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Triangulenium dyes functionalized with one, two or three ethylthiol functionalities were synthesized and their optical properties

were studied. The sulfur functionalities were introduced by aromatic nucleophilic substitution of methoxy groups in triaryl-

methylium cations with ethanethiol followed by partial or full ring closure of the ortho positions with nitrogen or oxygen bridges

leading to sulfur-functionalized acridinium, xanthenium or triangulenium dyes. For all the dye classes the sulfur functionalities are

found to lead to intensely absorbing dyes in the visible range (470 to 515 nm), quite similar to known analogous dye systems with

dialkylamino donor groups in place of the ethylthiol substituents. For the triangulenium derivatives significant fluorescence was ob-

served (®f= 0.1 to ®r=0.3).

Introduction

The design, synthesis and studies of organic fluorescent dyes
have witnessed a revival in recent years, in particular due to
their applications in imaging and biomedical assays and analyti-
cal techniques [1-5]. The desire to detect minute amounts of
dye, ideally single molecules [6,7], in complex biological envi-
ronments with high levels of autofluorescence, constantly chal-
lenges chemists to develop new dyes with improved or special
properties. In the design of simple dyes parameters such as

molar absorption coefficients (¢), absorption/emission wave-

lengths [8,9], fluorescence quantum yields (®yg) [10,11], and
fluorescence lifetime (tq) [12,13] are key photophysical proper-

ties to consider and optimize for any given application.

We have for quite some time been interested in the synthesis,
properties and applications of dyes from the triangulenium
family (Figure 1) [14,15]. The triangulenium dyes can be
divided into two main categories: 1) triangulenium dyes with

donor substituents at the corners of the triangulenium ring
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X=Y=2Z=0 TOTA
X=NR,Y=Z=0 ADOTA
X=Y=NR,Z=0 DAOCTA
X=Y=Z=NR TATA
X=5,Y=2Z=0 DOTTA
X=5,Y=NR,Z=0 AOTTA

Figure 1: Structures of some representative triangulenium dyes. a) Rhodamine/fluorescine-like derivatives with donor groups in para-positions (2, 6,
and 10) to the formal cation center (12c). b) Derivatives without donor groups.

system (position 2, 6 and 10, Figure la) [16-18], and
2) triangulenium dyes without such groups (Figure 1b) [19-21].
Dyes in the first category have intense absorption
(e = 50,000-130,000 M_l-cm_l), high fluorescence quantum
yields (®g > 50%) and fluorescence lifetimes of 3—4 ns. All
properties that agree well with their structural resemblance to
rhodamines and fluoresceines, and triangulenium dyes such as
A3-TOTA" and H-TOTA" (Figure 1a) can be viewed as extend-
ed symmetric versions of these prominent dyes [16,22]. The
second class of triangulenium dyes, without appended donor
groups, are characterized by much less intense transitions
(e = 5,000-20,000 M~L.cm™!), which for some derivatives leads
to unusually long fluorescence lifetimes (1 ~ 20 ns) [23,24].
This long fluorescence lifetime has been a key point of interest
since it enables time-gated detection for suppression of auto-
fluorescence [25,26] and provides attractive advantages in fluo-

rescence polarization assays [13,27,28].

A common characteristic feature of triangulenium dye synthe-
sis is the use of methoxy-substituted triarylmethylium salts as

~ SNArin para

NR,

(TMP);C*

As-(DMP);C*

SNAT in ortho

simple precursors allowing both introduction of dialkylamino
donor groups and formation of the heterocyclic triangulenium
ring systems. These characteristic types of aromatic nucleo-
philic substitution (SyAr) reactions are exemplified by the syn-
thesis of A3-ADOTA" (Figure 2) [17]. Starting from the readily
available tris(2,4,6-trimethoxyphenyl)methylium salt (TMP);C*
[18,29], stepwise replacement of the para-methoxy groups by
dialkylamines provides access to a wide variety of symmetric
and asymmetric triarylmethylium dyes [18,30,31]. Replace-
ment of two o-methoxy groups by one primary amine gives
acridinium-type ring systems (Figure 2, step 2) and is a key
reaction for the formation of the unsubstituted triangulenium
dyes shown in Figure 1b [19,20]. Finally, formation of oxygen
bridges in the triangulenium system (Figure 2, step 3) involves
demethylation conditions and intramolecular SyAr replacement

of ortho-methoxy groups [18,32].

