BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Natural dolomitic limestone-catalyzed synthesis of benzimidazoles, dihydropyrimidinones, and highly substituted pyridines under ultrasound irradiation

Kumar Godugu^{‡1}, Venkata Divya Sri Yadala^{‡1}, Mohammad Khaja Mohinuddin Pinjari^{‡1}, Trivikram Reddy Gundala^{‡1}, Lakshmi Reddy Sanapareddy² and Chinna Gangi Reddy Nallagondu^{*1}

Full Research Paper	Open Access
Address:	Beilstein J. Org. Chem. 2020, 16, 1881–1900.
¹ Department of Chemistry, Green and Sustainable Synthetic Organic Chemistry Laboratory, Yogi Vemana University, Kadapa-516 005,	doi:10.3762/bjoc.16.156
Andhra Pradesh, India and ² Department of Physics, S.V.D. College,	Received: 02 April 2020
Kadapa-516003, Andhra Pradesh, India	Accepted: 23 July 2020
	Published: 03 August 2020
Email:	
Chinna Gangi Reddy Nallagondu [*] - ncgreddy@yogivemanauniversity.ac.in	This article is part of the thematic issue "Green chemistry II".
	Guest Editor: L. Vaccaro
* Corresponding author ‡ Equal contributors	
	© 2020 Godugu et al.; licensee Beilstein-Institut.
Keywords:	License and terms: see end of document.
benzimidazoles; dihydropyrimidinones; highly substituted pyridines; natural dolomitic limestone; ultrasound irradiation	

Abstract

Natural dolomitic limestone (NDL) is employed as a heterogeneous green catalyst for the synthesis of medicinally valuable benzimidazoles, dihydropyrimidinones, and highly functionalized pyridines via C–N, C–C, and C–S bond formations in a mixture of ethanol and H₂O under ultrasound irradiation. The catalyst is characterized by XRD, FTIR, Raman spectroscopy, SEM, and EDAX analysis. The main advantages of this methodology include the wide substrate scope, cleaner reaction profile, short reaction times, and excellent isolated yields. The products do not require chromatographic purification, and the catalyst can be reused seven times. Therefore, the catalyst is a greener alternative for the synthesis of the above N-heterocycles compared to the existing reported catalysts.

Introduction

Nitrogen heterocycles are recognized as "privileged medicinal scaffolds" because these compounds are found in a wide variety of bioactive natural products and pharmaceuticals [1-3]. Among them, benzimidazoles, dihydropyrimidinones, and pyridines have emerged as promising and valuable structural units in many pharmaceutical lead compounds (Figure 1) [4-9]. Hence,

there is a great need for the development of a green and sustainable synthetic route to the aforesaid nitrogen-containing heterocycles.

Benzimidazoles are an important class of N-heterocycles due to their potential applications in both biology and medicinal chem-

Figure 1: The benzimidazoles I–IV, dihydropyrimidinones/-thiones V–VIII, and 2-amino-4-aryl-3,5-dicarbonitrile-6-sulfanylpyridines IX–XII as medicinally privileged structures.

istry [10-13]. These compounds are used in the treatment of diseases, such as obesity, ischemia-reperfusion injury, hypertension, etc. [14-16]. In addition, these compounds are important intermediates in a variety of organic reactions and key elements in many functional materials [17-19]. Because of their potential utility, a huge number of synthetic protocols has been developed for the preparation of benzimidazole derivatives. The most common method for the preparation of benzimidazoles is the reaction between *o*-phenylenediamines and carboxylic acids [20,21]. Another general synthetic route reported is the condensation reaction of *o*-phenylenediamine with aldehydes in the presence of various catalysts, such as Zn–proline, trimethylsilyl chloride (TMSCl), Amberlite[®] IR-120, indion 190, trifluoro-ethanol, YCl₃, HClO₄–SiO₂, MMZ_Y zeolite, Er(OTf)₃, etc. [22-30].

Developments in already established multicomponent reactions (MCRs) are interesting topics in organic synthesis. For instance, the Biginelli reaction is a renowned and tunable MCR to synthesize the pharmacologically active 3,4-dihydropyrimidin-2-(1*H*)-ones (DHPMs, Biginelli products) [31]. These compounds occupy an important position in the fields of natural products and synthetic organic chemistry owing to their potential pharmacological properties [32-37]. A wide variety of Brønsted acids and Lewis acids are employed as efficient cata-

lysts for the Biginelli reaction [38-47]. In addition, some transition metal-based catalysts and a few nonacidic inorganic salts are also utilized as catalysts for the above reaction [48-58]. Only few basic catalysts, such as *t*-BuOK, Ph₃P, and L-proline are reported for the Biginelli reaction [59-61].

2-Amino-4-aryl-3,5-dicarbonitrile-6-sulfanylpyridines have gained considerable attention due to their wide-ranging biological activities [62,63]. The most common synthetic route for the preparation of 2-amino-4-aryl-3,5-dicarbonitrile-6-thiopyridines is the condensation reaction of aldehydes, malononitrile, and thiols in the presence of a variety of catalysts [64-72]. Though the reported methods are efficient to provide the desired 1,2-disubstituted benzimidazoles, dihydropyrimidinones/-thiones and 2-amino-4-aryl-3,5-dicarbonitrile-6sulfanylpyridines, there are still some drawbacks, which include the use of expensive catalysts, the preparation of the catalyst, long reaction times, the limited substrate scope, and complicated work-up processes; further, the products require chromatographic purification.

The mineral NDL is an irregular combination of calcium and magnesium carbonate. It is water-insoluble, environmentally benevolent, inexpensive, nontoxic, and abundant in nature. Further, dolomite is used as a heterogeneous green catalyst in very few organic transformations, such as Knoevenagel, Michael–Henry, and transesterification reactions [73,74]. To the best of our knowledge, there are no reports on the NDL-catalyzed synthesis of aforesaid N-heterocycles under ultrasonic irradiation (USI).

In this paper, we wish to report the use of NDL as a heterogeneous green catalyst for the synthesis of the 1,2-disubstituted benzimidazoles **3**, the dihydropyrimidinones/-thiones **7**, and the 2-amino-4-(hetero)aryl-3,5-dicarbonitrile-6-sulfanylpyridines **11** via C–N, C–C, and C–S bond-forming reactions, respectively, in a mixture of EtOH and H₂O 1:1 under ultrasonic irradiation (Scheme 1).

Results and Discussion

Geological background of the NDL catalyst

The NDL catalyst was collected from V. Kothapalli village (N 14°31'54", E 78° 02'58"), Vemula Mandal of the Cuddapah district, Rayalaseema, Andhra Pradesh, India. The rock formation in the mineralized area of this village belongs to the Vempalli Formation (VF) of the Papaghni group of the lower Cuddapah Supergroup in the Cuddapah Basin (CB). The carbonate minerals, such as limestone and dolomite, are the most abundant ones and common sedimentary rocks present in this area.

Catalyst characterization

The NDL catalyst was ground into a fine powder and then sieved in a 200-mesh sieve. The chemical composition of the catalyst was determined by standard quantitative analysis. The basic strength of the catalyst was analyzed by using Hammett indicators. The catalyst was characterized by XRD, IR, Raman, SEM, and EDAX analysis.

The chemical composition of the NDL was determined by adopting a standard quantitative analysis [75]. The obtained results are summarized in Table 1.

The basic strength of the NDL catalyst (H_) was measured using Hammett indicators, namely bromothymol blue (H_ = 7.2), phenolphthalein (H_ = 9.8), 2,4-dinitroaniline (H_ = 15.0), and nitroaniline (H_ = 18.4) as Hammett indicators. In each case, 5 mL of a methanolic solution of the Hammett indicator was added to 50 mg of the catalyst, shaken

Scheme 1: NDL-catalyzed synthesis of i) 1,2-disubstituted benzimidazoles 3, ii) dihydropyrimidinones/-thiones 7, and iii) 2-amino-4-(hetero)aryl-3,5dicarbonitrile-6-sulfanylpyridines 11 under ultrasound irradiation.

