,3-bis(2,6-diiso-

propylphenyl)imidazolium chloride (IPr·HCl) promoted the

coupling reaction to afford the desired alkenylation product 3aa

albeit in moderate yields (Table 1, entries 3 and 4). No signifi-

cant improvement was observed using the saturated analogues

of IMes·HCl and IPr·HCl (Table 1, entries 5 and 6) or the 2,6-

diethylphenyl analogue (IEt·HCl, Table 1, entry 7). Further-

more, the NHC precursor featuring a cyclohexane backbone and

2,6-diethylphenyl groups (L1·HBr), which proved to be the

optimal ligand for the C–H arylation of pivalophenone N–H

imine as well as for the C–H alkenylation of N-arylimine

(Scheme 1a, b) [28,29], was not particularly effective for the

present reaction (Table 1, entry 8). To our delight, we observed
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Table 1: Optimization of reaction conditions.a

entry ligand (mol %) yield (%)b

1 PPh3 (20) 0
2 PCy3 (20) 0
3 IMes·HCl (10) 29
4 IPr·HCl (10) 53
5 SIMes·HCl (10) 40
6 SIPr·HCl (10) 46
7 IEt·HCl (10) 38
8 L1·HBr (10) 37
9 L2·HCl (10) 88c

aThe reaction was performed using 0.2 mmol of 1a and 0.3 mmol (1.5 equiv) of 2a. bDetermined by GC using n-tridecane as an internal standard.
cIsolated yield.

a remarkable improvement in the reaction efficiency using the

benzofused analogue of IPr·HCl (L2·HCl), affording 3aa in

88% yield without any trace of a dialkenylation product

(Table 1, entry 9). It should be noted that, unlike the C–H aryl-

ation of pivalophenone N–H imine and the C–H alkenylation of

N-arylimine (Scheme 1a, b), the addition of TMEDA was not

necessary to achieve high reaction efficiency, while the reason

for this remains unclear. Note also that the present reaction

could employ the relatively inexpensive diethyl phosphate,

whereas, in the N-arylimine-directed alkenylation, the use of

diisopropyl phosphate was necessary to achieve higher and

more reproducible yields (cf. Scheme 1b) [28].

With the optimized reaction conditions in hand, we explored the

scope of the present alkenylation reaction. First, various substi-

tuted pivalophenone N–H imines were subjected to the reaction

with 2a (Scheme 2). Pivalophenone N–H imines bearing a

series of para-substituents all participated in the alkenylation

reaction to afford the desired products 3ba–ga in good yields.

The reaction of m-methyl-substituted imine took place preferen-

tially at the less hindered position to afford 3ha as the major

isomer with a moderate regioselectivity of 3:1. By contrast,

imines bearing m-methoxy, m-fluoro, or a 3,4-methylenedioxy

group underwent exclusive alkenylation at the proximity of the

functional group to afford the products 3ia–ka in good yields.

As was also observed in previously reported cobalt-catalyzed

ortho C–H functionalization reactions [22,23,28,29], this regio-

selectivity may be ascribed to the role of the oxygen or fluorine

atom as a secondary directing group to have an electrostatic

interaction with the cobalt center during the C–H activation. For

compound 3ja, an increased acidity of the ortho position of the

fluorine atom could have also contributed to the observed regio-

selectivity [31]. Curiously, the reaction of 2-naphthylimine

resulted in the preferential alkenylation of the more hindered

1-position rather than the 3-position, with a regioselectivity of

4:1 (see 3la).

Next, the reaction of the parent pivalophenone N–H imine 1a

with different alkenyl phosphates was explored (Scheme 3).

The reaction of cyclopentenyl phosphate proceeded smoothly to
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Scheme 2: Reaction of substituted pivalophenone N–H imines with 2a. aThe major regioisomer is shown (rr = regioisomer ratio).

Scheme 3: Reaction of 1a with various alkenyl phosphates. aA mixture of E- and Z-alkenyl phosphate (ca. 1:1) was used. bZ-rich alkenyl phosphate
(Z/E = ca. 9:1) was used. cE-alkenyl phosphate was used.
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Scheme 5: Proposed catalytic cycle (R = t-BuCH2, R' = P(O)(OEt)2).

afford the desired product 3ab in a high yield of 85%. This is in

a sharp contrast to the poor reactivity of the analogous diiso-

propyl phosphate in the N–PMP imine-directed alkenylation

(12% yield). Other cycloalkenyl phosphates with larger ring

sizes also efficiently underwent the C–H alkenylation to afford

the respective products 3ac–af in good yields. Notably, the

cyclodecenylated product 3ae was obtained in an E-rich form

from an E/Z mixture (1:1) of the starting alkenyl phosphate,

demonstrating the E/Z isomerization during the C–C-bond for-

mation. The E/Z isomerization was also observed for the

conversion of cyclododecenyl phosphate (E/Z = 9:1) to the

product 3af (E/Z = 3:1). Expectedly, 4-substituted cyclohex-

enyl phosphates reacted smoothly to afford the desired prod-

ucts 3ag and 3ah. Furthermore, a 6-methyl group on the cyclo-

hexenyl phosphate did not interfere with the reaction (see 3ai).

