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A novel representative of sodium 3,4,5-triaryl-1,2-diphosphacyclopentadienide containing a chloro substituent in the meta-position

of the aryl groups was obtained with a high yield based on the reaction of tributyl(1,2,3-triarylcyclopropenyl)phosphonium bro-

mide and sodium polyphosphides. Further reaction of sodium 3,4,5-tris(3-chlorophenyl)-1,2-diphosphacyclopentadienide with

[FeCp(n°-CgHsCH3)][PFg] complex gives a new 3,4,5-tris(3-chlorophenyl)-1,2-diphosphaferrocene. The electrochemical proper-

ties of 3,4,5-tris(3-chlorophenyl)-1,2-diphosphaferrocene were studied and compared to 3,4,5-tris(4-chlorophenyl)-1,2-diphospha-

ferrocene. It was found that the position of the chlorine atom on the aryl fragment has an influence on the reduction potential of 1,2-

diphosphaferrocenes, while the oxidation potentials do not change.

Introduction

Among the various heterometallocenes reported to date, phos-
phaferrocenes are by far the most investigated because of their
structural and electronic features [1,2] and remain the objects of
growing interest in the fields of coordination chemistry [3-5]
and asymmetric catalysis [6,7]. Due to the sp2-hybridization of
the phosphorus atom, phosphaferrocenes are commonly
regarded as phosphorus ligands with weaker o-donor character

than classical tertiary phosphines and stronger m-acceptor prop-

erties closer to phosphites P(OR)j3 [8,9]. Since the P atom in
phosphaferrocenes retains an electron lone pair, phosphafer-
rocenes have been used as P-donor ligands [10-12] as well
as nucleophilic catalysts [13,14]. Recently, the pentaphos-
phaferrocene Cp*Fe(ns—P5) has been used as a mediator in
the synthesis of asymmetric phosphines starting from white
phosphorus [15]. Moreover, the presence of the lone pair

of the P atom opens the route to polynuclear complexes [16-18]
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and coordination polymers [19-21] with the mixed o-/m-coordi-
nation mode, which is not typical for classical ferrocene

species.

Various effective synthetic approaches were developed for
1-mono- [22-24], 1,2,3-tri- [25-27], 1,2,4-tri- [28-30], and
pentaphosphaferrocenes [31-33], whereby the chemistry of
these compounds is most investigated and well represented at
present time. In contrast, very limited data are available con-
cerning 1,2-diphosphaferrocenes due to the absence of simple
and effective synthetic routes [34-36]. Recently, we have re-
ported a convenient synthesis of 3,4,5-triaryl-1,2-diphosphafer-
rocenes with various substituents at the para-positions of aryl
groups [37]. Based on this method, herein we report on the
complete multistep synthesis of new sodium 3,4,5-tris(3-chloro-
phenyl)-1,2-diphosphacyclopentadienide and corresponding
1,2-diphosphaferrocene with meta-chlorophenyl substituents
and the influence of the position of the CI atom on aryl moiety
on the electrochemical properties.

Results and Discussion

Synthesis of tris(chlorophenyl)cyclopropenyl
bromides and derivatives

Cyclopropenium (cyclopropenylium) ions have always at-
tracted attention of the synthetic chemists because of the unique
combination of stability and reactivity [38-40]. The synthesis of
corresponding 1,2,3-cyclopropenium bromides was realized by
a classical approach: combination of C; and C; building blocks,
i.e., the addition of a carbene species to a triple bond of diaryl-
acetylene, followed by treatment of the produced cyclopropene
with HBr to convert it to the corresponding cyclopropenylium
cation. Using this approach, tris(4-chlorophenyl)- and tris(3-
chlorophenyl)cyclopropenyl bromides were prepared for the
first time. The advantage of this approach is the possibility of
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synthesis of substituted diarylacetylenes, the corresponding
substituted benzal chlorides, and triarylcyclopropenyl bromides

from one starting aryl aldehyde.

