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Abstract

Natural products are structurally highly diverse and exhibit a wide array of biological activities. As a result, they serve as an impor-
tant source of new drug leads. Traditionally, natural products have been discovered by bioactivity-guided fractionation. The advent
of genome sequencing technology has resulted in the introduction of an alternative approach towards novel natural product scaf-
folds: Genome mining. Genome mining is an in-silico natural product discovery strategy in which sequenced genomes are analyzed
for the potential of the associated organism to produce natural products. Seemingly universal biosynthetic principles have been
deciphered for most natural product classes that are used to detect natural product biosynthetic gene clusters using pathway-
encoded conserved key enzymes, domains, or motifs as bait. Several generations of highly sophisticated tools have been developed
for the biosynthetic rule-based identification of natural product gene clusters. Apart from these hard-coded algorithms, multiple
tools that use machine learning-based approaches have been designed to complement the existing genome mining tool set and focus
on natural product gene clusters that lack genes with conserved signature sequences. In this perspective, we take a closer look at
state-of-the-art genome mining tools that are based on either hard-coded rules or machine learning algorithms, with an emphasis on
the confidence of their predictions and potential to identify non-canonical natural product biosynthetic gene clusters. We highlight
the genome mining pipelines' current strengths and limitations by contrasting their advantages and disadvantages. Moreover, we
introduce two indirect biosynthetic gene cluster identification strategies that complement current workflows. The combination of all
genome mining approaches will pave the way towards a more comprehensive understanding of the full biosynthetic repertoire

encoded in microbial genome sequences.
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Introduction

In 2002, the genome sequences of the model actinomycete
Streptomyces coelicolor A3(2) [1] and the producer of the
antiparasitic drug avermectin, Streptomyces avermitilis [2],
were published. These index cases marked the transition from
the pre- to the post-genomic era in microbial natural product
(NP) research [3]. The introduction of next-generation
sequencing technologies [4] has led to a constant decrease in
sequencing costs [5]. As a result, the number of publicly avail-
able genome sequences has rapidly increased and paved
the way for a completely new avenue: genome mining.
Genome mining describes the targeted bioinformatic analysis of
(meta-)genomes to identify gene clusters involved in the bio-
synthesis of NPs [3]. NPs have been shown to act as signaling
metabolites (e.g., acylhomoserine lactones (1) [6]), siderophores
(e.g., pyoverdines (2) [7]), virulence factors (e.g., malleicyprol
(3) [8-10]), toxins (e.g., bongkrekic acid (4) [11]), antibacterial
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(e.g., vancomycin (5) [12]) or antifungal compounds (e.g.,
amphotericin B (6) [13]) (Figure 1). The identification of almost
all clinically relevant antibiotics using bioactivity-guided frac-
tionation approaches long before the beginning of the post-
genomic era initiated the field of microbial NP research. In the
"golden age" of antibiotic discovery from the 1940s to 1970s,
microbes and especially bacteria have been identified as an
almost untapped treasure trove for the discovery of bioactive
NPs. For the longest time, researchers focused on a few talented
NP producers, that have mainly been isolated from soil samples
[14]. Since the low hanging fruits have been picked using tradi-
tional bioactivity-based workflows, this approach frequently
results in the rediscovery of known metabolites. The introduc-
tion of genome mining revolutionized NP research and helped
overcome the rediscovery problem frequently encountered
using traditional approaches. Contrary to earlier estimations that
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Figure 1: Examples of prominent natural products: N-butyrylhomoserine lactone (1), pyoverdin (2), malleicyprol (3), bongkrekic acid (4), vancomycin

(5), and amphotericin B (6).
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were based on bioactivity-guided discovery strategies, mining
microbial genomes revealed a much higher biosynthetic poten-
tial than initially anticipated [14]. Streptomyces hygroscopicus
sp. XM201, for instance, harbors more than 50 putative biosyn-
thetic gene clusters (BGCs), many of which are cryptic, i.e.,
BGC:s for which the corresponding NPs have yet to be identi-
fied [15]. A problem when it comes to the characterization of
the full biosynthetic potential of an organism is the fact that
many BGCs are silent. Silent BGC are not expressed under
standard laboratory cultivation conditions as they might lack a
specific ecological clue for their expression. As a result, two
types of approaches have been developed to unleash this hidden
biosynthetic potential. Several pleiotropic (non-targeted, e.g.,
modifying culturing conditions) and pathway-specific (e.g.,
heterologous expression or in situ pathway activation) ap-
proaches have been developed to awaken silent biosynthetic
pathways [16]. Most importantly, however, genome mining can
prevent the time-consuming re-discovery of already known
metabolites [14]. In-silico dereplication can be performed on
two levels: First, BGCs identified by genome mining can be
compared to characterized BGCs [17]. Second, in many cases
NP core structures can be predicted from genome sequence
information and the predicted structures can then be used to
search in NP databases for identical or related compounds
[18,19]. While the BGC-centric approach might be more accu-
rate, it is limited by the number of characterized BGCs in
publicly available databases. Since significantly more NPs than
NP BGCs are characterized, the search space of known metabo-
lites is significantly larger than that of experimentally verified
BGCs [20]. The accuracy of the predicted core structures on the
other hand might restrict the approach.

In this perspective, we will take a closer look at the most com-
monly used state-of-the-art genome mining tools, ranging from
algorithms based on hard-coded rules to machine learning
(ML)-based approaches with regard to the natural product
biosynthetic principles they are most suited for. We focus on
how the different genome mining tools identify BGCs and high-
light their advantages and limitations. Moreover, we will show-
case two potential strategies for the targeted identification of
non-canonical pathways to chart the full biosynthetic potential
encoded in bacterial genomes.