Table 1: Chemical composition of the NDL catalyst. LOI: loss of ignition.									
component	LOI	CaO	MgO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	SO3	Na ₂ O	K ₂ O
%	38.90	41.84	9.90	7.3	0.94	0.30	0.24	0.28	0.05

well, and then allowed to equilibrate for 2 h. No color variation of the indicators was observed. The study revealed that the basic strength of the NDL catalyst was weaker than the bromothymol blue indicator, i.e., $H_{-} < 7.2$. Hence, the NDL catalyst is a mild base, and it can activate both nucleophilic and electrophilic groups [73]. Further, the amount of basic sites on the catalyst was estimated by titration using a standard benzoic acid solution and bromothymol blue indicator. Initially, the catalyst (50 mg) was stirred with the methanolic solution of the indicator (5 mL) for 30–40 min, and then, the mixture was titrated with a 0.02 M benzoic acid solution. From the titer values of the benzoic acid solution, the amount of the basic sites was found to be 0.033 mmol/g.

The powder XRD pattern of the NDL catalyst is shown in Figure 2. The diffraction peaks at $2\theta = 23.16$, 29.51, 31.05, 36.02, 38.07, 39.40, 43.0, 47.2, 47.5, 48.5, 56.6, 57.6, 60.9, and 64.8° were attributed to the (012), (104), (006), (015), (110), (113), (021), (024), (018), (116), (211), (122), (214), and (030) plane, respectively, of the NDL catalyst (JCPDS card file

5–586: calcite and 11–78: dolomite) [76,77]. Small quantities of aluminium silicates (kaolinite) and iron oxides were also confirmed by the XRD pattern. The less intense diffraction peaks at $2\theta = 12.3$, 24.8, and 37.4 were assigned to the 001, 002, and 003 plane, respectively, of kaolinite (JCPDS card file 14-0164) [78]. The low-intense peaks at $2\theta = 18.6$, 26.1, 44.7, 54.6, 58.4, and 63.0 were ascribed to the 111, 211, 400, 422, 511, and 440 plane, respectively, of iron oxides (JCPDS card file 39-1346 and JCPDS card file 19-629) [79,80]. The above results were supported by FTIR and Raman characterization studies of the catalyst (vide infra).

The FTIR spectrum of the catalyst is shown in Figure 3. In the IR spectrum, two distinct vibrational modes of the carbonates, i.e., out-of-plane bending and in-plane bending, were observed at 875 cm⁻¹ (v₂) and 720 cm⁻¹ (v₄), respectively. The bands at 1086 cm⁻¹ and 1424 cm⁻¹ were ascribed to a symmetric stretching vibration (v₁) and an asymmetric stretching vibration (v₃) of the carbonate group, respectively. The combined bands of the carbonate group, i.e., v₁ + v₄ and v₁ + v₃ were observed at

1798 and 2524 cm⁻¹, respectively [76,77,81]. The IR bands at 3446 cm⁻¹ (broad) and 1674 cm⁻¹ (sharp) indicated the presence of stretching and bending vibrations of water [82]. The impurities aluminium silicate and iron oxides in the NDL were confirmed by IR spectroscopy. The peaks located at 446, 551, 817, 952, 1247, and 1383 cm⁻¹ were attributed to the Si–O bending, Fe–O stretching, Al–O–Si stretching, Si–OH bending, Si–O stretching, and Al–O bending, respectively [83,84]. Further, the sharp band at 3696 cm⁻¹ indicated the presence of a well-ordered kaolinite structure [76].

The Raman spectrum of the NDL catalyst is shown in Figure 4. The band at 1092 cm⁻¹ was attributed to the symmetric stretching vibration (v_1) of the carbonate group. The peaks at 714 and 1435 cm⁻¹ were assigned to a symmetric bending (v_4) and an asymmetric stretching vibration (v_3) of carbonate. The weak peak at 1750 cm⁻¹ was due to the combined band $v_1 + v_4$. The bands at 152 and 278 cm⁻¹ were ascribed to the external vibrations of the carbonate group [76,77]. The presence of aluminium silicates and iron oxides present in the sample were confirmed by Raman spectroscopy. The bands at 418, 578, 753, and 985 cm⁻¹ were assigned to Al–O bending, Si–O rocking, Al–O stretching, and Si–OH stretching vibrations, respectively [85]. Further, a very weak peak at 618 cm⁻¹ was attributed to iron oxide, and a very broad peak at 1312 cm⁻¹ (magnon) indicated the presence of magnetically ordered ferromagnetic or antiferromagnetic iron oxides [86]. The observed Raman and infrared vibrational bands of the NDL were in good agreement with the reported values. The minor shift in the band positions might be due to the presence of trace metal contents and impurities.

The morphology of the NDL catalyst was analyzed by scanning electron microscopy (Figure 5). The SEM images revealed that the morphology of the NDL catalyst consists of irregular shapes and sizes with a random dispersion. Further, the elemental composition of the NDL catalyst was determined by EDAX analysis (Figure 6).

The catalytic activity of the NDL for the synthesis of the 1,2disubstituted benzimidazoles **3**, the dihydropyrimidinones/thiones **7**, and the 2-amino-4-(hetero)aryl-3,5-dicarbonitrile-6sulfanylpyridines **11** was investigated, along with other, commercially available catalysts.

NDL-catalyzed synthesis of 1,2-disubtituted benzimidazoles **3**

To check the catalytic activity of the NDL, initially, *o*-phenylenediamine (1) and benzaldehyde (2a) were chosen as model substrates to optimize the reaction conditions for the syn-

 SED
 10 0 W WD 10.5 mm
 Std - PC 100
 HighWac (Bu1000)
 1 µm

Figure 5: SEM images of the NDL catalyst.

thesis of 1-benzyl-2-phenyl-1*H*-benzo[*d*]imidazole (**3a**). At first, a control experiment was conducted by using model substrates, **1** and **2a**, in H₂O in the absence of catalyst under ultrasound irradiation for 60 min at 45–50 °C. It was found that the reaction did not proceed in the absence of a catalyst (Table 2, entry 1). To achieve the target compound **3a**, the same reaction was repeated by employing various catalysts (2.5 wt %), such as Fe₂O₃, Al₂O₃, KF–alumina, dolomitic limestone, triethylamine, pyridine, and DABCO in different solvents, such as water, acetone, iPrOH, EtOH, and EtOH/H₂O 1:1 (Table 2, entries 2–8) under ultrasound irradiation at 45–50 °C. From this study, it was observed that the NDL (2.5 wt %) was the best option, which gave the target compound **3a** in a high yield (85%) in a mixture of EtOH and H₂O 1:1 under ultrasound irradiation for 30 min at 45–50 °C (Table 2, entry 5). The other catalysts, Fe₂O₃, Al₂O₃, KF–alumina, triethylamine, pyridine, and

Table 2: Optimization of the reaction conditions. ^a (continued)								
6	Et ₃ N	H ₂ O	3a	60	10	30	10	
		acetone		60	-	30	-	
		iPrOH		60	10	30	10	
		EtOH		60	15	30	20	
		EtOH/H ₂ O 1:1		60	10	30	10	
7	pyridine	H ₂ O	3a	60	-	30	_	
		acetone		60	-	30	-	
		iPrOH		60	5	30	5	
		EtOH		60	10	30	10	
		EtOH/H ₂ O 1:1		60	5	30	5	
8	DABCO	H ₂ O	3a	60	10	30	5	
		acetone		60	-	30	_	
	iPrOH			60	15	30	5	
		EtOH		60	15	30	15	
		EtOH/H ₂ O 1:1		60	10	30	10	

^aReaction conditions: *o*-phenylenediamine (1, 1.0 mmol), benzaldehyde (2a, 2.0 mmol), catalyst (2.5 wt %), solvent (3.0 mL). ^bPerformed by stirring at reflux (entries 2–8). ^cUSI method performed at 45–50 °C. ^dIsolated yield. ^eConventional method performed by stirring at 45–50 °C.