Diethyl phosphite was allowed to react with appropriately
substituted benzaldehydes in THF for 48 hours at 25 °C to
afford diethyl (hydroxy(aryl)methyl)phosphonates 1, which
were detected by 3'P NMR spectroscopy in THF (21.4 ppm for
1a, 21.0 ppm for 1b, and 21.5 ppm for 1c¢). Further, reaction
mixtures with compounds 1 were treated with SOCI, for 3—4 h
at 0 °C and converted to chloro derivatives 2. In the next step,
compounds 2 and starting substituted benzaldehydes were
subsequently treated with 2 equiv of potassium ferz-butoxide in
THF for 18 hours at room temperature to afford substituted
diarylacetylenes 3. Based on this reaction, the desired com-
pounds 3 were prepared from 2-chloro-, 3-chloro-, and
4-chlorophenyl aldehydes, respectively, in 3 steps in 10-53%
yield (10% for 3a, 48% for 3b, 53% for 3¢, Scheme 1). This
method is an alternative way to different transition metal-
catalyzed cross-coupling reactions broadly used for the prepara-
tion of different diarylacetylenes and, rarely, bis(chloro-

phenyl)acetylenes.

Next, starting substituted benzaldehydes were treated with an
excess of SOCl, for 24 h at 25 °C. Corresponding substituted
benzal chlorides 4 were distilled at reduced pressure to give
pure compounds. In a final step, we used the above mentioned
approach of combining the C; and C, building blocks and
found that chloroarylcarbenes, generated from the correspond-
ing benzal chlorides 4b,c under the action of potassium fert-
butoxide, reacted with 1,2-bis(chlorophenyl)ethynes 3b,c to
form triarylcyclopropenylium salts 5b,c in 22 and 15% yield
(Scheme 2). Unfortunately, it was not possible to synthesize
tris(2-chlorophenyl)cyclopropenylium bromide Sa using this
method.

@ (EtO),POH = H 0Cl,
CHO ————— . )T P(O)OE);
\ |/ 25°C, THF, I OH 0°C, THF,
R Et;N, 48 h R 3-4h
1a—-c
\ | / CHO
R
= H t-BUOK = /=
\, /1 P(ONOED, N/ \ 7
| cl 0 °C, THF, | I
R 18 h R R
2a-c 3a—c

R = 2-Cl (a), 3-Cl (b), 4-Cl (c)

Scheme 1: Synthesis of bis(chlorophenyl)acetylenes 3.
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PBuj

25 °C, THF,
4h

5b,c

Scheme 2: Synthesis of 1,2,3-tris(chlorophenyl)cyclopropenylium bromides 5 and tributyl(1,2,3-tris(chlorophenyl)cyclopropenyl)phosphonium bro-

mides 6.

The structures of 3—5 were confirmed by 'H and !3C NMR as
well as IR spectroscopic methods and, for Sc, single-crystal
X-ray crystallography (Figure 1a). The !3C NMR signals of the
cationic carbon atoms of the three-membered ring appeared at
about 145 ppm. Besides, the 'H NMR spectra of 5 were unre-
markable and consistent with the suggested formulas.

As a next step, we synthesized a series of tributyl(1,2,3-triaryl-
cyclopropenyl)phosphonium bromides 6 containing a Cl substit-
uent in the meta- or para-position of each aryl group. This was
done by reaction of appropriate 1,2,3-triarylcyclopropenylium
bromides 5§ with PBuj at 25 °C in THF in 34 and 39% yield
(Scheme 2). The structures of 6 were confirmed by 31P, ]H, and
13C NMR spectroscopy. The 3'P{!H} NMR spectra of phos-

a cI3

phonium bromides 6 showed a singlet at about 40 ppm, which is
typical for phosphonium salts. The '3C{!H} NMR spectra con-
sisted of a doublet at about 20 ppm, corresponding to the car-
bon atom C1, which is characteristic for the sp3-hybridized car-
bon atom, with a coupling constant of 'Jcp ~ 45 Hz. Additional-
ly, the structure of 6¢ in the crystal was confirmed by X-ray
crystallography (Figure 1b).