Perspective

Natural product biosynthetic principles

NPs are structurally highly diverse and can be divided into
several classes depending on their biosynthetic concepts. NP
biosynthesis follows two fundamentally different principles:
NPs can either be produced in an assembly line-like fashion
(Figure 2A) or by discrete, multi-enzymatic assemblies

(Figure 2B). Discrete, multi-enzymatic assemblies utilize mono-
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functional enzymes for the consecutive build-up and decoration
of a NP scaffold. In comparison to biosynthetic assembly lines,
intermediates are not permanently covalently bound to carrier
proteins in discrete, multi-enzymatic assemblies. In both
biosynthetic principles, the NP backbone is first assembled by
core enzymes and then further modified by tailoring enzymes
that decorate the NP scaffold.

A Assembly line-like pathways
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Figure 2: Biosynthetic principles of (A) assembly line-like pathways
and (B) discrete multi-enzymatic assemblies. Assembly line-like path-
ways use large mega enzymes and generate NPs via the successive
addition and/or modification of building blocks (e.g., non-ribosomal
peptide biosynthesis) using conserved core domains. In discrete multi-
enzymatic assemblies, distinct and mostly monofunctional enzymes
catalyze the built-up of the NP scaffold and its decoration (e.g., in

(I) ribosomally synthesized and post-translationally modified peptide,
(I) terpene, or (Ill) alkaloid biosynthesis).
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Assembly line-like pathways are characterized by mega en-
zymes, which can be subdivided into modules. Each module is
responsible for the incorporation (and/or processing) of one
building block into the nascent product. A “textbook™ exten-
sion module minimally harbors three core domains, responsible
for the activation and loading, tethering, and condensation of
building blocks and intermediates. The biosynthesis is direc-
tional and starts at the N-terminal module with the activation
and loading of the first building block onto the assembly line
(Figure 2A) [21]. The specificity of the activating domain deter-
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mines the type of building block incorporated. The growing
intermediate stays permanently bound to the assembly line until
the final product is released at the C-terminal module. However,
modules can also be skipped, used for the modification of the
nascent NP rather than its chain extension, or utilized itera-
tively [22,23]. In textbook assembly line-like pathways, the
architecture of the mega enzyme complex correlates with the
product structure, a principle that is referred to as the colin-
earity rule [24]. Examples of these assembly line-like pathways
are canonical type I cis-acyltransferase polyketide synthases
(PKSs) and type A non-ribosomal peptide synthetases (NRPSs)
(Figure 2A) [25,26]. The substrate specificity of the specificity
conferring domains in each module can be predicted from the
sequences of adenylation (A) (for NRPS [26]), acyltransferase
(AT) (for cis-AT PKS [15]), or ketosynthase (KS) domains (in
trans-acyltransferase PKS systems [19,27]). Moreover, in the
large majority of cases, the gene order within a BGC reflects the
order of the corresponding enzymes during the biosynthesis of
the associated NP [19]. trans-AT PKSs are much more com-
plex than cis-AT PKS systems as they harbor non-elongating
modules, cryptic domains and seemingly superfluous domains.
Moreover, they frequently employ a number of frans-acting
modifying enzymes, are characterized by modules that are split
between proteins and they often harbor non-canonical module
architectures and cryptic domains [19,22]. As a result, the colin-
earity rule cannot be applied to predict trans-AT PKS-derived
polyketide core structures [19]. Instead, it has been observed
that the amino acid sequences of the ketosynthase domains in
trans-AT PKSs correlate with their substrate specificity [27].
This correlation can be used for the prediction of trans-AT
PKS-derived polyketide core structures and is referred to as the
correlation rule [19]. All commonly occurring domains in
assembly line-like NP biosynthetic pathways as well as their
non-modular homologs (e.g., type II and III PKSs) show a high
degree of sequence homology. For that reason, their sequence
can be used by genome mining tools as universal signature se-
quences to identify the genes encoding the respective domains
and the remaining genes of the BGC (Figure 3A and B (e.g.,
bialaphos (7) [11])) [28].

In contrast, discrete multi-enzymatic assemblies utilize distinct,
monofunctional enzymes. Examples are terpene (e.g., cyclooc-
tatin (8) [29]), ribosomally synthesized and post-translationally
modified peptide (RiPP), or NRPS-independent alkaloid path-
ways. In the case of terpene biosynthesis, terpene cyclases
generate the oftentimes multicyclic, hydrocarbon scaffold via a
carbocation-mediated cascade reaction [30]. Terpene cyclases
are obligatory components of canonical terpene pathways and
are used to identify terpene BGCs (Figure 3B) [30,31]. RiPPs,
on the other hand, lack genes that are conserved across all 40
plus RiPP families [32]. However, each RiPP BGC family fea-
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tures genes encoding characteristic tailoring enzymes, or pre-
cursor peptides, that show a high degree of sequence conserva-
tion within the family. These conserved genes can be utilized
for the targeted, family-specific identification of RiPP BGCs
(Figure 3C (e.g., tryptorubin (9) [33])) [21]. In addition,
multiple RiPP tailoring enzymes harbor a precursor peptide-
binding domain, the so-called RiPP recognition element (RRE)
(Figure 3D (e.g., pyrroloquinoline quinone (PQQ, 10) [34])).
RRE-derived signature motifs (i.e., short sequences that are
conserved across different types of enzymes and that have a
specific function) are used to identify RiPP BGCs beyond
family borders as they are present in the BGCs of approxi-
mately 50% of all RiPP families [35]. BGCs without conserved
signature sequences are almost impossible to identify using cur-
rent bioinformatic approaches (Figure 3E (e.g., kojic acid (11)
[36])). Therefore, the prediction of these BGCs is mainly based
on the co-localization of adjacent genes encoding tailoring or
additional core enzymes.