DABCO, provided a moderate to low yield of the product 3a (Table 2, entries 2-4 and 6-8). The aforesaid reaction was performed under conventional stirring of the model substrates 1 and 2a in H₂O in the absence of catalyst for 180 min at 45-50 °C. It was observed that the reaction did not proceed in the absence of a catalyst (Table 2, entry 1). Further, when the reaction temperature was raised from 45-50 °C to reflux, a very low yield (10%) of the product 3a was obtained after 120 min. Next, the reaction was repeated in the presence of different catalysts and solvents at reflux under conventional reaction conditions as mentioned in Table 2. The study revealed that the NDL in a mixture of EtOH and H₂O 1:1 afforded a moderate yield (70%) of the product 3a (Table 2, entry 5), whereas the other catalysts, in various solvents, provided lower yields under similar reaction conditions (Table 2, entries 2-4 and 6-8). From the above observations, it was concluded that the ultrasound irradiation method is better than the conventional method in giving the maximum yield of **3a**.

Next, the amount of catalyst was varied (using 2.5, 5.0, 7.5, 10.0, and 12.5 wt %, respectively,) to improve the yield of **3a** (Table 3). The study revealed that 5.0 wt % of the NDL was the best option to get the highest yield of the product **3a** (98%) in a short reaction time (10 min, Table 3, entry 3). It was also noticed that the same yield was obtained with an increasing amount of the catalyst, i.e., 7.5, 10.0, and 12.5 wt % (Table 3, entries 4–6).

In order to demonstrate the effect of the temperature on the course of the model reaction, the control experiment was performed at different temperature ranges (30-35, 35-40, 40-45, and 45-50 °C) by using the model substrates **1** and **2a** in the

Table 3: Effect of	of the catalyst loading. ^a					
entry	NDL (wt %)	solvent	t (min)	product	yield ^b (%)	
1	2.5	EtOH/H ₂ O 1:1	30	3a	85	_
2	2.5	EtOH/H ₂ O 1:1	10	3a	75	
3	5.0	EtOH/H ₂ O 1:1	10	3a	98	
4	7.5	EtOH/H ₂ O 1:1	10	3a	98	
5	10.0	EtOH/H ₂ O 1:1	10	3a	98	
6	12.5	EtOH/H ₂ O 1:1	10	3a	98	

^aReaction conditions: *o*-phenylenediamine (1, 1.0 mmol), benzaldehyde (**2a**, 2.0 mmol), NDL (2.5 to 12.5 wt %), EtOH/H₂O 1:1 (3.0 mL), ultrasound irradiation at 45–50 °C. ^bIsolated yield.

Beilstein J. Org. Chem. 2020, 16, 1881–1900.

presence of 5.0 wt % of the NDL in a mixture of ethanol and water 1:1 for 10 min under both conventional stirring and ultrasound irradiation. The obtained results are presented in Table 4. It was observed that the reaction proceeded with an improved yield of **3a** (70–98%) by increasing the temperature range from 30-35 to 45-50 °C with an ultrasound irradiation method (Table 4, entries 1–4). Under conventional stirring, the yield of the product **3a** increased from low to moderate when the reaction temperature was raised from 30-35 °C to reflux (Table 4, entries 1–5). From the results, it was concluded that a temperature of 45-50 °C is the optimum temperature to obtain the maximum yield of the desired product **3a** within a short reaction time (10 min) under ultrasound irradiation (Table 4, entry 4).

To demonstrate the generality and substrate scope of the present method, a variety of (hetero)aromatic aldehydes was investigated. The obtained results are presented in Table 5. o-Phenylenediamine (1) reacted well with benzaldehyde (2a) to obtain the corresponding product 3a with 98% yield (Table 5, entry 1). The reactions of o-phenylenediamine (1) with substituted benzaldehydes having activating groups (4-Me: 2b, 4-t-Bu: 2c, 2,4-dimethyl: 2d, 4-OMe: 2e, 3,4-dimethoxy: 2f, 3,4,5trimethoxy: 2g, 4-OH-3-OMe: 2j, and 4-OH-3-OC₂H₅: 2k, Table 5, entries 2–7, 10 and 11), a deactivating group (4-NO₂: 21, Table 5, entry 12), or a halo group (4-F: 2m, 4-Cl: 2n, and 4-Br: 20, Table 5, entries 13-15) in different positions provided good to excellent isolated yields of the corresponding products 3b-g and 3j-o that ranged from 94 to 98% in a stipulated period of time, as specified in Table 5. Further, heteroaromatic aldehydes, such as furan-2-aldehyde (2p) and thiophene-2-aldehyde (2q) produced the corresponding products 3p and 3q in good isolated yields within a short period of time (15 min and 13 min, respectively, Table 5, entries 16 and 17).

However, salicylaldehyde (2h) afforded the unexpected product 2,2'-((1*E*,1'*E*)-(1,2-phenylenebis(azanylylidene))bis(methan-

ylylidene))diphenol (3h, bisimine I) within 10 min (Table 5, entry 8). The reaction was expected to proceed through the activation of the carbonyl group of **2h** (of which 2.0 mmol were used) by the cations (Ca^{2+} and Mg^{2+} , respectively) of the NDL. This was followed by a nucleophilic attack of the NH₂ groups of *o*-phenylenediamine (1, of which 1.0 mmol was used), which are activated by the carbonate part of the NDL, followed by dehydration to obtain 3h (Scheme 2). Due to the mild basic nature of the NDL catalyst, it acts as a dual activator of the electrophilic carbonyl and the nucleophilic NH2 groups. The formation of the bisimine I was confirmed by ¹H NMR spectral studies (Figure 7). In the ¹H NMR spectrum (DMSO- d_6), the two hydroxy protons of the bisimine I appeared as a broad, strongly downfield-shifted singlet at δ 13.19. The sharp singlet at δ 8.66 indicated the two imine protons (-N=CH) of the bisimine I. From this result, it was confirmed that the reaction stopped at the bisimine I stage. This was due to the intramolecular hydrogen bonding between the hydrogen atom of the orthohydroxy group and the nitrogen atom of the imine group in a six-membered ring transition state [87]. Similarly, the reaction between 3-ethoxysalicylaldehyde (2i) and o-phenylenediamine (1) also ended with the intermediate 6.6' - ((1E, 1'E) - (1, 2) - (1, 2))phenylenebis(azanylylidene))bis(methanylylidene))bis(2ethoxyphenol) (3i) stage (Table 4, entry 9 and Supporting Information File 1, Figure S13). Most of the synthesized compounds are known and were identified easily by comparison of the melting point and spectroscopic data with those reported.

NDL-catalyzed synthesis of dihydropyrimidinones/-thiones **7**

The results encouraged us to further investigate the catalytic activity of the NDL in the Biginelli reaction. To check the feasibility, a control experiment was performed by using the model substrates benzaldehyde (**2a**, 1.0 mmol), ethyl acetoacetate (**4**, 1.0 mmol), and urea (**5**, 1.0 mmol) in H₂O (3.0 mL) in the absence of a catalyst under ultrasound irradiation at 45–50 °C for 60 min. It was observed that the reaction proceeded with a

Table 4: Effect of the temperature. ^a									
entry	<i>T</i> (°C)	product	t (min)	conventional method ^b yield ^d (%)	USI ^c yield ^d (%)				
1	30–35	За	10	10	70				
2	35–40	3a	10	14	79				
3	40–45	3a	10	20	87				
4	45–50	3a	10	26	98				
5 ^e	reflux	3a	10/60	35/70	-				

^aReaction conditions: *o*-phenylenediamine (1, 1.0 mmol), benzaldehyde (2a, 2.0 mmol), NDL (5.0 wt %), EtOH/H₂O 1:1 (3.0 mL). ^bConventional stirring and heating with a silicone oil bath. ^cUltrasound irradiation in a water bath. ^dIsolated yield. ^eConventional stirring at reflux.

