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Abstract
Background: The quantum-chemical description of the interactions in water clusters is an essential basis for deriving accurate and

physically sound models of the interaction potential for water to be used in molecular simulations. In particular, the role of many-

body interactions beyond the two-body interactions, which are often not explicitly taken into account by empirical force fields, can

be accurately described by quantum chemistry methods on an adequate level, e.g., random-phase approximation electron correla-

tion methods. The relative magnitudes of the different interaction energy contributions obtained by accurate ab initio calculations

can therefore provide useful insights that can be exploited to develop enhanced force field methods.

Results: In line with earlier theoretical studies of the interactions in water clusters, it has been found that the main contribution to

the many-body interactions in clusters with a size of up to N = 13 molecules are higher-order polarisation interaction terms. Com-

pared to this, many-body dispersion interactions are practically negligible for all studied sytems. The two-body dispersion interac-

tion, however, plays a significant role in the formation of the structures of the water clusters and their stability, since it leads to a

distinct compression of the cluster sizes compared to the structures optimized on an uncorrelated level. Overall, the many-body

interactions amount to about 13% of the total interaction energy, irrespective of the cluster size. The electron correlation contribu-

tion to these, however, amounts to only about 30% to the total many-body interactions for the largest clusters studied and is repul-

sive for all structures considered in this work.

Conclusion: While this shows that three- and higher-body interactions can not be neglected in the description of water complexes,

the electron correlation contributions to these are much smaller in comparison to the two-body electron correlation effects. Effi-

cient quantum chemistry approaches for describing intermolecular interactions between water molecules may therefore describe

higher-body interactions on an uncorrelated Hartree–Fock level without a serious loss in accuracy.
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Introduction
The description of the intermolecular interactions between

water molecules is essential for an understanding of the struc-

tures and properties of water through the different stages of

assemblies, from the dimer over the liquid phase to the bulk

phase. Moreover, many chemical processes are explicitly or

implicitly influenced by a water environment. An example for

this is the hydrogen-bond cooperativity effect that can have a

significant impact on the properties of the bare solute mole-

cules [1]. In order to describe such phenomena, computer simu-

lations have become an indispensable tool, since they enable a

description of water on a molecular level that often can provide

further insights than are accessible from spectroscopic measure-

ments.

The basis for such simulations are the so-called force fields that

describe both the covalent as well as the noncovalent interac-

tions within the system. These commonly depend on a number

of empirical parameters that are determined either by a fit to ex-

perimentally known liquid or bulk properties, or by fitting to

energies from ab initio quantum chemistry methods. The most

popular potentials for water are the TIP3P [2], TIP4P [2,3] and

TIP5P [4,5] force fields, which are based on a modeling of the

water pair potential using an electrostatic contribution de-

scribed by interacting point charges and a van der Waals inter-

action contribution using Lennard-Jones potentials. In more ad-

vanced ab initio water pair potentials the force field is fitted to

high-level quantum chemistry results for the water dimer. Force

fields belonging to this category are, e.g., the TTM3-F and

TTM4-F models [6,7], the AMOEBA force field [8,9], the

DPP2 model [10] and various force fields derived by Szalewicz

and co-workers [11-13]. There also exist a number of pair

potentials that go beyond the point charge approximation [14].

A comparison with high-level coupled-cluster energies for a

large number of water dimers and tetramers has revealed, how-

ever, that polarisation effects, which are not accounted for in the

classical point charge potentials, are essential to describe the

structures of (H2O)2 and (H2O)3 in many different conforma-

tions [15]. A rather good correlation between the coupled-

cluster energies and the force-field energies is found for the

polarisable AMOEBA2003 [9,16] and TTM4-F [17] potentials

both for the dimer and for the trimer. Both these methods are

based on the induced dipole scheme in which polarisable point

dipoles, which are assigned to the molecules, interact with the

surrounding electric field and are computed in a self-consistent

manner. While these force fields, too, rely on a certain degree of

empiricism, a number of other force field exist that aim at a

more physically sound decomposition of the interaction energy

into distinct contributions. Examples for such force fields are

the sum of interaction between fragments (SIBFA) [18-20] and

the effective fragment potential (EFP) [21] method. The most

recent version of the latter, EFP2, can describe both (long-

range) polarisation as well as charge-transfer interactions. The

latter was found to yield a significant contribution to the inter-

action energy of the water dimer [22].