The current BGC prediction approach has its limitations, as
genes involved in the biosynthesis of a NP might be dispersed
(i.e., not clustered) throughout the genome and hence cannot be
recognized by genome mining algorithms due to the missing
proximity of the biosynthetic gene sets (BGSs) (Figure 3F (e.g.,
pyonitrin (12) [37])). NPs whose biosynthesis significantly
deviates from the well-established biosynthetic principles (e.g.,
through the lack of signature sequences) (Figure 3E) [38] are
frequently overlooked by state-of-the-art genome mining
pipelines. Most genome mining algorithms rely on the identifi-
cation of signature sequences (Figure 3A-D). As a result, BGCs
of the most commonly studied NP classes (e.g., PKS and NRPS
BGCs) can be identified with high confidence based on the se-
quence homology of the commonly occurring biosynthetic
domains. Since chemical novelty in assembly line-like path-
ways is typically obtained through novel arrangements of a
limited set of module architectures, a limited diversity of
sequential module arrangements, and varying substrate speci-
ficities, the probability of identifying truly novel biosynthetic
principles and biochemical transformations in these systems is
restricted when using hard-coded biosynthetic principles that
are based on the detection of the frequently encountered biosyn-
thetic domains [21]. As a result, a lot of effort is currently being
put into the development of complementing workflows to chart
the “biosynthetic dark matter” (i.e., overlooked biosynthetic
pathways) that we currently cannot access bioinformatically
[39]. State-of-the-art genome mining tools are ideally suited for
the detection of assembly line-like pathways. The focus on
these pathways led to a strong bias in training sets: In the
MIBiG database of characterized BGCs nearly 80% of all
deposited NP BGCs are PKS, NRPS, or terpene BGCs (April
2022) [20]. As the largest database of characterized BGCs,
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Figure 3: Universal (A, B, F) NP class and NP family-specific (C, D, F) signature sequences in NP BGCs and selected examples of each scenario.
Genome mining tools utilize signature sequences to identify NP BGCs derived from (A) gene-encoded conserved core domains of assembly line-like
pathways (e.g., modular NRPSs/PKSs), (B) distinct core enzymes (e.g., terpene or type Il PKS biosynthesis), (C) tailoring enzymes (e.g., character-
ized families of RiPP biosynthetic pathways), (D) as well as signature motifs (e.g., RiPP biosynthetic pathways that utilize tailoring enzymes contain-
ing RREs). (E) BGCs without signature sequences (e.g., NRPS-independent alkaloid biosynthesis) or (F) genomically dispersed (i.e., not clustered)
genes (here also referred to as biosynthetic gene sets) are difficult to identify. The enzymes encoded in core biosynthetic genes are responsible for
assembling the NP backbone; additional biosynthetic genes encode tailoring enzymes and other components of a pathway (transporters, regulators,

immunity enzymes). Conserved domains are depicted in yellow, genes in green and motifs in violet.

MIBIG is frequently used as a training data set for the develop-
ment of genome mining algorithms. The imbalanced representa-
tion of NP BGCs in the database, however, might introduce a
bias when it comes to the training of novel algorithms. Another
obstacle to overcome is the efficient mining of the vast quantity
of genomic data generated via next-generation sequencing, as a
lot of genome mining algorithms are not capable of handling
big data [40].

Genome mining principles and tools
Many genome mining tools are based on gene homology and

rely on alignments of annotated open reading frames (ORFs).

Yet, their purpose, functions, and additional features such as
comparative analyses of BGCs, dereplication concepts, or NP
structure prediction differ significantly. In addition, some tools
implement alternative BGC identification methods like phylo-
genetic analyses or ML approaches. In many cases, these ML
approaches are based on well-established strategies adopted
from other disciplines (e.g., natural language processing or
comparative genomics) that were adapted by the NP commu-
nity [41].

In the following section, we will look at representative genome

mining tools and discuss their underlying BGC detection princi-
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ples, along with advantages and limitations of the BGC identifi-

cation process.

Genome mining algorithms based on hard-

coded biosynthetic principles

An early approach to identify NP BGCs in (meta-)genomic data
sets were sequence alignments with known genes and domains
using algorithms like BLAST (Figure 4) [42]. BLAST detects
similar sequences to a given query sequence [42]. The first
version of the tool BAGEL utilized BLAST analysis, among
others, to identify putative BGCs of bacteriocins (= antimicrobi-
al peptides and proteins) [43-46]. The advantage of such refer-
ence alignment methods that are based on sequence homology
is their high confidence. The performance of these tools can be
rapidly improved via the addition of new reference databases,
which was contributing to their success at the beginning of the
genome mining era. However, using BLAST-based approaches,
the identification of real structural or biosynthetic novelty
remains relatively sparse, as the BLAST algorithm is most suit-
able to detect close homologs of the query sequence. Up to this
day, tools like BAGEL are predestined for the rapid and compu-
tationally cost-effective characterization of genomic data [43].

Hidden Markov Models (HMMs) are statistical models that are
used by the NP community as a more flexible approach to iden-
tify BGCs (Figure 4). These models consist of a sequence of
(e.g.,
nucleotides at a certain position of a protein or DNA sequence,

“states” the occurrences of specific amino acids or
respectively) with pre-determined transition probabilities from
one state to the next (e.g., the transition probability in a se-
quence between one base at a given position to another base at
the next position). A sequence of probabilities is calculated