^aReaction conditions: *o*-phenylenediamine (1, 1.0 mmol), aldehyde (2, 2.0 mmol), NDL (5.0 wt %), EtOH/H₂O 1:1 (3.0 mL), USI, 45–50 °C. ^bThe reaction stopped at the bisimine I, i.e., **3h**/i stage. ^cIsolated yield.

Figure 7: ¹H NMR spectrum of 2,2'-((1E,1'E)-(1,2-phenylenebis(azanylylidene))bis (methanylylidene))diphenol (bisimine I, 3h).

very low yield (20%) of product **7a**. The same reaction was repeated in the presence of the NDL catalyst (5.0 wt %) in EtOH/H₂O 1:1 under ultrasound irradiation at 45–50 °C for 15 min, which resulted in 97 % yield of **7a**.

To exploit the substrate scope and generality of the method, various (hetero)aromatic aldehydes 2 were examined. The obtained results are summarized in Table 6. Benzaldehyde (2a) underwent the reaction with ethyl acetoacetate (4) and urea (5) to obtain the corresponding dihydropyrimidinone 7a in 97% yield (Table 6, entry 1). Benzaldehyde derivatives bearing electron-donating groups, such as 4-Me (2b), 4-OMe (2e), 3,4-dimethoxy (2f), 3-OH (2r), and 2-OH (2h), respectively, at different positions on the ring reacted well with ethyl acetoacetate (4) and urea (5) to produce the products, 7b-f in good isolated yields that ranged from 92-96% (Table 6, entries 2-6). A benzaldehyde derivative with an electron-accepting nitro group (21) at the para position on the ring showed a good reactivity with ethyl acetoacetate (4) and urea (5) to afford the product 7g in an excellent isolated yield (94%, Table 6, entry 7). Halogen atoms at different positions on the ring of benzaldehyde derivatives (4-F: 2m, 4-Cl; 2n, and 3-Br: 2s) underwent the reaction with ethyl acetoacetate (4) and urea (5) to form the

corresponding products (7h-j) in good isolated yields that ranged from 93-96% (Table 6, entries 8-10). Heteroaromatic aldehydes, such as furan-2-aldehyde (2p) and thiophene-2-aldehyde (2q) showed a good reactivity, with good yields of 7k(90%) and 71 (92%), respectively (Table 6, entries 11 and 12). From this study, it was concluded that the optimized reaction conditions are suitable for monosubstituted (both electron-rich and electron-deficient) and disubstituted benzaldehyde derivatives as well as heteroaromatic aldehydes. To expand the scope of this method, thiourea (6) was also investigated (Table 6, entries 13-17). Benzaldehyde (2a) reacted with ethyl acetoacetate (4) and thiourea (6) to give the product 7m in an excellent isolated yield (96%, Table 6, entry 13). Benzaldehyde derivatives bearing electron-donating groups, such as 4-Me (2b) and 4-OMe (2c) exhibited a good reactivity with ethyl acetoacetate (4) and thiourea (6) to produce the products 7n (95%) and 70 (95%) in excellent yields, respectively (Table 6, entries 14 and 15). Benzaldehyde with electron-withdrawing groups, such as 4-NO₂ (2f) and 4-Cl (2i) at the para position reacted well with ethyl acetoacetate (4) and thiourea (6) to afford the corresponding products 7p and 7q in good isolated yields (94 and 95%) (Table 6, entries 16 and 17). Most of the synthesized compounds are known and were identified easily by compari-

Table 6:	Table 6: NDL-catalyzed synthesis of dihydropyrimidinone/-thione derivatives 7.ª								
$\begin{array}{c} 0 \\ 4 \\ - \\ 4 \\ - \\ - \\ - \\ - \\ - \\ - \\ -$									
entry	Ar	Х	product	t (min)	yield ^b (%)	mp (°C)			
						found	reported		
1	phenyl: 2a	0	7a	15	97	207–209	209–210 [50]		
2	4-methylphenyl: 2b	0	7b	15	96	213–214	215–216 [38]		
3	4-methoxyphenyl: 2e	0	7c	17	96	200–201	199–202 [48]		
4	3,4-dimethoxyphenyl: 2f	0	7d	18	94	213–215	212–214 [52]		
5	3-hydroxyphenyl: 2r	0	7e	17	95	162–164	163–165 [38]		
6	2-hydroxyphenyl: 2h	0	7f	15	92	198–200	199–201 [49]		
7	4-nitrophenyl: 21	0	7g	12	94	210–211	209–212 [48]		
8	4-fluorophenyl: 2m	0	7h	13	95	176–179	175–177 [37]		
9	4-chlorophenyl: 2n	0	7i	12	96	208–210	209–211 [48]		
10	3-bromophenyl: 2s	0	7j	18	93	184–185	185–186 [47]		
11	2-furanyl: 2p	0	7k	20	90	204–206	203–205 [48]		
12	2-thienyl: 2q	0	71	20	92	216–218	215–217 [38]		
13	phenyl: 2a	S	7m	15	96	211–212	208–210 [38]		
14	4-methylphenyl: 2b	S	7n	15	95	189–190	192–194 [38]		
15	4-methoxyphenyl: 2e	S	70	17	95	148–150	150–152 [38]		
16	4-nitrophenyl: 21	S	7p	10	94	113–114	109–111 [38]		
17	4-chlorophenyl: 2n	S	7q	11	95	190–191	192–194 [38]		

^aReaction conditions: aldehyde (**2**, 1.0 mmol), ethyl acetoacetate (**4**, 1.0 mmol), urea/thiourea (**5/6**, 1.0 mmol), NDL (5.0 wt %), ethanol/H₂O 1:1 (3.0 mL), USI at 45–50 °C. ^bIsolated yield.

son of the melting point and spectroscopic data with those reported.

NDL-catalyzed synthesis of 2-amino-4-(hetero)aryl-3,5-dicarbonitrile-6sulfanylpyridines **11**

We further examined the catalytic efficacy of the NDL catalyst in the synthesis of the medicinally privileged highly functionalized pyridines **11**. For this purpose, a control experiment in the absence of a catalyst was conducted by using the model substrates benzaldehyde (**2a**, 1.0 mmol), malononitrile (**8**, 2.0 mmol), and 2-mercaptopyridine (**9**, 1.0 mmol) in H₂O (3.0 mL) under ultrasound irradiation at 45–50 °C for 60 min. It was observed that the reaction did not afford any product in the absence of a catalyst. The above reaction was carried out in the presence of the NDL (5.0 wt %) in EtOH/H₂O 1:1 (3.0 mL) under ultrasound irradiation for 10 min, which resulted in 70% yield of **11a**. To improve the yield of **11a**, the same reaction was repeated at different time intervals; 15, 20, 25, 30, 35, and 40 min, respectively, at 45–50 °C, and the yields of **11a** obtained were 75, 83, 89, 96%, 96, and 96%, respectively. From this study, it was found that the maximum yield of **11a** (96%) was obtained in 30 min, and the yields remained the same when the reaction time was increased from 30 to 40 min.