The SyAr approach to the synthesis of triangulenium dyes
[14,18,19] has been extremely successful and expanded the
family greatly from the single derivative (TOTA™, Figure 1b)

intramolecular
SNAT in ortho

NR
2 NR,

Agz-acridinium A3-ADOTA*

Figure 2: Examples of various types of SNAr reactions typical in triangulenium synthesis, exemplified with the synthesis of A3-ADOTA™: step 1,
replacement of p-methoxy groups with dialkylamines. Step 2, replacement of o-methoxy groups with a primary amine followed by intramolecular SyAr
reaction. Step 3, intramolecular SyAr replacement of methoxy groups by hydroxy groups formed under ether-cleavage conditions.
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first synthesized by Martin and Smith in 1964 [32], and also
includes the family of helicenium dyes [33-35]. However, the
introduction of groups other than nitrogen and oxygen has so
far not been performed by the SyAr approach. Thus in the prep-
aration of the sulfur-bridged triangulenium ions DOTTA" and
AOTTA™ (Figure 1b) Lacour and co-workers reported unsuc-
cessful attempts of SyAr reactions with sulfur nucleophiles in
ortho-position of (TMP)3C* and had to assemble the thioxan-
thenium part of the triangulenium ring system independently by
other means [36]. Similarly, we had to use a stepwise buildup of
the triangulenium systems to introduce saturated [37] and unsat-
urated [38] carbon bridges.

Here we report for the first time the introduction of sulfur func-
tionalities into triangulenium dyes by SyAr reaction with ethyl-
thiol nucleophiles in the para-positions accessing several new
families of xanthenium, acridinium and triangulenium dyes

with thioether donor groups.

Results and Discussion

Firstly, a series of triarylmethylium salts with variable number
of para-methoxy substituents was synthesized. The easily
achievable cations (TMP)3;C*, (DMP)(TMP),C* and
(DMP),(TMP)C* (Scheme 1) were prepared by their respective
literature procedures [18,31]. To investigate the reactivity of
these carbenium systems in SNyAr reactions with sulfur-based
nucleophiles, simple alkylthiols were chosen, with the ethyl and
tert-butyl thiols being the primary choice. SNyAr reactions with
the two thiols were tested under identical reaction conditions
(Scheme 1).

These conditions consisted of heating the reaction components
in refluxing acetonitrile in the presence of collidine as base. For
all three carbenium salts examinations showed that only
ethanethiol lead to substitution. The progress of the reaction
was conveniently followed by MALDI-TOF mass spectrome-

N e

collidine
MeCN, A
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try. In case of the reactions with zert-butylthiolate, neither
detection of the target molecule nor any of the intermediates
were observed. This lack of reactivity is likely explained by the
tert-butylthiolate nucleophile being too bulky to undergo reac-
tion. In the successful reactions, which had occurred with
ethanethiol, a high selectivity was observed for para-substitu-
tions, giving Sx-(DMP);C* 1, 2, and 3 in reasonable yields of
20-50% after column chromatography purification. It is impor-
tant to note that the gradual introduction of thioethers into the
carbenium systems did not significantly influence the overall
reactivity of the system towards subsequent nucleophilic aro-
matic substitution. When the reaction was followed by
MALDI-TOFMS spectrometry it was thus possible to observe
simultaneously the presence of the target compound and all of
the intermediates involved in the reaction. This behavior is con-
trary to the reaction pattern observed when using dialkylamines
as nucleophiles, where the strong electron-donating effect of the
introduced amines stabilize the carbenium ion products and thus
significantly reduces the reactivity of the remaining methoxy
groups for further substitutions [18,39]. This observation is in
agreement with the much stronger cation stabilization of the
dialkylamino group compared to the methoxy group. The ability
of the alkylthio group to stabilize carbenium ions, given by the
Hammet 0p+ value [40], on the other hand is quite similar to the
methoxy group or even a little lower [41], and does thus not

slow down the multistep SNyAr reactions.

The new ortho-methoxytriarylcarbenium ions with one, two and
three para-SEt groups (1-3) are potential precursors for a wide
variety of new triangulenium, xanthenium, and acridinium dyes.
To elucidate some of these possibilities we first investigated
transformations of the symmetric derivative 1. Treatment with
primary alkylamines, n-propylamine and n-octylamine, yielded
exclusively the acridinium products 4a,b (Scheme 2). This
ortho SNAr transformation is similar to what is reported for the
(DMP);C* system [19,20,42] lacking para-substituents and for

X'=X2=-OMe (TMP);C*
X'=H, X2 =-OMe (DMP)(TMP),C*
X1=X2=H (DMP),(TMP)C*

2) 0.2 M aqKPFg

Y'=Y2=_SEt  S3(DMP);C* 1,51%
Y'=H, Y2=-SEt S,-(DMP);C* 2,39%
Yi=Y2=H S1-(DMP);C* 3,21%

Scheme 1: Synthesis of three novel Sx-(DMP)3C* PFg~ ethylsulfanyl-substituted triarylmethylium salts.