Finally an acyclic alkenyl phosphate derived from 4-heptanone

(E isomer) was also amenable to the alkenylation reaction,

affording the product 3aj with an E/Z ratio of 4:1.

In our previous study on the C–H alkylation and arylation of

pivalophenone N–H imines, we demonstrated that the pivaloyl

imine readily undergoes fragmentation into a cyano group via

an iminyl radical under peroxide photolysis or copper-cata-

lyzed aerobic conditions [29]. Under the same peroxide photo-

lysis conditions (t-BuOOt-Bu with UV (254 nm) irradiation),

the ortho-alkenylated imine 3aa underwent a C–N bond-

forming cyclization to afford the spirocyclic imine 4 in 81%

yield (Scheme 4). The reaction likely involves the initial forma-

tion of an iminyl radical from 3aa and a tert-butoxyl radical and

its intramolecular addition to the cyclohexenyl group.

Scheme 4: The cyclization of o-alkenylpivalophenone N–H imine.

On the basis of our previous studies on the N-arylimine-directed

C–H alkenylation and the N–H imine-directed C–H alkylation/

arylation [28,29], we are tempted to propose the catalytic cycle

illustrated in Scheme 5. An alkylcobalt species A, generated

from the cobalt precatalyst and the Grignard reagent, would

undergo cyclometalation of magnesium alkylidene amide

1·MgX, generated from imine 1 and the Grignard reagent, to

give a cobaltacycle species B while liberating an alkane R–H.

The species B would then undergo a single-electron transfer

(SET) to the alkenyl phosphate 2 to generate a pair of an

oxidized cobaltacycle B+ and a radical anion 2•−. This would be

followed by the elimination of a phosphate anion and imme-
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diate recombination of the cobalt center and the alkenyl radical

to give a diorganocobalt intermediate C. The C–C-bond rota-

tion of the radical anion 2•− or the transiently formed alkenyl

radical might be responsible for the stereochemical mutation of

the C=C bond observed in some cases. The reductive elimina-

tion of C and subsequent transmetalation with the Grignard

reagent would furnish the alkenylation product 3·MgX and

regenerate the species A. While the relationship between the

ligand and the catalytic activity remains unclear, we speculate

that a strong σ-donating ability of NHC ligands would facilitate

the SET step among others.

Conclusion
In summary, we have developed an ortho C–H alkenylation

reaction of pivalophenone N–H imines with alkenyl phosphates

using a cobalt–NHC catalyst. The reaction takes place smoothly

at room temperature and is applicable to a variety of substituted

pivalophenone N–H imines and alkenyl phosphates. The NHC

ligand architecture proved to have a significant impact on the

efficiency of the present C–H/electrophile coupling. We antici-

pate that the elaboration of NHC ligands would also be instru-

mental to the improvement of other C–H activation and related

transformations promoted by low-valent cobalt complexes [32-

40].

Experimental
Typical procedure: Cobalt-catalyzed alkenylation of pivalo-

phenone N–H imine 1a with alkenyl phosphate 2a. A 10 mL

Schlenk tube equipped with a magnetic stirring bar was charged

with L2 ·HCl (9.5 mg, 0.020 mmol), CoBr2  (4.4 mg,

0.020 mmol), and THF (0.30 mL). The resulting solution was

cooled in an ice bath, followed by the addition of

t-BuCH2MgBr (2.0 M in THF, 0.20 mL, 0.40 mmol). After stir-

ring for 30 min, 2,2-dimethyl-1-phenylpropan-1-imine (1a,

33 mg, 0.20 mmol) and cyclohex-1-en-1-yl diethyl phosphate

(2a, 70 mg, 0.30 mmol) were added. The resulting mixture was

warmed to room temperature, stirred for 12 h, and then filtered

through a short silica-gel column, which was washed with ethyl

acetate (5 mL). The filtrate was concentrated under reduced

pressure. Silica gel chromatography (eluent: hexane/EtOAc/

NEt3 50:1:1) of the crude product afforded the desired alkenyla-

tion product as a colorless oil (43 mg, 88%).

Supporting Information
Supporting Information File 1
Experimental details and characterization data of new

compounds.
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