The optimized procedure was successfully applied for the synthesis of a series of highly substituted pyridines (11b-r, Table 7) by utilizing a range of (hetero)aromatic aldehydes 2, malononitrile (8), and the thiols 9 and 10, respectively, as starting materials. Benzaldehyde (2a) underwent the reaction with malononitrile (8) and 2-mercaptopyridine (9) to form product 11a in 96% yield (Table 7, entry 1). Benzaldehyde deriva-

Table 7: NDL-catalyzed synthesis of 2-amino-4-(hetero)aryl-3,5-dicarbonitrile-6-sulfanylpyridines 11.ª									
	$Ar \stackrel{O}{\vdash}_{H} + 2 NC$	CN + 1 8 9 R 10 F	R−SH = pyridyl R = phenyl	NDL catalyst (5.0 wt %) EtOH/H ₂ O 1:1, USI, 45–50 °C, 30–45 min		$ \begin{array}{c} $			
entry	Ar	R	product	t (min)	yield ^b (%)	mp (°C)			
						found	reported		
1	phenyl: 2a	pyridyl 9	11a	30	96	222–223	224–227 [70]		
2	4-methoxyphenyl: 2e	pyridyl 9	11b	35	96	248–249	250–253 [70]		
3	3,4,5-trimethoxyphenyl: 2g	pyridyl 9	11c	40	92	267–269	265–268 [70]		
4	3-hydroxyphenyl: 2r	pyridyl 9	11d	35	94	223–224	222–226 [70]		
5	4-nitrophenyl: 21	pyridyl 9	11e	32	96	241–243	245–248 [70]		
6	4-fluorophenyl: 2m	pyridyl: 9	11f	32	95	248–250	246–249 [70]		
7	4-bromophenyl: 20	pyridyl: 9	11g	30	94	257–258	260–263 [70]		
8	3,4-difluorophenyl: 2t	pyridyl: 9	11h	37	90	252–253	251–254 [70]		
9	pyridyl: 2u	pyridyl: 9	11i	45	93	230–231	233–235 [70]		
10	phenyl: 2a	phenyl: 10	11j	30	98	210–212	215–216 [63]		
11	4-methylphenyl: 2b	phenyl: 10	11k	30	98	206–207	208–210 [69]		
12	4-methoxyphenyl: 2e	phenyl: 10	111	35	97	234–235	236–238 [64]		
13	3,4,5-trimethoxyphenyl: 2g	phenyl: 10	11m	38	94	240–241	238–239 [63]		
14	4-nitrophenyl: 21	phenyl: 10	11n	30	95	280–282	286–287 [63]		
15	4-fluorophenyl: 2m	phenyl: 10	11o	30	96	127–128	224–225 [69]		
16	4-chlorophenyl: 2n	phenyl: 10	11p	30	96	220–221	222–223 [69]		
17	3-bromophenyl: 2s	phenyl: 10	11q	34	94	250–253	256–258 [65]		
18	pyridyl: 2u	phenyl: 10	11r	42	94	300–302	305–306 [63]		

^aReaction conditions: aldehyde (**2**, 1.0 mmol), malononitrile (**8**, 2.0 mmol), thiol **9** or **10** (1.0 mmol), NDL (5.0 wt %), EtOH/H₂O 1:1 (3.0 mL), USI at 45–50 °C. ^bIsolated yield.

tives containing a range of functional groups, such as electrondonating groups (4-OMe: 2e, 3,4,5-trimethoxy: 2g, and 3-OH: 2r), an electron-withdrawing group (4-NO₂: 2l), and halogen atoms (4-F: 2m, 4-Cl: 2n, and 3,4-difluoro: 2t), respectively, at different positions on the aromatic ring showed a good reactivity with the said reactants and afforded the corresponding products 11b-h that ranged from 90 to 96% (Table 7, entries 2-8). Further, the use of pyridine-2-aldehyde (2u) resulted in a good isolated yield of 11i (93%, Table 7, entry 9). In a similar way, the reaction of benzaldehyde (2a) with malononitrile (8) and thiophenol (10) gave the product 11j in 98% yield (Table 7, entry 10). Benzaldehyde derivatives bearing various functional groups, such as electron-donating groups (4-Me: 2b, 4-OMe: 2e, and 3,4,5-trimethoxy: 2g), an electron-accepting group (4-NO₂: 21), and halogen atoms (4-F: 2m, 4-Cl: 2n, and 3-Br: 2s), respectively, at different positions on the aromatic ring displayed a good reactivity with malononitrile (8) and thiophenol (10) to give the corresponding products (11k-q) in good

yields, ranging from 94 to 98% (Table 7, entries 11–17). Pyridine-2-aldehyde (**2u**) also provided the product **11r** in a good yield (94%, Table 7, entry 18). It was observed from the above results that all reactions proceeded well irrespective of the substituents present on the (hetero)aromatic aldehyde and afforded the highly substituted pyridines **11** in good isolated yields that ranged from 90 to 98%. Most of the synthesized compounds are known and were identified easily by comparison of the melting point and spectroscopic data with those reported.

Evaluation of the green chemistry metrics for the synthesis of benzimidazoles **3**, dihydropyrimidinones **7**, and highly functionalized pyridines **11**

In order to evaluate the "greenness" of the proposed methodologies, the green chemistry metrics, such as the atom economy (AE), E-factor, process mass intensity (PMI), Curzon's reaction mass efficiency (RME), and generalized or global reaction mass efficiency (gRME) were evaluated by adopting established standard empirical formulae [88,89]. The obtained results are summarized in Tables 8–10. This study revealed that the reactions displayed a good to excellent AE (88–95%) and Curzon's RME (78–93%) as well as a low to moderate E-factor (26.202–50.760) and PMI (27.202–51.760). The detailed calculations of the green chemistry metrics (AE, E-factor, PMI, Curzon's RME, and gRME) for the synthesis of the compounds **3a**, **7a**, and **11a** (Table 8, entry 1, Table 9, entry 1, and Table 10, entry 1) are presented in Supporting Information File 1 (see Reaction-S1)–Reaction-S3).

Catalyst reusability experiments

Catalyst reusability tests were performed showcasing the synthesis of the compounds **3k**, **7a**, and **11e** under the optimized reaction conditions.

Catalyst reusability experiments in the synthesis of compounds **3k**, **7a**, and **11e**

The catalyst was tested for reusability in the preparation of $3\mathbf{k}$ using *o*-phenylenediamine (1) and 3-ethoxy-4-hydroxybenzaldehyde ($2\mathbf{k}$) under USI for 10 min. After completion of the first reaction cycle, the reaction mass was allowed to cool to rt, and ethyl acetate (4.0 mL) was added. Then, the catalyst was

^aAE = 100·(GMW of the product/sum of the GMWs of the reactants); GMW = gram molecular weight. ^bE-factor = total input mass (^minputs)^f – mass of the target product (^m3) – mass of the recovered materials/^m3. ^cPMI = (^minputs – mass of the recovered materials)/^m3 or 1 + E-factor. ^dCurzon's RME = ^m3/^m1 + ^m2 or yield × AE × 1/stoichiometric factor (SF); SF = 1. ^egRME = 100·(^m3/(^minputs – mass of the recovered materials)) or 100·(1/(1 + E-factor)). ^fTotal input mass, including water (^minputs) = ^m1 + ^m2 + ^msolvent (S) + ^mcatalyst (C) + ^mwork-up materials (WPM) + mpurification materials (PM).