However, one of the most significant results of [22] was that the

dipole–quadrupole polarisability term of the multipole expan-

sion of the dispersion interaction, which is usually neglected in

force fields or dispersion corrected DFT methods, is a quite

large positive (for the clusters considered) and anisotropic

contribution to the interaction energy of small water clusters

[22]. It was found to be almost half of the magnitude of the

leading-order dipole–dipole term. It was therefore concluded by

Guidez et al. that this term should not be neglected in the de-

scription of the interactions in water.

Another challenge for water models is the description of nonad-

ditive many-body terms to the interaction energy [23-25]. It has

been found that these contribute 15% to the total interactions in

the condensed phase [26] and this amount even increases to

17–30% for small water clusters [26-28]. Explicit evaluations of

three-body interaction energy terms using symmetry-adapted

perturbation theory (SAPT) for the water trimer have revealed

that the strongest contribution to the three-body energy origi-

nates from the polarisation (induction) energy while the three-

body dispersion interaction is rather small [28,29]. Moreover,

many-body exchange effects, including exchange–induction and

exchange–dispersion, are relatively large yet cancel each other

due to opposite signs at the uud minimum configuration [29]

(“uud” indicates that two “free” hydrogen atoms point above

the plane formed by the three oxygen atoms (u→up) and one

below it (d→down) [30]). In the study by Hodges et al. it has

been shown for several structures of the water tetramer that total

four-body interactions are in most cases much smaller or even

negligible compared to the three-body interactions [27]. The

only exception to this was observed for the squared geometry in

which the hydrogen bonds act cooperatively to enhance the

induction energy. In a recent work by Hapka et al. it was shown

that also standard density functional theory methods are able to

describe nonadditive effects to the interaction energy quite well

for hydrogen-bonded clusters, yet, fail to do so for dispersion

bound complexes [31]. The common conclusion from the quan-

tum chemistry studies of small water clusters was that damped

classical polarization models should be able to accurately

capture the nonadditive effects for larger clusters of water,

because of the fact that short-range contributions, including

many-body exchange effects, grow less strongly with the size of

the system than induction, dispersion or electrostatic interac-

tion energies [32].
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In this work we will study the impact of electron correlation

effects and many-body interactions on the structures and ener-

gies of water clusters (H2O)n with cluster sizes ranging be-

tween n = 2 and n = 13. In doing so, we focus on the impor-

tance of dispersion energy contributions to the interaction

energy, including two-body and many-body dispersion effects.

It will be shown that overall electron correlation effects have

only a minor impact on the orientation of the water molecules in

the various minimum structures of the clusters. Dispersion

interactions, however, make up a significant contribution of

about 60% to the total interaction energies in larger water clus-

ters and lead to a compression of the cluster sizes on average.

The total magnitude of the electron correlation contribution to

the interaction energy is, however, only about half the size of

the sum of the two-, three- and four-body dispersion interac-

tions, i.e., the large dispersion interaction contribution is

strongly quenched by further repulsive correlation contribu-

tions. Noting that the correlation effect to the molecular dipole

moment of the water molecule reduces the dipole moment from

the Hartree–Fock method by about 0.13 Debye [33], it can be

assessed that a fraction of this repulsive correlation contribu-

tion originates from the reduction of the electrostatic interac-

tion energy [34]. Empirical models for water that are based on a

fitting to ab initio results therefore have to take the influences of

the different correlation effects carefully into account.