Synthesis, structure, and electrochemical
properties of 3,4,5-tris(chlorophenyl)-1,2-
diphosphaferrocenes

The obtained phosphonium salts 6 were treated with a mixture

of sodium polyphosphides of the type Na,P, (obtained in situ
from sodium metal and white phosphorus P,4), containing

CI3

Figure 1: ORTEP representations for cations 5¢ (a) and 6c (b) at the 50% probability level. Bromide anion and co-crystallized solvent molecules are
omitted for clarity. For 6¢, only one of two symmetry-independent molecules is shown. Selected interatomic distances (A): C1-C2 1.387(7), C1-C3
1.372(7), C2-C3 1.380(7) for 5¢; C1—C2 1.521(5), C1-C3 1.521(5), C2—C3 1.298(5), P1—C1 1.837(3) for 6c. Deposition numbers 2176393 for 5¢ and
2176394 for 6¢ contain the supplementary crystallographic data for this paper [41].
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mainly NaPs and Na3Py [42]), resulting in sodium 3,4,5-
tris(chlorophenyl)-1,2-diphosphacyclopentadienides 7 in good
yields (60 and 63%, Scheme 3). This reaction allowed a selec-
tive and controllable conversion of Na,P, to the 1,2-diphospho-
lide anion, in which two new C—P bonds could selectively be
formed [43,44]. The obtained sodium 3,4,5-triaryl-1,2-diphos-
pholides 7 were isolated in good purity from the reaction mix-
ture by filtration and further washing with a mixture of
THF/n-hexane. The 31P{!H} NMR spectra of 7 showed a
singlet at about 200 ppm, which is typical for sodium 1,2-
diphospholides (3'P{'H} in THF: 201 ppm for 7b and 198 ppm
for 7¢). Further, the 13C{1H} NMR spectra of 7 showed two
multiplets at about 147 and 160 ppm for the heteroaromatic
P,C3 ring backbone.

Recently, we have reported a convenient method for the prepa-
ration of 1,2-diphosphaferrocenes [37] and 1,2,3-triphosphafer-
rocenes [25] with various substituents at para-positions of aryl
groups. Using this approach, sodium bis(diglyme) 3,4,5-tris(3-
chlorophenyl)-1,2-diphosphacyclopentadienide (7b) was treated

[Na(diglyme),]*

Na,P,, diglyme

reflux R
_—

D-18-C-6,3 h

6b,c
R = 3-Cl (b), 4-Cl (c)
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in a 1:1 ratio with [FeCp(n6—C6H5CH3)][PF6] at 160 °C in
diglyme. Evaporation of diglyme at reduced pressure and ex-
traction of the product with toluene, followed by filtration
through silica, resulted in 3,4,5-tris(3-chlorophenyl)-1,2-diphos-
phaferrocene (8b) in 68% yield and high purity (Scheme 3).

The structure of 3,4,5-triaryl-1,2-diphosphaferrocene 8b was
confirmed by 3!P, 'H, and '3C NMR spectroscopy. The
3Ip(1H} NMR spectrum of 8b showed a singlet at about
—10 ppm, shifted upfield by about 210 ppm in comparison to
the starting 1,2-diphospholide anion 7b. In the 'H NMR spec-
tra, characteristic signals of the cyclopentadienyl ring
(4.61 ppm) and CICcHy4 substituents (6.88—7.42 ppm) were ob-
served. The 13C{!H} NMR spectrum of 8b showed
pseudotriplets at about 106 ppm and 117 ppm for the carbon
atoms of the P,Cj ring and a singlet at about 75 ppm for the
cyclopentadienyl ring.

Quantum chemically, two possible conformations of 8b were
considered, 8b-I and 8b-II (Figure 2). Similar to a previous

-]
R Fe
v

diglyme, 160 °C

: o

— NaPF

Scheme 3: Synthesis of 3,4,5-tris(chlorophenyl)-1,2-diphosphacyclopentadienides 7 and 3,4,5-tris(chlorophenyl)-1,2-diphosphaferrocenes 8.