^aE-factor = ^minputs^e - mass of the target product (^m7) - mass of the recovered materials/^m7. ^bPMI = (^minputs - mass of the recovered materials)/^m7 or 1 + E-factor. ^cCurzon's RME = ^m7/^m2 + ^m4 + ^m5/6 or yield × AE × 1/SF; SF = 1. ^dgRME = 100·(^m7/(^minputs - mass of the recovered materials)) or 100·(1/(1 + E-factor)). ^{em}inputs = ^m2 + ^m4 + ^m5/6 + ^mS + ^mC + ^mWPM + ^mpurification materials (PM).

separated by vacuum filtration, washed with ethyl acetate (1.0 mL), dried under vacuum, and reused in the next cycles. The study revealed that the obtained yields of the product, **3k** were 98, 98, 97, 97, 96, 97, and 98% for the first, second, third, fourth, fifth, sixth, and seventh cycle, respectively. Catalyst reusability tests were then conducted for the synthesis of compound **7a** using benzaldehyde (**2a**), ethyl acetoacetate (**4**), and urea (**5**) under USI for 15 min and for **11e** using 4-nitrobenzaldehyde (**2l**), malononitrile (**8**), and 2-mercaptopyridine (**9**) under USI for 32 min by following the same procedure as adopted for **3k**. The yields obtained for the compounds were 97, 97, 97, 96, 97, 97, and 97% for **7a** as well as 96, 96, 96, 97, 97, 97, and 98% for **11e** for the first, second, third, fourth, fifth, sixth, and seventh cycle, respectively. From this study, it was noticed that the catalyst could successfully be reused (at least) 7 times in the synthesis of the compounds **3k**, **7a**, and **11e** without a significant loss of the catalytic activity.

Effect of ultrasonication on the structure of the catalyst

The recovered catalyst after the 7th cycle of each synthesis was characterized by XRD to study the structural changes due to ultrasonication. As can be seen in Figure 8, the diffraction peak positions of the catalyst recovered after the synthesis of the compounds **3k**, **7a**, and **11e** (Figure 8b–d), respectively, remained the same as compared to the fresh catalyst (Figure 8a). It was also noticed that the broadening in the XRD pattern of the recovered catalyst had increased with an increase

^aE-factor = ^minputs^f - mass of the target product (^m11) - mass of the recovered materials/^m11. ^bPMI = (^minputs - mass of the recovered materials)/ ^m11 or 1 + E-factor. ^cCurzon's RME = ^m11/^m2 + ^m8 + ^m9/10 or yield × AE × 1/SF; SF = 1. ^dgRME = 100·(^m11/(^minputs - mass of the recovered materials)) or 100·(1/(1 + E-factor)). ^{em}inputs = ^m2 + ^m8 + ^m9/10 + ^mS + ^mC + ^mWPM + ^mPM.

of the ultrasonication time. This clearly indicated that the amorphization of the recovered catalyst was enhanced by increasing the ultrasonication time.

Conclusion

An environmentally benign NDL catalyst was characterized and utilized as a heterogeneous catalyst for the synthesis of 2-aryl-1-arylmethyl-1*H*-benzo[*d*]imidazoles, dihydropyrimidinones/ -thiones, and 2-amino-4-(hetero)aryl-3,5-dicarbonitrile-6sulfanylpyridines in a mixture of ethanol and H₂O 1:1 under ultrasound irradiation. Notable advantages of this methodology include the clean reaction profile, broad substrate scope, simplicity of the process and handling, low catalyst loading, and the easy and quick isolation of the products in good to excellent yield. Besides, the products obtained were in an adequate purity without the need for chromatographic separation, and the catalyst was reused 7 times without a significant loss of the catalytic activity. Hence, the catalyst is a greener alternative for the synthesis of 1,2-disubstituted benzimidazoles, dihydropyrimidinones/-thiones, and highly substituted pyridines when compared to the existing reported catalysts. Further, the expansion of the catalyst scope and the generality for the synthesis of other privileged nitrogen- and sulfur-based heterocycles is under progress in our laboratory.

Experimental

See Supporting Information File 1 for full experimental data of compounds **3**, **7**, and **11**.

Figure 8: XRD pattern of a) the fresh NDL catalyst; b) the recovered NDL catalyst after the 7th cycle of the ultrasonic synthesis of 3k; c) the recovered NDL catalyst after the 7th cycle of the ultrasonic synthesis of 7a; and d) the recovered NDL catalyst after the 7th cycle of the ultrasonic synthesis of 11e.

Supporting Information

Supporting Information File 1

Experimental procedures, characterization data, and copies of the ¹H and ¹³C NMR, mass, and HRMS spectra of **3**, **7**, and **11**.

[https://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-16-156-S1.pdf]

Acknowledgements

The authors thank Dr. R. V. J. Kashyap, Dept. of English, Yogi Vemana University, for critical reading of the manuscript to ensure linguistic correctness.

Funding

The authors gratefully acknowledge the financial support for this work from the Department of Atomic Energy Board of Research in Nuclear Sciences (Bhabha Atomic Research Centre), Mumbai, Government of India, through a major research project (No. 2011/37C/52/BRNS/2264) and the Council of Scientific and Industrial Research (CSIR), New Delhi, Government of India, under a major research project (No. 01 (2391)/10/EMR-II).

ORCID[®] iDs

Lakshmi Reddy Sanapareddy - https://orcid.org/0000-0001-9475-5516 Chinna Gangi Reddy Nallagondu - https://orcid.org/0000-0003-2088-802X

Preprint

A non-peer-reviewed version of this article has been previously published as a preprint doi:10.3762/bxiv.2020.39.v1

References

- 1. Joule, J. A.; Mills, K. *Heterocyclic Chemistry*, 4th ed.; Blackwell: Oxford, U.K., 2000.
- Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Eds. *Comprehensive Heterocyclic Chemistry III;* Elsevier: Oxford, U.K., 2008; Vol. 7.
- Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. *Chem. Rev.* 2012, *112*, 2642–2713. doi:10.1021/cr200251d And references therein.
- Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J. N. Tetrahedron Lett. 2016, 57, 5135–5149. doi:10.1016/j.tetlet.2016.09.047
- Suresh; Sandhu, J. S. ARKIVOC 2012, No. i, 66–133. doi:10.3998/ark.5550190.0013.103
- Perrier, V.; Wallace, A. C.; Kaneko, K.; Safar, J.; Prusiner, S. B.; Cohen, F. E. *Proc. Natl. Acad. Sci. U. S. A.* **2000**, *97*, 6073–6078. doi:10.1073/pnas.97.11.6073
- Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K.-N.; Linden, J. *Pharmacol. Rev.* 2001, *53*, 527–552.
- Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. J. Am. Chem. Soc. 2013, 135, 118–121. doi:10.1021/ja311780a
- Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257–10274. doi:10.1021/jm501100b
- 10. Preston, P. N. *Chem. Rev.* **1974**, *74*, 279–314. doi:10.1021/cr60289a001
- 11. Scott, L. J.; Dunn, C. J.; Mallarkey, G.; Sharpe, M. *Drugs* **2002**, *62*, 1503–1538. doi:10.2165/00003495-200262100-00006
- Carcanague, D.; Shue, Y.-K.; Wuonola, M. A.; Uria-Nickelsen, M.; Joubran, C.; Abedi, J. K.; Jones, J.; Kühler, T. C. *J. Med. Chem.* 2002, 45, 4300–4309. doi:10.1021/jm020868v
- Boiani, M.; Gonzalez, M. *Mini-Rev. Med. Chem.* 2005, *5*, 409–424. doi:10.2174/1389557053544047
 And references therein.
- 14. Shah, D. I.; Sharma, M.; Bansal, Y.; Bansal, G.; Singh, M. *Eur. J. Med. Chem.* **2008**, *43*, 1808–1812. doi:10.1016/j.ejmech.2007.11.008
- 15. Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Thomas, S.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E. F.; Frost, D.; Donawho, C.; Jarvis, K.; Bouska, J.; Marsh, K. C.; Rosenberg, S. H.; Giranda, V. L.; Penning, T. D. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 3955–3958. doi:10.1016/j.bmcl.2008.06.023
- Ogino, Y.; Ohtake, N.; Nagae, Y.; Matsuda, K.; Moriya, M.; Suga, T.; Ishikawa, M.; Kanesaka, M.; Mitobe, Y.; Ito, J.; Kanno, T.; Ishihara, A.; Iwaasa, H.; Ohe, T.; Kanatani, A.; Fukami, T. *Bioorg. Med. Chem. Lett.* 2008, *18*, 5010–5014. doi:10.1016/j.bmcl.2008.08.018