Many-Body Expansion of the
Interaction Energy
Consider a cluster system containing N molecules. The total

interaction energy of this system is given by

(1)

with E(123…N) denoting the total energy of the system and

E(A) (with A = 1,2,…) denoting the one-body clusters (mono-

mers). The idea of the many-body expansion is to decompose

the total interaction energy into terms arising from the two-

body, three-body, four-body, etc. interactions, so that the total

energy is given by

(2)

with ΔM denoting the M-th body interaction contribution. These

describe the change of the total energy of the system due to the

interactions of the M-th body clusters. The first three terms are

defined as

(3)

As shown in Figure 1, the number of three- and four-body clus-

ters increases much more rapidly with the size of the system

than the number of two-body clusters. In spite of this, however,

a truncation of the expansion of Equation 2 after the two-body

term will usually capture 90% and more of the total interaction

energy. This originates in part from the fact that for larger

many-body systems many three-body and four-body clusters

possess structures with far distant molecules. Moreover, the

individual interaction energy contributions to the three- and

higher-body interaction energy tend to be much smaller than the

sum of the two-body interaction energies, as will be shown in

this work.

Figure 1: Number of two-body, three-body and four-body clusters for
systems with up to 13 molecules.

Method
The calculations in this work have been performed using the

EXX-RPA (exact-exchange random-phase approximation) elec-

tron correlation method [35-37], which is based on an exact-
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exchange Kohn–Sham reference determinant [38-43]. The total

energy of the EXX-RPA method is given by

(4)

where EEXX denotes the energy of the EXX reference determi-

nant and  is the EXX-RPA correlation energy. Like

the Hartree–Fock method, the EXX method lacks the descrip-

tion of electron correlation effects, i.e., electron–electron inter-

actions beyond zeroth and first order in the Coulomb interac-

tion. Thus, any inter- and intramolecular correlation effects of

the EXX-RPA method are described by the correlation term

 of Equation 4.

In order to analyze individual interaction energy contributions

of the two-body clusters, the DFT-SAPT method [44-52]

method has been used. With this method, the interaction energy

of a dimer system AB is given by

(5)

The interaction energy terms in Equation 5 are:  electro-

static interaction energy,  first-order exchange interaction

energy,  induction energy,  exchange-induction

energy,  (two-body) dispersion energy and 

exchange-dispersion energy. The exchange interaction energy

terms in Equation 5 are short-range contributions to the interac-

tion energy and stem from a tunneling of the electrons between

the two monomers. They quickly decay exponentially with the

distance of the interacting systems. The superscripts (1) and (2)

denote the order of the individual terms with respect to the

interaction energy operator.

In this work all terms in Equation 5 have been computed using

EXX monomer wave functions. Moreover, a time-dependent

EXX (TDEXX) response approach was used to compute the

second-order interaction energy contributions [53-59]. Due to

this choice, the subtotal

(6)

approximates the EXX interaction energy between the mono-

mers A and B. The difference between Δ2EEXX(AB) and these

interaction energy terms can be interpreted as higher-order

exchange–induction interaction terms not accounted for by the

DFT-SAPT method (when truncated at second order).

Moreover, the sum of the dispersion and exchange–dispersion

energy

(7)

is a fraction of the EXX-RPA correlation energy contribution to

the intermolecular interaction energy, since both the DFT-SAPT

terms as well as the EXX-RPA correlation energy are com-

puted with the exact-exchange response kernel [53,54]. Here,

the main difference of the quantities on the left-hand and right-

hand side of Equation 7 stems from the correlation energy

contributions to the electrostatic, induction and their exchange

interaction energy counterparts. Note that an analogous decom-

position of the supermolecular interaction energy into distinct

terms is also possible for the second-order Møller-Plesset per-

turbation theory method [60].