2135



R-NH,

MeCN,
rt, 10 min

/\S

Ss-(DMP);C*

Scheme 2: Synthetic route for the synthesis of S3-ADOTA™.

the para-amino-substituted analogue [17] (step 2 in Figure 1). It
was found that the reactivity in SyAr reactions of 1 with prima-
ry amines was high and the acridinium compounds 4a,b were
obtained in few minutes after the addition of 2 equiv of the cor-
responding primary amine at room temperature. Further ring
closure to two oxygen bridges in acridinium compounds 4a and
4b to the corresponding triangulenium dyes S3-ADOTA™ (5a,b)
was achieved by heating in molten pyridine hydrochloride
(Scheme 2).

It is noteworthy that the ethylthio ether linkages remained intact
upon treatment with molten PyrHCI, which was found to result
in complicated mixtures of dealkylated byproducts when these
conditions were applied on dialkylamino-substituted carbenium
systems [18].

The direct ring closure of 1 in PyrHCI yielded in a similar
manner the sulfur-functionalized trioxatriangulenium system
S5-TOTA™ (6) as shown in Scheme 3. Mono ring closure was
achieved under milder ether cleaving conditions with aqueous

HBr, AcOH
A,3.5h

R =n-Pr 4a, 59%
R = n-oct 4b, 33%

Ss-acridinium
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R =n-Pr 5a, 75%
R = n-oct 5b, 37%

S3-ADOTA*

HBr in acetic acid, leading to the ethylthio-substituted xanthe-
nium system 7 in 43% yield (Scheme 3).

By applying similar molten pyridine hydrochloride conditions
to the mono- and disubstituted thioether carbenium salts (2 and
3), it was possible to isolate the derivatives S,-TOTA™* (8) and
S1-TOTA™* (9), respectively as their hexafluorophosphate salts
(Scheme 4). The two S,-TOTA™ derivatives were obtained with
good yield after purification by column chromatography and

subsequent recrystallization.

To conclude, the successful introduction of -SEt groups by the
SnAr approach, and subsequent nitrogen and oxygen ring-
closure reactions provides access to several new families of car-
benium dyes, all with the unusual -SR donor group: thus 1-3
represent new triarylmethylium dyes, 4a and 4b sulfur ana-
logues of aminoacridinium dyes (acridine orange-like struc-
tures), 7 a fluorescein-like xanthenium dye, Sa and Sb are
sulfur-substituted ADOTA™* dyes, and finally the three sulfur-
substituted TOTA* dyes 6, 8 and 9.

J

S
€]
O
o o
C0
s o s

6, 35%
S3-TOTA*

PyrHCI

A, 20 min

Scheme 3: Synthesis of S3-TOTA* PFg~ (6) and the mono ring closed xanthenium 7.
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X! = -SEt S,-(DMP);C* 2

X1 =-H S1-(DMP)3C+ 3

Scheme 4: Synthesis of So-TOTA* PFg™ (8) and S1-TOTA* PFg™ (9).

Now the relevant questions are: how do the -SR donor groups
influence transition energies and intensities? And how do they
affect fluorescence quantum yields in these new dye systems?
To the extent possible we will compare the new sulfur-functio-
nalized dyes to known analogues with -OR or -NR, donor
groups in the same positions.

The sulfur-substituted triarylmethylium dyes 1, 2 and 3 display
broad absorption bands in the 500-700 nm region (Figure 3),
that in shape and relative transition energy are quite similar to
the analogues with similar numbers of para-methoxy or diethyl-
amino groups [31], as shown by comparison of maximum
absorption wavelength (Ap,x abs) and molar absorptivity (g) in
Table 1. It is noticed that the -SEt donor group in these ortho-
hexamethoxytriarylmethylium dyes provides transition ener-
gies and intensities very similar to those of commonly used
dialkylamino-donor groups, but significantly red-shifted rela-
tive to the methoxy-substituted analogues.

| —— 1(S5-(DMP),C")
—— 2(S,-(DMP),C")
—— 3(S,(DMP),C")

50000 -

400004

30000

g (M'cem™)

20000

10000 -

T T T T T
400 500 600 700 800
A (nm)

Figure 3: UV-vis spectra in MeCN: S3-(DMP)3C* (1, red),
So-(DMP)3C* (2, green), and S1-(DMP)3C* (3, blue).