- 17. Molander, G. A.; Ajayi, K. *Org. Lett.* **2012**, *14*, 4242–4245. doi:10.1021/ol301956p
- Asensio, J. A.; Gómez-Romero, P. Fuel Cells 2005, 5, 336–343. doi:10.1002/fuce.200400081
- Schwartz, G.; Fehse, K.; Pfeiffer, M.; Walzer, K.; Leo, K. Appl. Phys. Lett. 2006, 89, 083509. doi:10.1063/1.2338588
- Mariappan, G.; Hazarika, R.; Alam, F.; Karki, R.; Patangia, U.; Nath, S. *Arabian J. Chem.* 2015, *8*, 715–719. doi:10.1016/j.arabjc.2011.11.008 And referenes therein.
- Salahuddin; Shaharyar, M.; Mazumder, A.; Ahsan, M. J. Arabian J. Chem. 2014, 7, 418–424. doi:10.1016/j.arabjc.2013.02.001 And references therein.
- Ravi, V.; Ramu, E.; Vijay, K.; Srinivas Rao, A. Chem. Pharm. Bull.
 2007, 55, 1254–1257. doi:10.1248/cpb.55.1254
- Wan, J.-P.; Gan, S.-F.; Wu, J.-M.; Pan, Y. Green Chem. 2009, 11, 1633–1637. doi:10.1039/b914286j
- 24. Sharma, S. D.; Konwar, D. Synth. Commun. 2009, 39, 980–991. doi:10.1080/00397910802448440
- Reddy, L. S.; Reddy, N. C. G.; Reddy, T. R.; Lingappa, Y.; Mohan, R. B. *J. Korean Chem. Soc.* **2011**, *55*, 304–307. doi:10.5012/jkcs.2011.55.2.304
- Chebolu, R.; Kommi, D. N.; Kumar, D.; Bollineni, N.; Chakraborti, A. K. J. Org. Chem. 2012, 77, 10158–10167. doi:10.1021/jo301793z
- 27. Zhang, L.-J.; Xia, J.; Zhou, Y.-Q.; Wang, H.; Wang, S.-W. Synth. Commun. 2012, 42, 328–336.
 doi:10.1080/00397911.2010.524337
 And references therein.
- 28. Kumar, D.; Kommi, D. N.; Chebolu, R.; Garg, S. K.; Kumar, R.; Chakraborti, A. K. RSC Adv. 2013, 3, 91–98. doi:10.1039/c2ra21994h
- Senthilkumar, S.; Kumarraja, M. *Tetrahedron Lett.* 2014, *55*, 1971–1974. doi:10.1016/j.tetlet.2014.01.140
 And references therein.
- Herrera Cano, N.; Uranga, J. G.; Nardi, M.; Procopio, A.;
 Wunderlin, D. A.; Santiago, A. N. *Beilstein J. Org. Chem.* 2016, *12*, 2410–2419. doi:10.3762/bjoc.12.235
 And references therein
- Costanzo, P.; Nardi, M.; Oliverio, M. *Eur. J. Org. Chem.* **2020**, 3954–3964. doi:10.1002/ejoc.201901923
 And references therein.
- Berlinck, R. G. S.; Burtoloso, A. C. B.; Kossuga, M. H. Nat. Prod. Rep. 2008, 25, 919–954. doi:10.1039/b507874c
- Hu, E. H.; Sidler, D. R.; Dolling, U.-H. J. Org. Chem. 1998, 63, 3454–3457. doi:10.1021/jo970846u
- 34. Sakata, K.-I.; Someya, M.; Matsumoto, Y.; Tauchi, H.; Kai, M.; Toyota, M.; Takagi, M.; Hareyama, M.; Fukushima, M. *Cancer Sci.* 2011, *102*, 1712–1716. doi:10.1111/j.1349-7006.2011.02004.x
- 35. Ramesh, B.; Bhalgat, C. M. Eur. J. Med. Chem. 2011, 46, 1882–1891. doi:10.1016/j.ejmech.2011.02.052
- 36. Kaira, K.; Serizawa, M.; Koh, Y.; Miura, S.; Kaira, R.; Abe, M.; Nakagawa, K.; Ohde, Y.; Okumura, T.; Murakami, H.; Tsuya, A.; Nakamura, Y.; Naito, T.; Takahashi, T.; Kondo, H.; Nakajima, T.; Endo, M.; Yamamoto, N. *Lung Cancer* **2011**, *74*, 419–425. doi:10.1016/j.lungcan.2011.04.001
- Schroeder, P. E.; Hasinoff, B. B. Drug Metab. Dispos. 2005, 33, 1367–1372. doi:10.1124/dmd.105.005546
- 38. Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864–3868. doi:10.1021/jo9919052
- 39. Fu, N.-Y.; Yuan, Y.-F.; Cao, Z.; Wang, S.-W.; Wang, J.-T.; Peppe, C. *Tetrahedron* **2002**, *58*, 4801–4807. doi:10.1016/s0040-4020(02)00455-6

- Rodríguez-Domínguez, J. C.; Bernardi, D.; Kirsch, G. Tetrahedron Lett. 2007, 48, 5777–5780. doi:10.1016/j.tetlet.2007.06.104
- 41. Ahmed, N.; van Lier, J. E. *Tetrahedron Lett.* 2007, 48, 5407–5409. doi:10.1016/j.tetlet.2007.06.005
- 42. Chen, X.-H.; Xu, X.-Y.; Liu, H.; Cun, L.-F.; Gong, L.-Z.
- *J. Am. Chem. Soc.* **2006**, *128*, 14802–14803. doi:10.1021/ja065267y 43. Ryabukhin, S. V.; Plaskon, A. S.; Ostapchuk, E. N.; Volochnyuk, D. M.; Shishkin, O. V.; Shivanyuk, A. N.; Tolmachev, A. A. *Org. Lett.* **2007**, *9*,
- 4215–4218. doi:10.1021/ol701782v
 44. Li, N.; Chen, X.-H.; Song, J.; Luo, S.-W.; Fan, W.; Gong, L.-Z.
- *J. Am. Chem. Soc.* **2009**, *131*, 15301–15310. doi:10.1021/ja905320q 45. Guggilapu, S. D.; Prajapati, S. K.; Nagarsenkar, A.; Lalita, G.;
- Vegi, G. M. N.; Babu, B. N. *New J. Chem.* **2016**, *40*, 838–843. doi:10.1039/c5nj02444g And references therein.
- 46. Barbero, M.; Cadamuro, S.; Dughera, S. Green Chem. 2017, 19,

1529–1535. doi:10.1039/c6gc03274e

And references therein.