8b-I

Figure 2: Considered conformations of 8b-I and 8b-II.
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report on 8c [37], both 8b-I and 8b-II adopted an almost
eclipsed conformation during optimization. Computations pre-
dicted slightly lower energy (1 kcal-mol™1) for conformation
8b-I, with Cl oriented towards the Fe atom. According to the
computations, 8b-I is also slightly more advantageous com-
pared to 8c with the same energy difference.

The experimental UV—vis spectra of 8b and 8¢ in CH,Cl, were
similar and contained bands at about 280, 320, and 380 nm. The
bands at 280 and 320 nm were more intense in the spectrum of
8c, which is in full agreement with quantum chemical predic-
tions (Figure 3). According to the computations, 8b-I and 8b-II
demonstrated almost the same absorption. The bands at about
250 and 280 nm were caused by m—* transitions. The dominat-
ing transition contributing to the lowest-energy absorption
(380 nm) was the one corresponding to a transition between
HOMO-1 and LUMO+1 (Figure 4). Both orbitals were local-
ized mostly at the P,C3—Fe—Cp moiety, and the former was also
contributed to by atomic orbitals of the aryl ring in the 4-posi-
tion. Similar to 8¢, the atomic orbitals of the Cl atoms in 8b
practically did not participate in the frontier orbitals, which ex-
plained the similarity of the low-energy range of the experimen-
tal spectra.

The electrochemical properties of 1,2-diphosphaferrocene 8b
were studied by cyclic voltammetry and compared to data for 8c
(Table 1 and Figure 5). During oxidation, there were no notice-
able differences between 8b and 8c. The oxidation potentials of
8b and 8c were shifted to the positive region relative to pure
ferrocene by 0.48—0.53 V. This, in turn, indicated that the chlo-
rine atoms in the n°-P,C3R5 fragment did not significantly
affect the HOMO energy of 1,2-diphosphaferrocenes 8. The

number of phosphorus atoms in cyclopentadiene had a much

HOMO-1
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absorbance, A

Y

0,54

oscillator strength

0,0

250 300 350 400 450 500

wavelength, nm

Figure 3: Top: experimental UV—-vis spectra of 8¢ (black) and 8b (red).
Bottom: broadened calculated UV—vis spectra of 8¢ (black), 8b-I (red),
and 8b-IlI (blue). Experimental UV-vis spectra of 8¢ republished with
permission of Royal Society of Chemistry from [37] (“Synthesis, struc-
ture and electrochemical properties of 3,4,5-triaryl-1,2-diphosphafe-
rocenes” by |. A. Bezkishko et al., Inorg. Chem. Front., vol. 9, Issue 11,
© 2022); permission conveyed through Copyright Clearance Center,
Inc. This content is not subject to CC BY 4.0.

LUMO+1

Figure 4: Frontier orbitals of 8b-Il contributing to absorption bands at about 380 nm.
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Table 1: Electrochemical data for the redox properties of 3,4,5-triaryl-1,2-diphosphaferrocenes 8b and 8c.

compound Eox' (V) vs
Ag/AgCl
ferrocene [48] 0.48
FeCp(n®-P2C3R3) (R = 3-CI-CgHa, 8b) 0.96
FeCp(n5-P2C3R3) (R = 4-Cl-CgHy4, 8¢) [37]  1.01
Cp*Fe(n°-Ps) [45] 1.12b

Ered' (V) "Enomo (6V)  "ELumo (€V)  gap (eV)
-3.192 —4.792 -1.612 3.182
-2.15 -5.28 22 2.84
-1.83 -5.36 -2.48 2.88
-1.55P -5.47° -2.80° 2570

aConditions: =50 °C, glassy carbon working electrode, Ag/AgCl reference electrode, ¢ 0.5 mM, BusNBF4, DMF, 100 mV-s~1. bConditions: -13 °C, Pt
working electrode, Ag/AgCl reference electrode (recalculated from Fc/Fct), ¢ 0.5 mM, BusNPFg, CHoClo, 500 mV-s~1.