Finally, we have also computed three-body and four-body

dispersion interaction energies that contribute to the three-body

and four-body interaction energy terms:

(8)

(9)

Thus, it will be possible to evaluate the importance of disper-

sion interactions both for the total many-body interaction

energy as well as for its correlation interaction contribution.

Computational Details
The structures of the water clusters have been taken from the

work of Maheshwary et al., see Figure 2. This set of structures

contains both the prism form as well as the cage form of the

water hexamer. These are almost isoenergetic and form the first

noncyclic global minimum structures of (H2O)x. In addition, the

cyclic-chair conformation of the hexamer is considered, too, in

this work, since it is known that this structure is characterised

by strong many-body interactions [61-63]. For consistency, the

cyclic-chair geometry has been optimized on the same level that

was used in [23], namely Hartree–Fock employing the

6-31G(d,p) basis set [64]. The resulting structure is shown in

Figure 3.

All calculations of this work were performed using the aug-cc-

pVTZ basis set by Dunning and co-workers [65]. In order to

correct the basis set error of the correlation energy terms, these

were extrapolated using a double-ζ to triple-ζ two-point extrap-



Beilstein J. Org. Chem. 2018, 14, 979–991.

983

Figure 2: Water clusters from [23] studied in this work.

Figure 3: Cyclic-chair structure of the water hexamer.

olation using the formula from Bak and co-workers [66]. Core

electrons have been kept frozen in these calculations.

The counterpoise correction of Boys and Bernadi [67] has been

employed in all sub-cluster calculations to reduce the basis set

superposition error. All calculations have been performed using

a developers version of the Molpro quantum chemistry package

[68,69].

Results and Discussion
Influence of correlation effects on the
structures
To investigate the influence of electron correlation effects (in-

cluding intermolecular dispersion interactions) on the structure

of the water clusters, we have reoptimized the structures from

[23] on the Hartree–Fock (HF) level using the def2-TZVP basis
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Figure 4: Comparison of the structures of the first seven water clusters optimized on the Hartree–Fock and MP2 levels of theory. Blue: HF, red: MP2
(def2-TZVP basis set).

set [70]. These modified HF geometries were then further opti-

mized with the MP2 (second-order Møller-Plesset perturbation

theory) method, which takes electron correlation effects into

account at the second order. The resulting structures for the

dimer up to the heptamer are shown in Figure 4. Here, for better

visibility, the HF structures are colored in blue and the MP2

structures in red. They are superpositioned in such a way that

the average distances of the atoms of the respective geometries

are minimised.

As can be seen in Figure 4, the electron correlation effects de-

scribed by the MP2 method hardly change the global structures

of the various clusters. This indicates that they mainly originate

from electrostatic and induction interactions that can already be

described reasonably well with the HF method. However,

except for the trimer, where HF and MP2 geometries hardly

differ from each other, one can observe that the correlation

effects lead to a compression of the structures relative to the

ones obtained with HF. This can be attributed to dispersion

interactions between the molecules which is an additional

attractive interaction energy contribution not accounted for by

the HF method, see also below.

The dependence of the electrostatic and dispersion energy on

the structure is highlighted in Figure 5 for three different con-

formations of the water dimer. These three structures have in

common the distance of the oxygen atoms (2.98 Å in this exam-

ple), but they possess different orientations of the hydrogen

atoms. The first structure in Figure 5 corresponds to the equilib-

rium. As can be seen in the figure, the electrostatic interaction

energy is strongly influenced by the orientation of the mole-

cules and changes by almost +10 kcal/mol from the hydrogen-

bonded structure to the second one that is characterised by

parallel dipoles of the two water molecules. Compared to this,

the dispersion interaction hardly changes upon a disordering of

the hydrogen atoms. While it has a minimum, too, at the equi-

librium structure, for the other two structures it lies only

+0.7 kcal/mol higher in energy. In line with the structure

changes displayed in Figure 4, one can thus conclude that

dispersion interactions almost act isotropically and therefore
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will generally try to maximise the contacts of the interacting

sites.

