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A donor—m—acceptor (D-m—A)-type pull-push compound, DMB-TT-TPA (8), comprising triphenylamine as donor and dimesityl-

boron as acceptor linked through a thieno[3,2-b]thiophene (TT) m-conjugated linker bearing a 4-MeOPh group, was designed, syn-

thesized, and fabricated as an emitter via a solution process for an organic light-emitting diode (OLED) application. DMB-TT-TPA

(8) exhibited absorption and emission maxima of 411 and 520 nm, respectively, with a mega Stokes shift of 109 nm and fluores-

cence quantum yields both in the solid state (41%) and in solution (86%). The optical properties were supported by computational

chemistry using density functional theory for optimized geometry and absorption. A solution-processed OLED was fabricated using

low turn-on voltage, which had performances with maximum power, current, and external quantum efficiencies of 6.70 Im/W,

10.6 cd/A, and 4.61%, respectively.

Introduction

In recent years, organic electronics have become very attractive
due to their various advantages such as high flexibility, easy
designability, low fabrication cost, easy processing and large-
scale fabrication [1-4]. Especially in display technology,
organic-based materials have found use in many applications
such as OLEDs, micro-LEDs, LCDs, lasers, and photodiodes by
applying thin film methods and solution processes [5-8]. The
performance of organic electronics is based on the active layer

composition as well as the fabrication methods and processing

parameters. The organic active layers are composed of various
aromatic m-conjugated small molecules/polymers including

thiophene, anthracene, carbazole, and triphenylamine [9-13].

Thienothiophenes are two annulated thiophene rings having
four isomers, among which the most widely used isomer is
thieno[3,2-b]thiophene (TT) [14-19]. These compounds are
electron-rich, flat and electron-delocalized systems, properties

that make them promising materials for the construction of
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conjugated energy-based semiconductors for OLEDs [20-23],
perovskite solar cells [24,25], organic field-effect transistors
(OFETs) [26-28], capacitors [29,30], hybrid films [31], and
photosensitizers [32-34]. Another important r-conjugated unit
is triphenylamine (TPA), having an ionization potential of
6.80 eV, which is lower compared to many other organic cores,
thus providing a strong electron-donating ability for organic
electronic applications [12,35]. Dimesitylboron (DMB), with its
unoccupied p-orbital, is an electron-acceptor organoboron com-
pound used in several donor—acceptor systems to provide the
system with pull-push interaction [36,37].

In this work, we have designed and synthesized a D——A model
pull-push fluorophore, DMB-TT-TPA (8), having TPA and

DMB units as donor and acceptor units that were linked through
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a 4-MeOPh-substituted TT core as a m-spacer. The photophysi-
cal properties of the fluorophore were investigated by spectros-
copic methods. Moreover, DMB-TT-TPA (8) was fabricated as
an emitter for an organic light-emitting diode through a solu-
tion process. DMB-TT-TPA (8) displayed excellent perfor-
mance in both device application and photophysical properties,
i.e., a maximum solution fluorescence quantum yield of 86% in
THF, maximum solid-state fluorescence quantum yield of 41%,
maximum current efficiency of 10.6 cd/A, and maximum power
efficiency of 6.70 Im/W.

Results and Discussion

Design and synthesis
The OLED fluorophore, DMB-TT-TPA (8, Scheme 1), having a

donor—m—acceptor (D-m—A) system, was synthesized according
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Scheme 1: Synthesis of DMB-TT-TPA (8).
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to our previously reported methods [20-23,36,38]. The synthe-
sis commenced with the treatment of 3-bromothiophene (1)
with n-butyllithium at =78 °C, followed by the addition of
elemental sulfur and subsequent reaction with 2-bromo-1-(4-
methoxyphenyl)ethanone to produce compound 2 in 83% yield.
The following ring-closure reaction was conducted in the
presence of polyphosphoric acid (PPA) in refluxing chloro-
benzene to give 3 (TT) in 86% yield. The brominated TT 4
was obtained through selective monobromination of compound
3 using NBS at —10 °C in DMF in 88% yield. The boronated
triphenylamine 6 was constructed in a one-pot two-step
reaction in 77% yield, by lithiation of 4-bromo-N,N-diphenyl-
aniline (5) with n-butyllithium at —78 °C and addition of
2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. The
Suzuki-coupling reaction of TT 4 with borolane 6 produced the
intermediate 7 in 81% yield. The target D-n—A-type fluoro-
phore, DMB-TT-TPA (8), was produced by lithiation of 7 and
following reaction with dimesitylboron fluoride in 85% yield
(Scheme 1).