from given sequence alignments, for instance, of members of a
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given gene or protein family. By adding up all possibilities, the
likelihood of the complete sequence being a member of the
gene family can be calculated [47]. Derivatives of HMMs,
so-called profile Hidden Markov Models (pHMMs), are addi-
tionally taking gaps and incomplete sequences into considera-
tion. In addition to whole genes or proteins, sequences of
conserved key domains of assembly line-like pathways like
PKSs (e.g., acyl-carrier-proteins, AT or KS domains) [25] or
NRPSs (e.g., peptidyl-carrier-proteins, A domains, condensa-
tion (C) domains) [26] are utilized for the generation of
pHMMs. The resulting pHMMs recognize signature sequences
of such conserved domains in genomic query sequences.
pHMMs cannot only be employed to detect and annotate BGCs
but also to predict substrate specificities that are essential for
NP structure predictions [19,39,48]. After the identification of
the core biosynthetic genes, co-localized genes are analyzed and
the locus and borders of the BGC are predicted via hard-coded
rules based on textbook biosynthetic knowledge, e.g., the
minimum amount of domains in a typical NRPS. Due to their
seemingly universal biosynthetic principles and modular com-
position, canonical PKS and NRPS BGCs are predestined for
the high confidence detection of their encoded biosynthetic core
domains using pHMMs. Structural novelty in these systems that
predominantly comprise the same set of conserved domains
arises from the novel arrangement of the limited set of different
module architectures (e.g., around a dozen in cis-AT PKSs vs
>150 in trans-AT PKSs [19]) along with varying substrate
selectivities of specificity-conferring domains (e.g., A domains
in NRPSs, AT domains in cis-AT PKSs, and KS domains in
trans-AT PKSs). Moreover, since these assembly line-like path-
ways follow the same biosynthetic principle, they often form
hybrids with other biosynthetic assembly line-like pathways
[21].

HMMs

¥ACTACTG CGCGCGTACTACTGCG CGCG

BLAST

TACTACTGCGCGCG

20—

Simple ML algorithms

Neural Networks

TACTACTGAACGCG

Regression

Hidden layers
Suport Vec& Decision Trees : Y Ou

) Input
Machines

leSNaPD
PRISM

RRE-Finder
BAGEL

IClusterfinder
ARTS

'DeepBGC
EO NeuRIPP
O DeepRiPP

antiSMASH algorithm

Figure 4: Concepts of algorithms in order of complexity and examples of genome mining tools that employ the respective concept.
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Prominent examples of the usage of pHMMs are the original
algorithm of the antibiotics & Secondary Metabolite Analysis
Shell (antiSMASH) [17,29,49-52] as well as PRediction Infor-
matics for Secondary Metabolomes (PRISM) [18,53-55]. In ad-
dition to PKSs and NRPSs, both tools identify a high number of
NP classes and families using pHMMs (antiSMASH 6: 876
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pHMMs, PRISM 4: 1772 pHMMS). Apart from BGC detection
by pHMMs, several stand-alone tools have been implemented
into antiSMASH to improve BGC identification, annotation,
and substrate predictions (Table 1) (described in detail below).
Therefore, we distinguish the original antiSMASH algorithm
from the antiSMASH platform (Table 1). Although the BGC

Table 1: Purpose, principles, advantages, and disadvantages of selected genome mining tools. The upper part of the table contains hard-coded tools
and the lower part ML-based tools. Novelty refers to the ability of a genome mining tool to chart non-canonical BGCs. Confidence refers to the ability
of a genome mining tool to correctly identify a NP BGC.

Tool [first/latest
version]

antiSMASH algorithm
[17]
2011/2021

antiSMASH platform
[17]

2011/2021
https://antismash.seco
ndarymetabolites.org

ARTS

[59]

2017/2020
http://arts.ziemertlab.co

m/index

BAGEL

[49]

2006/2018
http://bagel4.molgenru

gl

CASSIS and SMIPS
[60]

2016
https://sbi.hki-jena.de/c
assis/

ClusterFinder
[61]

2014
Implemented in
antiSMASH

eSNaPD

(62]

2014
http://esnapd?2.rockefell
er.edu/

EvoMining

[63]

2016/2019
https://github.com/nsel
em/evomining

Purpose

identification of a broad
range of NP BGC
classes and families

identification of a broad
range of NP BGC
classes and families,
functional and
comparative analyses,
structure prediction

target directed genome
mining for antibiotics in
bacteria via resistance
genes

identification of bacterial
bacteriocins and RiPPs
in (meta-) genomic
sequences

BGC detection in fungi

BGC detection without
functional assignment of
NP class

BGC detection in
non-assembled bacterial
metagenomic sequences

identification of BGCs
integrating evolutionary
principles

BGC identification (Dis-)advantages Novelty Confidence
principles
pHMMs, hard-coded comprehensive NP class low high
rules detection
ClusterFinder®: pHMM comprehensive analysis medium  high
RODEOQ: BLAST, pHMM, covering many NP
SVMs classes, dereplication via
RRE-Finder: comparative analysis,
pHMMs/HHpred usage of NP BGC
database databases
pHMMs for BGC targeted approach for low high
prediction (antiSMASH), bioactivity
TIGRFAM for detection
of housekeeping genes,
phylogenetic analysis for
identification of
horizontal gene transfer
BLAST analysis, HMMs, restricted to RiPP and low high
hard-coded rules bacteriocin BGCs
CASSIS: Density of precise cluster borders  low high
transcription factor
binding sites, SMIPS:
Signature sequences
HMM for whole cluster comprehensive NP class high low
detection
BLAST analysis against comprehensive NP class low high
BGC database detection of smaller
BGCs that are similar to
known BGCs
phylogenomic analysis in independent of medium  medium

combination with
antiSMASH analysis

commonly used
signature sequences
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Table 1: Purpose, principles, advantages, and disadvantages of selected genome mining tools. The upper part of the table contains hard-coded tools
and the lower part ML-based tools. Novelty refers to the ability of a genome mining tool to chart non-canonical BGCs. Confidence refers to the ability
of a genome mining tool to correctly identify a NP BGC. (continued)

PRISM identification of a broad = HMMs for BGC comprehensive analysis low high
[55] range of NP BGCs, detection, BLAST covering many NP
2015/2020 structure prediction analysis, protein motifs  classes, several
https://prism.adapsyn.c and HMMs for domain structure suggestions,
om/ specificity prediction, dereplication via
support vector machines  structural comparisons
for activity prediction