Fc/Fc*
—38c
—28b

o
an

-
>

T T T T T T T T T
-2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

Potential, V vs Ag/AgCI
Figure 5: Cyclic voltammograms of 3,4,5-triaryl-1,2-diphosphafer-
rocenes 8b and 8c in CH3CN on glassy carbon electrode (0.5 mM
complex). Potentials vs Ag/AgCl. Scan rate = 100 mV-s~', room tem-
perature. Cyclic voltammogram of 8c republished with permission of
Royal Society of Chemistry from [37] (“Synthesis, structure and elec-
trochemical properties of 3,4,5-triaryl-1,2-diphosphaferocenes” by I. A.
Bezkishko et al., Inorg. Chem. Front., vol. 9, Issue 11, © 2022);

permission conveyed through Copyright Clearance Center, Inc. This
content is not subject to CC BY 4.0.

greater effect on the shifts of the Fell/Felll oxidation potential.
As shown earlier, an increase in the number of phosphorus
atoms led to the irreversible oxidation of phosphaferrocenes
containing an unsubstituted Cp ring. It was shown that
Cp*Fe(n>-Ps) was irreversibly oxidized at a potential of 0.57 V
relative to Fc/Fc*, and the presence of even five phosphorus
atoms makes an insignificant contribution to the HOMO energy
level [45]. The situation changed fundamentally when both
rings were replaced with phosphacyclopentadienyl ligands.
Related diphosphacyclobutadiene complexes Fe(n*-P,C5R»)y
were oxidized much more cathodically (negative by 1.7-2.0 V)
[46,47], which indicated a significant contribution of the phos-
phacyclopentadienyl ligands to the iron atomic orbitals. Of
course the structures of 8 and diphosphacyclobutadiene com-
plexes are not isolobal, but it would be interesting to study elec-
trochemical properties of Fe(n°-P,C3R3), complexes in the
future.

For reduction, the electrochemical properties changed more
noticeable since the contribution to the LUMO came from the
cyclopentadiene fragments. For 1,2-diphosphaferrocene 8b, the
reduction potential was positively shifted by 0.32 V as com-
pared to 8c. It should be noted that an increase of phosphorus
atoms' number in phosphaferrocenes leads to a greater positive
potential, which in turn leads to the formation of dimers, which
was shown for pentaphosphaferrocene Cp*Fe(n>-Ps) [49] and

the corresponding Sm complexes [50].

Conclusion

In summary, a series of bis(chlorophenyl)acetylenes 3, substi-
tuted benzal chlorides 4, and tris(chlorophenyl)cyclo-
propenylium bromides 5 were synthesized starting from corre-
sponding chloro-substituted benzaldehydes. We found that the
reaction of tributyl(1,2,3-tris(chlorophenyl)cyclopropenyl)phos-
phonium bromides 6 with sodium polyphosphides can be suc-
cessfully used for the preparation of sodium 3,4,5-tris(chloro-
phenyl)-1,2-diphosphacyclopentadienides 7. A facile synthesis
of 3,4,5-tris(3-chlorophenyl)-1,2-diphosphaferrocene (8b) from
sodium bis(diglyme) 3,4,5-tris(3-chlorophenyl)-1,2-diphospha-
cyclopentadienide (7b) and [FeCp(n®-CcHsCH3)][PFq] is de-
scribed. The structure of 8b was studied using experimental
NMR, UV-vis, and electrochemical analyses as well as theoret-
ical studies. The meta- and para-substitution of the CI atoms in
the aryl fragments did not significantly effect the oxidation
potentials of 1,2-diphosphaferrocenes 8, while the reduction
potential of 8b was shifted by 0.33 V to a more negative region
as compared to 8c.

Supporting Information

Supporting Information File 1

Experimental procedures and characterization data of
synthesized compounds.

[https://www .beilstein-journals.org/bjoc/content/
supplementary/1860-5397-18-139-S1.pdf]
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