- 47. Oliverio, M.; Costanzo, P.; Nardi, M.; Rivalta, I.; Procopio, A. ACS Sustainable Chem. Eng. 2014, 2, 1228–1233. doi:10.1021/sc5000682
- 48. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270–6272. doi:10.1021/jo000711f
- 49. Lu, J.; Bai, Y. Synthesis 2002, 466–470. doi:10.1055/s-2002-20956
- Gangadasu, B.; Palaniappan, S.; Rao, V. J. Synlett 2004, 1285–1287. doi:10.1055/s-2004-822925
- Russowsky, D.; Lopes, F. A.; da Silva, V. S. S.; Canto, K. F. S.; Montes D'Oca, M. G.; Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165–169. doi:10.1590/s0103-50532004000200002
- 52. Tu, S.; Fang, F.; Zhu, S.; Li, T.; Zhang, X.; Zhuang, Q. Synlett 2004, 537–539. doi:10.1055/s-2004-815419
- 53. Fazaeli, R.; Tangestaninejad, S.; Aliyan, H.; Moghadam, M. Appl. Catal., A **2006**, *309*, 44–51. doi:10.1016/j.apcata.2006.04.043
- 54. Ahmed, B.; Khan, R. A.; Habibullah; Keshari, M. Tetrahedron Lett. 2009, 50, 2889–2892. doi:10.1016/j.tetlet.2009.03.177
- Phukan, M.; Kalita, M. K.; Borah, R. Green Chem. Lett. Rev. 2010, 3, 329–334. doi:10.1080/17518253.2010.487841
- Zhang, X.; Gu, X.; Gao, Y.; Nie, S.; Lu, H. Appl. Organomet. Chem. 2017, 31, e3590. doi:10.1002/aoc.3590 And references therein.
- 57. Chitra, S.; Pandiarajan, K. *Tetrahedron Lett.* **2009**, *50*, 2222–2224. doi:10.1016/j.tetlet.2009.02.162
- 58. Han, B.; Han, R.-F.; Ren, Y.-W.; Duan, X.-Y.; Xu, Y.-C.; Zhang, W. Tetrahedron 2011, 67, 5615–5620. doi:10.1016/j.tet.2011.05.105
- 59. Shen, Z.-L.; Xu, X.-P.; Ji, S.-J. J. Org. Chem. 2010, 75, 1162–1167. doi:10.1021/jo902394y
- Sheik Mansoor, S.; Syed Shafi, S.; Zaheer Ahmed, S. *Arabian J. Chem.* 2016, 9, S846–S851. doi:10.1016/j.arabjc.2011.09.018
- Pandey, J.; Anand, N.; Tripathi, R. P. *Tetrahedron* 2009, 65, 9350–9356. doi:10.1016/j.tet.2009.09.002
- Cocco, M. T.; Congiu, C.; Lilliu, V.; Onnis, V. Eur. J. Med. Chem. 2005, 40, 1365–1372. doi:10.1016/j.ejmech.2005.07.005
- May, B. C. H.; Zorn, J. A.; Witkop, J.; Sherrill, J.; Wallace, A. C.; Legname, G.; Prusiner, S. B.; Cohen, F. E. J. Med. Chem. 2007, 50, 65–73. doi:10.1021/jm061045z
- 64. Reddy, T. R. K.; Mutter, R.; Heal, W.; Guo, K.; Gillet, V. J.; Pratt, S.; Chen, B. J. Med. Chem. 2006, 49, 607–615. doi:10.1021/jm050610f
- Evdokimov, N. M.; Magedov, I. V.; Kireev, A. S.; Kornienko, A. Org. Lett. 2006, 8, 899–902. doi:10.1021/ol052994+

- Evdokimov, N. M.; Kireev, A. S.; Yakovenko, A. A.; Antipin, M. Y.; Magedov, I. V.; Kornienko, A. *J. Org. Chem.* **2007**, *72*, 3443–3453. doi:10.1021/jo070114u
- Ranu, B. C.; Jana, R.; Sowmiah, S. J. Org. Chem. 2007, 72, 3152–3154. doi:10.1021/jo070015g
- Mamgain, R.; Singh, R.; Rawat, D. S. J. Heterocycl. Chem. 2009, 46, 69–73. doi:10.1002/jhet.32
- Guo, K.; Thompson, M. J.; Chen, B. J. Org. Chem. 2009, 74, 6999–7006. doi:10.1021/jo901232b
- 70. Banerjee, S.; Sereda, G. Tetrahedron Lett. 2009, 50, 6959–6962. doi:10.1016/j.tetlet.2009.09.137
- 71. Shinde, P. V.; Sonar, S. S.; Shingate, B. B.; Shingare, M. S. *Tetrahedron Lett.* **2010**, *51*, 1309–1312. doi:10.1016/j.tetlet.2009.12.146
- 72. Srinivasula Reddy, L.; Ram Reddy, T.; Mohan, R. B.; Mahesh, A.; Lingappa, Y.; Gangi Reddy, N. C. *Chem. Pharm. Bull.* **2013**, *61*, 1114–1120. doi:10.1248/cpb.c13-00412
- 73. Tamaddon, F.; Tayefi, M.; Hosseini, E.; Zare, E. J. Mol. Catal. A: Chem. 2013, 366, 36–42. doi:10.1016/j.molcata.2012.08.027
- 74. Correia, L. M.; de Sousa Campelo, N.; Novaes, D. S.; Cavalcante, C. L., Jr.; Cecilia, J. A.; Rodríguez-Castellón, E.; Vieira, R. S. *Chem. Eng. J.* **2015**, *269*, 35–43. doi:10.1016/j.cej.2015.01.097
- Vogel, A. I. Quantitative inorganic analysis; Longmans: London, U.K., 1951; p 582.
- 76. Gunasekaran, S.; Anbalagan, G.; Pandi, S. J. Raman Spectrosc. 2006, 37, 892–899. doi:10.1002/jrs.1518
- 77. Xu, B.; Poduska, K. M. Phys. Chem. Chem. Phys. 2014, 16, 17634–17639. doi:10.1039/c4cp01772b
- 78. Shawky, A.; El-Sheikh, S. M.; Rashed, M. N.; Abdo, S. M.; El-Dosoqy, T. I. *J. Environ. Chem. Eng.* **2019**, *7*, 103174. doi:10.1016/j.jece.2019.103174
- 79. Darezereshki, E.; Ranjbar, M.; Bakhtiari, F. J. Alloys Compd. 2010, 502, 257–260. doi:10.1016/j.jallcom.2010.04.163
- Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D. G.; Duan, X. J. Am. Chem. Soc. 2012, 134, 1071–1077. doi:10.1021/ja2086323
- White, W. B.; Karr, C., Jr., Eds. Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals; Academic Press: New York, NY, USA, 1975.
- Ramasesha, K.; De Marco, L.; Mandal, A.; Tokmakoff, A. Nat. Chem. 2013, 5, 935–940. doi:10.1038/nchem.1757
- Shalaby, N. H.; Elsalamony, R. A.; El Naggar, A. M. A. New J. Chem. 2018, 42, 9177–9186. doi:10.1039/c8nj01479e
- Lin, Y.-F.; Chen, H.-W.; Chang, C.-C.; Hung, W.-C.; Chiou, C.-S. J. Chem. Technol. Biotechnol. 2011, 86, 1449–1456. doi:10.1002/jctb.2665
- 85. Yadav, A. K.; Singh, P. *RSC Adv.* 2015, *5*, 67583–67609. doi:10.1039/c5ra13043c
 And references therein.
- Debure, M.; Andreazza, P.; Canizarès, A.; Grangeon, S.; Lerouge, C.; Mack, P.; Madé, B.; Simon, P.; Veron, E.; Warmont, F.; Vayer, M. ACS Earth Space Chem. 2017, 1, 442–454. doi:10.1021/acsearthspacechem.7b00073
- Makal, A.; Schilf, W.; Kamieński, B.; Szady-Chelmieniecka, A.; Grech, E.; Woźniak, K. *Dalton Trans.* 2011, 40, 421–430. doi:10.1039/c0dt00298d
- Andraos, J.; Hent, A. J. Chem. Educ. 2015, 92, 1820–1830. doi:10.1021/acs.jchemed.5b00058

89. Dicks, A. P.; Hent, A. *Green Chemistry Metrics;* Springer International Publishing: Cham, Switzerland, 2015. doi:10.1007/978-3-319-10500-0

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.16.156