SMURF identification of fungal HMMs, hard-coded rules comprehensive NP class low high
[64] BGCs detection
2010
http://smurf.jcvi.org/run
_smurf.php
transATor annotation of trans-AT pHMMs, hard-coded restricted to trans-AT low high
[19] PKSs and accurate rules PKSs
2019 structure predictions of

trans-AT PKS-derived

polyketides
decRiPPter identification of RiPP SVMs, pan-genomic restricted to RiPP BGCs medium  medium
[65] BGCs analyses
2020
https://github.com/Alex
amk/decRiPPter
DeepBGC identification of bacterial neural network with comprehensive NP class high medium
[41] and fungal BGCs vector- represented detection
2019 Pfam domains (ML)
https://github.com/Merc
k/deepbgc
DeepRiPP identification of RiPP natural language restricted to RiPP BGCs medium  medium
[66] BGCs, structure processing (deep
2019 prediction learning)
http://deepripp.magarv
eylab.ca
GECCO identification of bacterial conditional random fields comprehensive NP class high medium
[67] and fungal BGCs detection
2021
https://github.com/zelle
rlab/GECCO
NeuRiPP identification of RiPP neural networks restricted to RiPP medium  medium
[68] precursors precursors
2019
https://github.com/emz
odls/neuripp
RODEO identification of RiPP BLAST analysis of restricted to RiPP BGCs  low medium
[69] BGCs tailoring enzymes,
2017 pHMMs, SVMs for

https://rodeo.scs.illinois
.edu/

precursor detection

aClusterFinder is not available on the antiSMASH web server any longer but is incorporated into the standalone antiSMASH command line tool.

identification approach of antiSMASH and PRISM is quite sim-
ilar, both tools differ in the downstream processing of the iden-
tified BGCs. While antiSMASH focuses on functional and com-

parative analyses of the biosynthetic genes and BGCs, the focus
of PRISM lies on a comprehensive chemical structure predic-
tion of the associated NP [56-58]. In silico dereplication to
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eliminate BGCs associated with known NPs is one of the major
functions of genome mining to avoid the time-consuming and
costly re-isolation of known NPs. For instance, the antiSMASH
platform compares putative BGCs with reference databases to
detect BGCs that are similar to previously characterized BGCs
[15,20,58]. However, as many NPs were isolated during the
pre-genomic era, they have not been linked to their correspond-
ing BGC. As a result, BGC databases are incomplete which is a
drawback when it comes to the dereplication on a gene level.
PRISM aims at overcoming this obstacle via retro-biosynthetic
building block predictions of known NPs from multiple data-
bases in combination with several BGC-derived NP structure
suggestions [58].

To identify RiPP BGCs, the antiSMASH algorithm and PRISM
utilize pHMMs based on RiPP-family-specific signature se-
quences derived from tailoring enzymes or precursor peptides
(Figure 3C and D). These family-specific pHMMs are likewise
used in tools like BAGEL or RODEO and enable the identifica-
tion of novel members of known RiPP families [46,69]. RRE-
Finder, which is integrated into the antiSMASH platform and
RODEDQO, utilizes the presence of RREs, predicted via pHMMs,
to detect RiPP BGCs (Figure 3D). Since the RRE motif is only
present in approximately 50% of all RiPP families, it restricts
the predictable biosynthetic space. Yet, RRE-Finder is one of
the few RiPP genome mining tools which is capable of identi-

fying RiPP BGCs in a family-independent manner [70].

Since the potential of identifying truly novel BGCs via signa-
ture sequences is limited, the tool ClusterFinder was developed
and implemented into the command line version of anti-
SMASH [61]. ClusterFinder annotates BGCs via pHMMs from
a string of contiguous Pfam domains (protein domains anno-
tated in the protein family database) instead of individual genes.
pHMMs are calculated using training sets of known BGCs and
non-BGC sequences. Here, two states “BGC” and “non-BGC”
are distinguished depending on the Pfam domain frequency in
the training data set and the identities of adjacent domains.
Consequently, the ClusterFinder algorithm is designed to detect
BGC:s that are overlooked by other biosynthetic pipelines. As in
many other algorithms for the detection of true biosynthetic
novelty, high false positive rates have to be taken into consider-
ation, which makes the output of low-confidence/high novelty

algorithms more difficult to interpret [61].

An alternative to the above mentioned classical genome mining
approaches is the utilization of evolutionary information for the
detection of NP BGCs. The EvoMining concept is based on the
assumption that secondary metabolite biosynthetic enzymes are
distant paralogs of enzymes involved in primary metabolism

[63,71]. These NP biosynthetic enzymes are hypothesized to
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have undergone significant sequence and selectivity changes
while still operating based on the same reaction mechanism
(e.g., fatty acid biosynthesis — polyketide biosynthesis). As
such, NP biosynthetic pathways utilize members of existing en-
zyme families that have evolved to perform new metabolic
functions. Consequently, NP BGCs “borrow” genes encoding
paralogs of enzymes that have their origin in primary metabo-
lism and that have diverged into catalyzing alternative meta-
bolic functions. That way, the EvoMining approach identifies
members of biosynthetic enzyme families that have likely been
repurposed and thus, their corresponding genes are prime
targets for a closer inspection of the genomic context to iden-
tify new types of BGCs. Although EvoMining is a signature se-
quence independent concept and instead uses phylogenetic anal-
ysis of primary metabolite biosynthetic enzymes, it remains a
“hard-coded” sequence similarity-based approach that uses
phylogenetic analysis instead of pHMMs for BGC detection
[63,71].