Figure 5: Electrostatic and dispersion interaction energy for three dif-
ferent structures of the water dimer. In all structures the
oxygen–oxygen distance is equal to 2.98 Å. The first structure corre-
sponds to the equilibrium (aug-cc-pVTZ basis set).

This is also illustrated in Figure 6, which shows the two-body

and three-body dispersion energies for three different structures

of the water trimer. Here, again structure 1 corresponds to the

equilibrium, which is characterised by an equilateral triangle

formed by the three oxygen atoms. Compared to this, in struc-

ture 2 one of the sides of the triangle is extended, fixing howev-

er the other two at a length of 2.87 Å as in the first one. Finally,

structure 3 is a linear shaped structure, see Figure 6. As can be

seen in the diagram, when the trimer transforms from the most

compact equilibrium structure to the linear form, the two-body

dispersion interaction strongly reduces by +6 kcal/mol, yet

remains attractive having a magnitude of about −6 kcal/mol for

the structures 2 and 3. The blue horizontal bars in Figure 6

show the energy levels of the corresponding three-body disper-

sion energy for the three conformations. As can be seen, it pos-

sesses just the opposite dependency on the structure as the two-

body dispersion energy. That is, it is repulsive at the triangu-

larly shaped equilibrium structure but turns into an attractive

contribution when the structure changes to the linearly shaped

form (see the scale on the right-hand side of the diagram in the

figure). One can readily describe this anisotropic behavior

of the three-body dispersion energy by the simplified

Axilrod–Teller form of the interaction energy between three

atoms [71]:

(10)

where Rij and θi denote the sides and the angles of the ABC tri-

angle and  is a constant coefficient. Equation 10

shows that when ABC is in a linear configuration, the three-

body dispersion energy is negative (an attractive contribution),

while the equilateral triangular configuration leads to a repul-

sive interaction. Figure 7 shows the number of three-body

subclusters that possess a stabilising three-body dispersion

energy contribution (determined from the results of the calcula-

tions performed in this work). It can be seen that this number

grows much less strongly with the cluster size than the number

of subclusters with a destabilising three-body dispersion inter-

action. This qualitatively explains that the total three-body

dispersion energy for the respective water clusters considered in

this work is always repulsive, too (see below). Furthermore, a

comparison of the total magnitudes of the two-body and three-

body dispersion energies shows that the three-body dispersion

interaction is much weaker than the two-body dispersion inter-

action. Therefore, its effect on the shape and energies of the

larger water clusters can almost be neglected, see also below.

Figure 6: Two- and three-body dispersion energies for three struc-
tures of the water trimer. In all conformations the minimum
oxygen–oxygen distance amounts to 2.87 Å. The first structure corre-
sponds to the equilibrium. Note that an alternate ordinate scale is used
for the two- and three-body energies (aug-cc-pVTZ basis set).

Many-body interactions in the water trimer
and tetramer structures
In this section we analyse the three- and four-body interactions

in the cyclic water trimer and tetramer structures, see Figure 2.

More precisely, we here want to identify the main interaction

energy contributions to the many-body interaction in these two

cases. Note, though, that the interaction energy terms of the

DFT-SAPT method, see Equation (Equation 5), can only

describe the two-body interactions between two subsystems A

and B. While three-body contributions to the DFT-SAPT

method have been developed by Podeszwa and Szalewicz [29]
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Figure 7: Number of three-body subclusters for which the three-body
dispersion energy is attractive (red) or repulsive (blue).

many-body effects can, however, be also described by the two-

body DFT-SAPT terms with the aid of the pseudodimer tech-

nique. For this, recall that the interaction energy of a trimer

ABC can be approximated by the sum of all mutual two-body

interactions:

(11)

The two-body interaction terms in Equation 11 describe the

interactions between two isolated monomers neglecting, howev-

er, the perturbation by the third one. Alternatively, two-body

interactions can be determined by combining two monomers to

one single (pseudo-)monomer and calculating the interaction

with the remaining one. In case of the trimer three different pos-

sibilities exist:

(12)

where the term Δ2(AB − C) now denotes the interaction of the

combined system AB with monomer C. As can be easily under-

stood, the term Δ2(AB − C) contains the two two-body interac-

tions Δ2(AC) and Δ2(BC) and a remainder that describes the

change of these two interactions due to the perturbation of A by

B and vice versa. This precisely is the contribution that is not

described by Equation 11 and, thus, is a contribution to the

three-body interaction energy Δ3(ABC). According to the three

different possible pseudodimers, see Equation 12, one can

extract the following three terms:

(13)

(14)

(15)

Recall that using the supermolecule method the term Δ3(AB −

C) is given by Δ3(AB − C) = E(ABC) − E(AB) − E(C). An inser-

tion of the corresponding total energy expressions into the other

terms in Equation 13–Equation 15 shows that

(16)

and therefore the sum of the terms Δ3(AB − C), Δ3(AC − B) and

Δ3(BC − A) scaled by a factor of one third can be identified as

three-body interaction energy.

We have calculated these terms using the DFT-SAPT method,

which allows us to analyse the contribution of the different

interaction energy terms of Equation 5 to the three-body inter-

action energy. The results for the water trimer are shown in

Figure 8. In addition, the diagram also contains the three-body

interaction energy of the EXX-RPA method as well as its corre-

lation contribution. We have also compared the sum of the

terms  (the overlines are used

here to distinguish the terms from the two-body SAPT interac-

tion terms) to the total EXX three-body interaction energy and

found a good agreement (DFT-SAPT: −1.63 kcal/mol, EXX:

−1.70 kcal/mol). This shows that higher-order interaction

contributions to the three-body interaction energy of the EXX

method are small.

Figure 8: DFT-SAPT energy decomposition of the three-body interac-
tion energy of the water trimer calculated using the pseudo-dimer tech-
nique.
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The diagram in Figure 8 shows that the main contributions to

the three-body interaction energy stem from the electrostatic

and induction energies. These should not be confused with the

standard two-body interaction energy counterparts but should

rather be interpreted as the changes of the electrostatic and

induction interactions due to the perturbations by another mono-

mer in the trimer. Accordingly, one may interpret the electro-

static contribution in Figure 8 as an induction effect and the

induction contribution as a higher-order polarisation effect

contained in the three-body interaction energy. The exchange

energy counterparts to  and  are quite small and

strongly cancel each other, making up only a marginal net

contribution to the three-body energy. This holds true also for

the correlation contribution to the three-body interaction, in-

cluding the dispersion energy, which is found to be repulsive.

Therefore, in line with the findings of the previous section, the

many-body correlation effects are negligible in the sum of the

different three-body terms, see also Figure 6.

The pseudodimer scheme can also be applied to the tetramer.

While this can be done in various ways, in this work we used

the following terms:

(17)

(18)

(19)

One finds

(20)

and therefore, analogously to the procedure described above for

the trimer, the sum has to be scaled by a factor of one third to

reproduce the sum of the three-body and four-body interactions.

The DFT-SAPT interaction energy decomposition of the many-

body interactions of the water tetramer is shown in Figure 9.

While compared to the trimer case the magnitudes of the indi-

vidual components are distinctly larger, qualitatively the situa-

tion is similar to the trimer case. Namely, the main contribu-

tions to the many-body interactions in the tetramer stem from

the (changes in the) electrostatic and induction energy while

again correlation effects are comparably small. The difference

between the total EXX many-body interaction energy and the

sum of the first and second order energies (excluding the

(exchange–)dispersion energy) amounts to −0.15 kcal/mol,

which is slightly larger than in case of the trimer. This indicates

an increasing importance of higher order interaction energy

terms to the many-body interaction energy for larger cluster

sizes.