Absorption spectra of the partially ring-closed acridinium and

xanthenium compounds, with three para-SEt groups, 4a and 7,

Beilstein J. Org. Chem. 2019, 15, 2133-2141.

O (0] o
e

O \4
Y'=-SEt S,-TOTA* 8,29%

Y'=-H S,-TOTA* 9, 46%

Table 1: Summary of absorption data of triarylmethylium ions in

MeCN.
R! o R2
LI
O ‘ o
R3

Amax.abs. (€, Vi 'Cm_1)

donor groups -SEt -OMe? -NEt,2
R',R2 R3
one donor 576 nm 491 nm 457 nm
R2=R3=H (24600) (14100) (16900)
two donors 639 nm 580 nm 637 nm
R3=H (34600) (18400) (40400)
three donors 642 nm 577 nm 634 nm
(49800) (23400) (49400)

@Data from [43,44].

respectively, are shown in Figure 4. For these compounds
the spectra are dominated by strong transitions assigned to the
3,6-diethylthio-acridinium and -xanthenium ring systems
peaking at 457 nm (¢ = 47000 M~!.cm™!) and at 520 nm
(e = 60000 M~ L.cm™1), respectively (see Supporting Informa-
tion File 1, Table S1 for additional data in more solvents). The
energy and intensity of these transitions are quite similar to
those found in dialkylamino analogues, that are 3,6-
diaminoacridines and rhodamines [43,44]. The weak tails on the
red side of these bands are tentatively assigned to internal
charge-transfer transitions from the perpendicularly [19,42]
arranged ethylthio(dimethoxy)phenyl group to the xanthenium/
acridinium systems polarized along the y-axes (Figure 4, inset).
This bichromophoric behavior has been studied in detail for the
dialkylamino-substituted xanthenium/rhodamine system
[45,46], and is also the likely reason for these compounds being
non-fluorescent.
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Figure 4: UV-vis spectra in MeCN: Sz-acridinium (4a, black) and
Sz-xanthenium (7, red). Inset: The 3D structure of 4a with indication of
the principle axes of the electronic transitions.

The three sulfur-substituted trioxatriangulenium dyes 6, 8, and
9 all display a first absorption band around 480 nm (Figure 5),
with increasing intensity as the number of -SEt groups on the
TOTA™ core increases. This behavior resembles the trend ob-
served for the analogue series of amino-substituted TOTA’s
(Table 2) [18,31]. In the two low-symmetry derivatives 8 and 9
transitions to the S, excited states are observed at around
400 nm, while the D3, symmetric S3-TOTA* shows only one,
though broad, absorption band corresponding to merging of the
S and S, transitions into one, arising from the degenerated
HOMO in the symmetric dye. The influence of solvent and
counter ions on such degenerate states have been studied in
detail for the A3-TOTA system [22,47] and related triaryl-
methylium dyes such as crystal violet [48,49].

100000 - —— 9(S,-TOTA)
—— 8(S,TOTA)
80000 - —— 6(S,-TOTA)
" 60000 -
o
=3
o 40000
20000
0 T T T
400 500 600

A (nm)
Figure 5: UV-vis spectra in CHoClo: S1-TOTAY (9, blue line),
So-TOTA* (8, red line), and S3-TOTA* (6, black line).

When three -SEt groups are placed on the asymmetric azadioxa-

triangulenium core, as in S3-ADOTA™* (5a), the presence of two

Beilstein J. Org. Chem. 2019, 15, 2133-2141.

Table 2: Summary of absorption data of substituted TOTA dyes in
CHoClo.
R! o R?
L

R3

Amax,abs (€, Ve 'Cm_1)

Donor groups -SEt -NEtp
R',R2, R3
one donor S1-TOTA* (9) A{-TOTA*2
R2=R3=H 483 nm 507 nm
(35000) (41700)
two donors S,-TOTA* (8) Ao-TOTA*a
R3=H 487 nm 513 nm
(65200) (59700)
three donors S3-TOTA* (6) Az-TOTA*
478 nm 471 nm
(91900) (132900)

aData from [31]; Pdata from [18].