Machine learning-based genome mining tools
Some NP BGCs contain solely family-specific features, and
lack universal class-specific signature sequences. In these cases,
only members of the same subfamily can be identified via
pHMMs. An example of the latter are RiPPs that are the most
rapidly expanding NP subclass. Eighteen new RiPP families
have been characterized over the span of just § years,
suggesting that many more RiPP families have yet to be discov-
ered [32]. To exploit these currently overlooked biosynthetic
treasures, multiple recently developed genome mining tools
make use of ML algorithms that have been adapted from other
research fields like image recognition [65-68]. Most ML-based
tools utilize “supervised learning,” a strategy that employs a
dataset with known classifications to train the algorithm [72].
Traditional ML algorithms include regression, decision tree-
based classifiers, and support vector machines (SVM), which
construct a hyperplane that splits the n-dimensional data-space
(i.e., different features/categories serve as dimensions of this
space) into different areas that correspond to the different
classes (Figure 4) [72]. These algorithms usually lead to robust
and interpretable predictions but are limited when it comes to
solving complex problems [72].

An example of an advanced combination of different ap-
proaches and methods for the identification of RiPPs is the
Data-driven Exploratory Class-independent RiPP TrackER
(decRiPPter) [65]. decRiPPter uses a support vector machine
algorithm trained on a set of known precursor genes to detect
RiPP precursor genes semi-independently of their subclass.
Subsequently, a pan-genome analysis is performed to identify
the corresponding BGCs with the putative RiPP precursor genes

as seeds. Putative NP BGCs are identified that are organized in
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operon-like structures and prioritized based on the taxonomic
distribution of the cluster. decRiPPter was successfully used for
the identification of a new lanthipeptide subfamily, providing

experimental validation of the algorithm [65].

A more advanced form of supervised learning is deep learning
(Figure 4). An example of a deep learning architecture is the
artificial neural network inspired by the human brain architec-
ture. It consists of artificial neurons processing information
organized in different layers and connected by synapses [73].
These advanced algorithms often provide higher accuracy in
their prediction but are no longer interpretable as a result of
their high level of abstraction [73]. NeuRiPP, for instance,
utilizes a parallel convolutional neural network to predict novel
RiPP precursor genes independent of their RiPP family. The
neural network is trained on a RiPP precursor training set that is
based on experimentally verified precursors and precursors pre-
dicted by other tools [68]. Both RiPP-specific tools, NeuRiPP
and decRiPPter, allow a more flexible BGC identification than
hard-coded algorithms but are biased in that the precursor iden-
tification depends on training sets consisting of precursors from

known RiPP families.

In contrast to NeuRiPP and decRiPPter, DeepBGC is not
restricted to a single NP class. Comparable to some hard-coded
algorithms, DeepBGC is based on HMM-generated Pfam anno-
tations. However, instead of utilizing Pfam-domains as features,
it converts the arrays of Pfam annotations into numeric vectors
using a shallow two-layer neural network, an approach adopted
from natural language processing [41,72]. These high-dimen-
sional vectors are then used as input for a second two-layer
neural network trained on a set of BGC and non-BGC se-
quences to predict NP BGCs. In the last step, the NP class is
predicted using a random forest classifier (Figure 4) [41,74].
DeepBGC outperforms ClusterFinder in its accuracy and false-
positive rates due to its ML approach. Like with many other
tools, a major disadvantage of DeepBGC is that BGCs lacking
canonical biosynthetic domains and small BGCs are filtered out
in a pruning stage. Consequently, small BGCs (e.g., biarylitides
15 [75] and tryptorubins 9 [33]) or those that feature solely
atypical biosynthetic genes are not recognized, which reduces
the likelihood of identifying true biosynthetic novelty [41].

A similar approach is utilized by GECCO, that uses conditional
random fields on arrays of Pfam annotations [67]. Conditional
random fields belong to the statistical methods and can be clas-
sified between HMMs and simpler machine learning algo-
rithms. An advantage of conditional random fields is their inter-
pretability [67]. GECCO outperforms rule-based models in
terms of novelty and DeepBGC in terms of accuracy while

being less computationally expensive than both [67]. Like
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DeepBGC, GECCO currently lacks functional proof for the
identification of a novel natural product guided by the tool [67].

Challenges and potential solutions to identify

currently overlooked BGCs

Genome mining was pivotal for the expansion of NP chemical
space in the past two decades. Despite the development of more
and more sophisticated genome mining platforms, in many
cases where truly novel NP scaffolds were described, the NP
was isolated first and only then linked to its corresponding BGC
[38]. Notable examples include the (thio-)peptides polytheon-
amide A (13) [76], closthioamide (15) [77] (Figure 5), and tryp-
torubin A (9) [33]. It was not until the structure of each of these
peptides was determined, that manual retrobiosynthetic analy-
sis resulted in the proposal of biosynthetic models that were
subsequently experimentally verified. Once the biosynthesis of
a NP is determined using this approach, the NP family can be
expanded by developing genome mining algorithms to identify
BGC:s that follow similar biosynthetic principles [56].

One crucial challenge in the development of novel genome
mining tools is balancing novelty and confidence, as one tends
to fall short as the other is optimized [39]. On the one hand,
genome mining tools that are focused on detecting non-canon-
ical BGCs (high-novelty) are usually characterized by the iden-
tification of many putative BGCs that might not be involved in
NP biosynthesis (high false-positive rate). These false-positive
BGCs are automatically pruned and the resulting putative BGCs
need to undergo a second round of manual verification and
prioritization prior to functional characterization [39]. On the
other hand, hard-coded algorithms detect BGC with high confi-
dence but are restricted when it comes to the identification of
BGCs that deviate significantly from what the algorithm's
pHMMs have been trained to identify (true biosynthetic
novelty) [39]. As most algorithms are at least to some extent
signature sequence or sequence homology based, they heavily
rely on the sequence space of known BGCs. The bias of hard-
coded algorithms is embedded in the biosynthetic rules used for
BGC detection and the dataset used to create pHMMs. The bias
of ML-based algorithms results from their training sets that
usually consist of characterized, canonical BGCs that are then
used for the targeted identification of non-canonical BGCs [39].
Utilizing fewer gene family-based features, like the occurrence
of Pfam domains or the sequence itself, for predictions can help
to avoid overfitting, i.e., the problem of getting the algorithm to
perform very well on the training data but underperform on
unseen data [39].