Figure 9: DFT-SAPT energy decomposition of the sum of the three-
and four-body interaction energy of the water tetramer calculated using
the pseudo-dimer technique.

Dependence of energy contributions on the
cluster size
Various contributions to the interaction energy of the water

clusters are presented in Table 1 up to the water tridecamer. The

second to fourth column show the two-body, three-body and

four-body dispersion energies, the fifth column contains the

sum of all two-body interactions ( ) and

the seventh column the total (all-body) interaction energy, i.e.,

EN = E(123…N) − . In addition, the sixth and the

eighth column display the correlation contributions to the two-

body and all-body interaction energies, respectively.

As can be seen in Table 1, even for large cluster sizes the three-

and four-body dispersion energies are fairly small compared to

the two-body dispersion interaction. Moreover, since they pos-

sess alternate signs, they also partially cancel such that their

sum amounts to only 1% of the two-body dispersion at a cluster

size of N = 13. One can therefore conclude that many-body

dispersion effects are negligible for the description of water

clusters. This is also illustrated in the diagram in Figure 10 in

which the three- and four-body dispersion interaction is plotted

along with the total many-body correlation interaction ,

defined by the difference of the  and  terms
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Table 1: Two-, three- and four-body dispersion energies and two-body and total (all-body) interaction energies of the water clusters. All energies are
in kcal/mol.

(H2O)x dispersion two-body all-body

2 −2.28 −4.47 −1.24 −4.47 −1.24
3 −8.02 0.06 −12.22 −4.47 −13.76 −4.31
4 −13.21 0.07 −0.01 −20.27 −6.88 −24.27 −6.61
5 −16.89 0.04 −0.03 −25.62 −8.33 −32.05 −8.17

6 (cage) −24.09 0.31 −0.04 −35.12 −13.79 −40.35 −12.78
6 (prism) −24.69 0.33 −0.05 −35.53 −14.25 −40.72 −13.17
6 (ring) −20.33 0.01 −0.01 −31.63 −10.06 −39.72 −9.60

7 −29.86 0.36 −0.06 −43.64 −17.00 −50.71 −15.74
8 −37.72 0.48 −0.09 −55.15 −21.64 −64.06 −19.99
9 −41.59 0.44 −0.08 −61.60 −23.53 −72.36 −21.72

10 −47.41 0.49 −0.12 −70.27 −27.06 −82.32 −24.82
11 −53.43 0.79 −0.12 −76.72 −31.97 −87.45 −28.86
12 −61.96 0.91 −0.18 −89.79 −37.14 −102.94 −33.33
13 −64.94 0.92 −0.19 −94.26 −38.88 −107.82 −34.93

from Table 1. Here one can see that the total many-body corre-

lation interaction, like the many-body dispersion energy, is

repulsive and is a significant contribution to the total many-

body interaction energy at larger cluster sizes. For instance, for

N = 13 the correlation contribution reduces the overall attrac-

tive many-body interaction energy by 22%.

Figure 10: Sum of three- and four-body dispersion interactions com-
pared to the total many-body interactions Δ3−N in the water clusters.

Yet, how significant are many-body interactions compared to

the sum of the two-body interactions in the water clusters?

From the results shown in Table 1 one finds that the many-body

interactions lead to a lowering of the interaction energy of about

13% for all clusters on average. The only exception to this is

found for the cyclic structures of the water tetramer, pentamer

and hexamer for which the many-body interaction contributes

even 20–25% to the total interaction energy. This strong

increase of the many-body interactions in the cyclic structures

of water clusters is well known [61]. More recently, Bates et al.