electronic transitions becomes very clear, with two well-
resolved peaks in the absorption spectrum (Figure 6). The tran-
sition at 442 nm is assigned to the Sq — S, transition and nearly
coincides with the main transition observed in the Ss-acri-
dinium (4a) precursor before ring closure (Figure 4), indicating
that this, the most intense transition belongs to the same
chromophore, now part of the triangulenium ring system. The
Sp — S; transition in 5a is found at 507 nm, where the open
form only had a very weak shoulder in its absorption spectrum
(Figure 4). The ring closure of 4a into the fully planar triangule-
nium system 5a leads to a significant increase in the orbital
overlap and thus also in the intensity of the Sg — S; transition.
This assignment is supported by calculations of the orbitals
involved in the first two electronic transitions (Figure 6), which
confirm their localization in different parts of the ADOTA™
system. The much more allowed Sy — S; transition is also in
agreement with the observation that Sa (and 5b) display intense
fluorescence (Figure 6).

Table 3 summarizes the spectral and photophysical properties
on the triangulenium dyes showing any applicable fluorescence.
Beside S3-ADOTA" (5a) that are the double and triple -SEt-
substituted TOTAs 6 and 8, for which the fluorescence spectra
are shown in Figure 7, with fluorescence quantum yields of
16% and 12%, respectively. From the measured fluorescence
lifetimes and quantum yields (Table 3) it is possible to calcu-

late the radiative lifetimes (1¢), which are found to be in qualita-
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Figure 6: UV-vis absorption and fluorescence spectra (Aex = 485 nm) of 5a in CH2Cl» solution. Calculated molecular orbital contour plots (semi-

empirical method AM1).

Table 3: Summary of optical properties of the fluorescent derivatives.

Compound Solvent Amax.abs (NM) & (M~T-cm™) Amax g (nM) DA T (ns) TP (ns)

5a (S3-ADOTA) CHoCl» 442 76700 532 0.28 3.9 13.9
507 35400

6 (S3-TOTA) CHxCl» 478 91850 505 0.16 0.7 4.4

8 (So-TOTA) CHJClo 487 65200 509 0.12 0.7 5.8

aMeasured relative to fluorescein in 0.1 M aqueous NaOH (& = 0.96); Pradiative lifetime Tq = ®y/T.

tive agreement with the molar absorption coefficients (¢) for the
corresponding transitions, as expected from the Strickler—Berg
relation [50].

1.0
3
N 0.8 ’-g
©
£ 5
Qo €
£ Fo6 5
Q (=
8 £
g 5
K ]
5 ro4 8
(2]
=
2 w
0.2
0.0 T T 0.0
400 600
A (nm)

Figure 7: Normalized absorption and fluorescence spectra of 6 (Ss-
TOTA"), Aey = 460 nm, and 8 (So-TOTA™), Aex = 470 nm, in CHoClo
solution.

While the spectral properties of the new -SEt-substituted dyes
are surprisingly similar to the -NEt;-substituted analogues
across the various dye families they are obviously less bright
fluorophores. Thus, the dialkylamino-substituted analogue of Sa
(A3-ADOTA™) has a reported quantum yield as high as 64% in
acetonitrile [17], on par with A3-TOTA* and A,-TOTA* which

display quantum yields from 50-100% depending on the sol-
vent [31]. A similar reduction in fluorescence efficiency was
observed by Kotaskova et al. for fluorescein derivatives with
one alkylthio group in the 3 position replacing an -OH/-O~
group [51]. The origin of reduced fluorescence quantum yields
in dyes with alkylthio donor groups in their chromophores is
not clear at this point. It may result from enhanced internal
conversion or intersystem crossing to the triplet state. Further
photophysical work will have to settle this issue and thereby
suggest structural improvements and/or the best applications of
these dyes.

Conclusion

The effective introduction of alkylthiol groups into the para-po-
sitions of triarylmethylium ions via SyAr reactions was demon-
strated. These new thioether-substituted triarylmethylium ions
provide access to a broad range of new heterocyclic carbenium
dyes of the xanthenium, acridinium and triangulenium type via
further SNyAr reactions with primary amines and ring-closure
reactions. The introduction of thioether donor groups in these
dye classes is unprecedented, but is found to yield spectral
properties quite similar to analogous dyes with dialkylamino
groups. The synthesized thioether-substituted triangulenium de-
rivatives are fluorescent, though with lower quantum yields
(O = 0.1 to ®¢ = 0.3) than the corresponding dialkylamino-
substituted analogues.
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Supporting Information

Supporting Information File 1

Experimental details, full synthetic procedures,
spectroscopic characterization and NMR spectra of new
compounds, as well as additional UV—vis and fluorescence
spectra.

[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-210-S1.pdf]
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