Most genome mining algorithms rely on functionally annotated

ORFs for the prediction of BGCs. State-of-the-art genome

annotation algorithms are not yet able to recognize all ORFs
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Figure 5: Examples of peptide NPs, the corresponding BGCs of which were determined through retrobiosynthetic analysis and then experimentally
verified: polytheonamide A (13) [76], closthioamide (14) [77], and biarylitide YYH (15) [33].

correctly, especially very short ORFs like RiPP precursor genes
[78]. Combined with many false ORF annotations, missing
annotations impair BGC predictions downstream of the annota-
tion process. Moreover, the BGCs of certain NP families are
inherently easier to identify than others. For example, domains
of canonical NRPSs and PKSs can be identified by signature se-
quence-based pHMMs with high confidence (Figure 3).
Furthermore, pHMMs of conserved domains can be subdivided
into dozens of individual pHMMs used to determine the sub-
strate specificity of a conserved domain [17,19]. However,
BGCs lacking known signature sequences are inherently more
difficult to identify. In addition, the size of the BGC of interest
impacts the predictive power of the algorithms: Extremely small
BGC:s, harboring only a few genes, are frequently overlooked as
they usually do not pass hard-coded thresholds. For instance,
the 1.2 kb gene cluster linked to tryptorubin (9) biosynthesis
only encodes a 26 amino acid precursor peptide and a single
cytochrome P450 monooxygenase [33,79], and hence it was
overlooked by genome mining algorithms. On the other hand,
large PKS or NRPS BGCs can be split across multiple contigs.
This mosaic-like distribution of a single BGC makes the identi-
fication of the entire BGC a challenging endeavor especially if

multiple assembly line-like BGCs are present in a genome.

Moreover, the quality of assembled genomes obtained from
short reads decreases with highly repetitive sequences present in
many large PKS or NRPS genes [39].

Although the traditional hard-coded rule- and ML-based ap-
proaches differ fundamentally when it comes to the implemen-
tation of the respective NP BGC identification, they are both
based on the same principle: The direct identification of NP
BGCs. Both approaches heavily rely on training sets to generate
pHMMs or to train the respective ML algorithm. As a conse-
quence, they are both hypothesis-driven approaches resulting in
an inherent bias “to identify what the algorithm was trained to
identify” rather than to chart the entire biosynthetic space. This
bias is largely based on the fact that both approaches use the
characterized NP biosynthetic space as a training set for its
expansion. Even though there might be no truly unbiased ap-
proach towards the expansion of NP biosynthetic space,
indirect NP BGC detection methods might be capable of
complementing the current strategies. These indirect ap-
proaches are exclusively based on the assumption that NP
biosynthetic genes are clustered in microbial genomes (even
though this might not be true for all NP biosynthetic pathways)

and do not require prior knowledge about characterized biosyn-

1666



thetic pathways as training data sets. Below, we are showcasing
two putative solutions to complement existing approaches to
expand NP biosynthetic space and to chart biosynthetic dark

matter.

Genome-wide characterization of all
clustered genes as an approach to identify
non-canonical pathways

One concept that is based on the above outlined indirect ap-
proach is the genome-wide characterization of all clustered
genes (gcBGC). In comparison to state-of-the-art genome
mining tools, gcBGC inverts the current BGC identification
process. Instead of identifying NP BGCs, all clustered genes
involved in primary and secondary metabolite biosynthesis are
identified. To specifically target non-canonical BGCs, BGCs
that can be unambiguously assigned to primary metabolism and
those BGCs that are detected by state-of-the-art genome mining
pipelines are filtered out. Based on the initial hypothesis under-
lying the gcBGC approach, the remaining BGCs are likely
involved in non-canonical NP biosynthesis (‘“biosynthetic dark

matter” in Figure 6).

The gcBGC concept is based on the assumption that secondary
metabolite BGCs evolve from primary metabolite biosynthetic
pathways, and that the transition between both is fluid [71].
First, gcBGC identifies all clustered genes in a signature se-
quence-independent manner via analysis of operon-like struc-
tures (e.g., promoters or transcription start sites) as shown in
fungi by the tool CASSIS/SMIPS [60]. This concept contrasts

Primary metabolism
f

Predictability
T
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the commonly used principles that rely on the direct detection
of genes via (p)HMMs- or ML-based approaches, both of which

typically require a training data set.

As this approach leads to the identification of a large number of
primary and secondary metabolite BGCs that are likewise
detected by state-of-the-art genome mining pipelines, a filtering
step is required to prioritize the putative non-canonical BGCs
that are currently overlooked by existing genome mining tools
[17,41,55,80] (Figure 6). Moreover, additional information on
taxonomic relationships, pan-genome analyses, or whole-
genome comparisons of all members of the pan-genome can be
used for further prioritization (Figure 6) [81]. gcBGC is
restricted to well-studied organisms where primary metabolite
gene cassettes can be confidentially identified. However, the
inverted BGC identification concept combined with the focus
on as-of-yet unidentified BGCs suggests gcBGC-like ap-
proaches to be promising alternatives for the detection of non-
canonical pathways.