[72], Hincapie et al. [73] and Chen et al. [74] have performed

high-level coupled-cluster calculations for various isomers of

(H2O)6. These more recent investigations support the findings

of earlier studies of the water hexamer [62,63] that the cyclic

structures are less favorable than the prism and cage forms in

spite of the strong many-body interaction contribution. The

results for the three hexamer structures studied in this work in-

dicate why the ring form is less stable than the other two struc-

tures. We find a considerably lower stabilisation of the ring-

hexamer due to two-body dispersion and (thereby) total two-

body interactions by about 4 kcal/mol compared to the cage and

prism isomers, see Table 1. This result agrees well with the

local molecular orbital energy decomposition analysis of the

MP2 interaction energies for the corresponding hexamer struc-

tures by Chen and co-workers [74]. Yet, the total interaction

energies for the three structures are within a range of 1 kcal/mol

(note that compared to this Bates et al. found that the cyclic-

chair structure is more unstable by +1.83 kcal/mol than the

prism structure using the CCSD(T) method [72]). Thus, the de-

crease of the two-body interaction energy and the increase of

the many-body interaction when switching from the cage/prism

form to the ring form of (H2O)6 almost cancel. Apparently, the

water hexamer is the first cluster where the two-body interac-

tions start to dominate the global shape of the cluster geometry,
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favoring more compact structures than noncompact ring struc-

tures.

The above analyis shows that while the many-body interactions

in the water clusters are a significant contribution to the total

interaction their contribution is scalable and could be modeled,

e.g., by scaling the sum of the pair interactions to describe the

interactions in the system effectively. This is an approach that is

used also in many force field parametrisations for water.

In Figure 11 the ratio of the two-body dispersion energy over

the two-body and total interaction energies (including the two-

body energies) is plotted. One can see that for all cluster sizes

the two-body dispersion amounts to about 60% to the total

interaction energy and even almost 70% to the total two-body

interaction. This clearly demonstrates the significance of disper-

sion interactions for the stabilisation of the water clusters. The

almost constant dependence of the ratio on the cluster size again

demonstrates that the increase of the dispersion interaction

energy is very similar to the increase of the total interaction

energy. Again, this shows that the magnitude of the total inter-

action energy of the water clusters (in their equilibrium) could

be approximated well by a pair-interaction model.

Figure 11: Relative contribution of the two-body dispersion interaction
energy to the complete two-body and total (all-body) interaction ener-
gies.

Conclusion
Different interaction energy contributions to the total interac-

tion energy of water clusters have been analyzed in this work. It

has been shown that the main orientation of the water clusters,

characterised by the formation of hydrogen bonds, can be well

reproduced already on an uncorrelated level using the

Hartree–Fock method. However, electron correlation effects to

the interaction energy, including the two-body dispersion inter-

action, lead to a compression of the cluster sizes relative to the

structures optimized with the Hartree–Fock method. This global

effect originates from the almost isotropic character of the two-

body dispersion energy.

Compared to this, the three-body dispersion interaction energy

is more strongly dependent on the orientation of the water mole-

cules. However, its was found that dispersion interactions

beyond the two-body level are negligible for the description of

the stability of water clusters.

The main contributions to the many-body interactions (beyond

the two-body level) are described by higher order polarisation

interactions, in line with previous studies of the interactions in

water clusters [28,29]. This was found through a decomposi-

tion of the interaction energies using the DFT-SAPT method

with the aid of the pseudodimer technique. Overall, many-body

interactions are quite significant and contribute about 13% to

the total interaction energy of the water clusters. This amount

was found to be almost independent on the cluster size. Because

of this, many-body interactions in water should be accurately

reproduceable by properly scaled two-body interaction energy

terms. Since, however, the many-body polarisation interactions,

like their two-body counterparts, may be very anisotropic, this

approach needs to be carefully tested also for nonequilibrium

structures not considered in this work.

It can generally be concluded that electron correlation effects,

including dispersion interactions, are crucial for the description

of the two-body interactions in water clusters, yet they yield

comparably smaller contributions to the many-body interac-

tions. Efficient computational approaches that are based on the

many-body expansion to describe the interactions in water may

therefore restrict the description of electron correlation to the

two-body level without a severe loss in accuracy.
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