A comparative genomics approach to

identify non-canonical BGCs

Another concept for the expansion of NP biosynthetic space is
based on a Comparative Genomics Approach (CGA). This ap-
proach relies on the fact that many BGCs are introduced into
microbial genomes via horizontal gene transfer (HGT). A
genome can be subdivided into groups of genes called syntenic
blocks [82]. Among related strains, the order of these syntenic
blocks, as well as their gene composition, is highly similar

Secondary metabolism

1

Biosynthetic dark matter

Comparative genomics
Hard-coded algorithms

Database search

|
1

Comparative genomics

Machine learning-based tools

Hard-coded algorithms

Database search

Figure 6: gcBGC prioritization process. The bar represents all identified gene clusters in one organism and is subdivided into primary (green) on the
left and secondary metabolism (yellow) on the right. Gene clusters associated with primary or secondary metabolism (both ends of the spectrum) are
identified using the strategies listed below the bar and subsequently excluded from further analysis. gcBGC aims at identifying as-of-yet overlooked
BGCs that cannot be detected by state-of-the-art bioinformatic platforms, here referred to as “biosynthetic dark matter.”
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(Figure 7). Evolutionary young HGT events in single/few
strains can disrupt this order, leading to the insertion of non-
syntenic blocks (Figure 7) [82]. These insertions are detectable
by comparing multiple closely related strains utilizing whole
genome alignments, a technique adopted from the field of com-
parative genomics [83]. In a recent study, 10 Aspergillus
genomes were compared to identify BGCs in non-syntenic
blocks, leading to the confirmation of all previously known
BGCs using the CGA concept [84]. As a proof of concept, the
previously characterized kojic acid (11) BGC, which escaped
detection by state-of-the-art genome mining algorithms, was
identified [84]. The kojic acid (11) BGC lacks the classical
biosynthetic signature sequences typically used for BGC identi-
fication, thus showing the potential of the approach (Figure 3)
[84].

CGA aims at scaling this approach and comparing all
sequenced strains of one genus (e.g., Streptomyces) to find non-
syntenic blocks that might code for NP BGCs. Comparable to
the genome-wide characterization of all clustered genes
concept, CGA focuses on BGC detection independently of
signature sequences and known NP families to expand the
known NP chemical space via the identification of non-canon-
ical pathways.

The first step of CGA consists of the homogenous functional
annotation of all genes of the selected genomes to reduce false
positive rates of non-syntenic blocks due to different annota-
tions of genes using different annotation algorithms. Subse-
quently, all annotated genes are clustered based on sequence
similarity to improve functional annotations [85]. The obtained
sequential arrangements of gene annotations representing the
different genomes are aligned to compare the genomes not on a

sequence level, but instead on the gene-function level [86].
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Whole genome alignments are performed to detect single
diverging gene loci that are subsequently expanded by their
genomic neighborhood to detect genomic islands. Therefore,
the genomic neighborhoods of the identified genes are analyzed
for differences in their synteny to detect HGT regions
composed of multiple genes. In addition, these regions are
analyzed for genetic characteristics like promoters or trans-
posase genes to identify operon-like structures. Single gene
duplication events are filtered out and all known BGCs are
excluded in a similar fashion as in the gcBGC approach. The
presence of prototypical tailoring enzymes ubiquitously distri-
buted in secondary metabolism might serve as an additional line
of evidence for a functional NP BGC. This approach is compu-
tationally expensive yet feasible with the availability of high-
performance computer clusters but requires excellent quality of
the analyzed genomes. This method has the advantage over
simpler approaches to detect HGT events, like for example
comparing GC contents of different regions, that it can be used
to detect HGT events from closely related strains.

Conclusion

The development of next-generation sequencing technologies
[4] and the resulting availability of a seemingly exponentially
increasing number of genome sequences enabled or revolution-
ized several biological fields including comparative genomics
[81], functional genomics [87], and NP-genome mining [88].
From simple BLAST analyses through pHMM-based algo-
rithms to ML-based approaches, genome mining is a continu-
ously evolving field that has benefited from other disciplines,
such as mathematics, image processing, or linguistics. State-of-
the-art sequence homology- and ML-based genome mining
tools identify BGCs that share even low levels of similarity with
known BGCs with high confidence. Traditional pHMMs-based
approaches are ideally suited to chart the biosynthetic space of

speces 1 — -
speces»— [ N

Figure 7: Genome alignments of related organisms revealing the presence of syntenic (purple) as well as non-syntenic blocks (blue). The order of
syntenic blocks can be disrupted by putative HGT events, leading to the integration of non-syntenic blocks that are subsequently screened for operon-
like structures containing multiple continuous gene arrangements (blue) without large gaps.
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assembly line-like pathways that are typically composed of
novel arrangements of recurring module architectures with
varying specifications of the substrate specificity-conferring
domains. ML-based approaches on the other hand are more
frequently employed to target non-homogeneous NP classes
such as RiPPs whose BGCs do not share sequence homologies
across all 40 plus RiPP-families and to identify NP BGCs that
are currently overlooked by state-of-the-art sequence
homology-based tools. Even though the scope and implementa-
tion of both approaches differs significantly, the underlying
concept is the same: The direct, hypothesis-driven identifica-
tion of clustered NP biosynthetic genes based on a training data
set that requires a database of characterized BGCs. This training
data set might comprise individual domains from characterized
pathways to generate pHMMs to complex features that are
extracted from characterized BGCs. The bias introduced
through the dependence on these reference datasets is likely to
result in an inherent limitation when it comes to the identifica-
tion of truly non-canonical pathways that share low to no simi-
larity to characterized pathways. To address these limitations,
indirect approaches that do not rely on training data sets of
characterized BGCs might be capable of complementing the
current suite of highly sophisticated genome mining tools as
they might be ideally suited to identify non-canonical pathways
that are overlooked by direct identification approaches. We
showcased two such hypothetical indirect approaches that we
named “genome-wide characterization of all clustered genes”
and “comparative genomics-based identification of non-canon-
ical BGCs”. These indirect BGC detection concepts are solely
based on the assumption that biosynthetic genes are clustered in
bacterial genomes. Both approaches are based on the sequence
similarity-independent identification of non-canonical BGCs
via recognition of operon-like structures or usage of compara-
tive genomics to detect horizontally transferred gene clusters. In
a subsequent prioritization step, clustered genes that are
involved in primary metabolite biosynthesis or that can be like-
wise detected by state-of-the-art genome mining pipelines can
be excluded to target uncharted biosynthetic space also referred
to as biosynthetic dark matter. These indirect concepts might
serve as an inspiration for further innovative tools for the

targeted discovery of hidden biosynthetic treasures.
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