Photophysical properties

The UV-vis absorption and fluorescence spectra of DMB-TT-
TPA (8) were recorded in THF (Figure 1 and Table 1) [38]. It
showed maximum absorption and emission wavelengths of 411
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and 520 nm (excitation at Ap,x), respectively, leading to a mega
Stokes shift (>100 nm) of 109 nm, which could be explained to
be due to a fast relaxation from the excited state to the ground
state as a result of a powerful intramolecular energy transfer be-
tween the TPA and boron groups through the thieno[3,2-b]thio-
phene (TT) core. The optical band gap (Eoptic) of DMB-TT-
TPA (8) was calculated to be 2.52 eV from the onset wave-
length of the absorption spectrum at 491 nm. The compound
demonstrates high quantum efficiencies in the solid-state and in
solution (THF) of 41 and 86%, respectively. The considerable
quantum efficiencies pointed out that DMB-TT-TPA (8) is
among the best D—m—A modal fluorophores suitable for an
OLED application. Moreover, the photophysical properties of
DMB-TT-TPA (8) were investigated through time-resolved
fluorescence studies (390 nm laser source in THF). The fluores-
cence lifetime () of DMB-TT-TPA (8) exhibited a mono-expo-
nential profile having a 3.20 ns fluorescence decay pattern
(Figure S1 in Supporting Information File 1), demonstrating a
strong pull-push interaction in steady-state time resolved fluo-

rescence performance.

OLED application
An OLED was fabricated using a standard conventional device
architecture of ITO/PEDOT:PSS/TFB/TAPC:TCTA:emitter
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Figure 1: Absorption and emission of DMB-TT-TPA (8) in THF. Figure 1 was adapted with permission of Institution of Chemical Engineers (IChemE)
and The Royal Society of Chemistry from [38] (“Cationic and radical polymerization using a boron—thienothiophene—triphenylamine based D-11-A type
photosensitizer under white LED irradiation”) by A. Suerkan et al., Mol. Syst. Des. Eng., vol. 8, issue 10, © 2023); permission conveyed through Copy-
right Clearance Center, Inc. This content is not subject to CC BY 4.0.

Table 1: Photophysical data of DMB-TT-TPA (8) [38].

Compound UVmax® (nm)  UVgnget (M) Flmay® (nm) AP (em™) Eoptic® (eV) q’solidd (%) Dg0/® (%)

DMB-TT-TPA 411 491 520 5100 2.52 41 86

aAbsorption and fluorescence maxima in THF. PStokes shift (cm=1) Av = 1/Amax — 1/Aem. CEoptic from the onset of the absorption spectrum. dSolid-
state quantum yield. ®Solution-state quantum yield in THF.

1851



(DMB-TT-TPA (8))/TPBi/LiF/Ca/Ag, where TFB, TCTA/
TAPC, and TPBi acted as hole transport, hole transporting host,
and electron transport materials, respectively (Figure S2 in Sup-
porting Information File 1). The current efficiency—lumi-
nance-voltage (J-L-V) graph and power efficiency (PE),
external quantum efficiency (EQE), and electroluminescence
curves are depicted in Figure 2 and Figure 3, respectively. Al-
though DMB-TT-TPA (8) was synthesized and OLED perfor-
mance was examined in our previous study [23], a different
device architecture and method, i.e., solution processing, was
used in this study. In the previous study, the OLED of DMB-
TT-TPA (8) was explained to demonstrate performance with the
turn-on voltage, external quantum efficiency (EQE), and
highest luminescence efficiency of 4.6 V, 0.15% and 0.40 cd/A,
respectively, using a thermal evaporation method. On the other
hand, in this study, the OLED of DMB-TT-TPA (8), prepared
using a solution processing method, showed a low turn-on
voltage (V) of 2.90 V, a max current efficiency (CEp,x) of
10.6 cd/A, a max luminance of 752 cd/mz, a max power effi-

ciency (PEax) of 6.70 Im/W, and an external quantum effi-
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ciency (EQE) of 4.61%, along with a green emitting lumines-
cence at 512 nm (Table 2). According to the CIE color space
chromaticity diagram, the device was located at the coordinates
of 0.16 and 0.51. The obtained EL results are in good agree-
ment with the fluorescence characteristic of DMB-TT-TPA (8).
Additionally, OLED performances were significantly increased
compared to the previous study [23]. In terms of the TT chem-
istry, the device results reached remarkable values for
donor—m—acceptor-type solution processable emitters within the
donor—acceptor family [39-42]. This approach also supports that
the solution-processable OLED application is a perfectly suit-
able device preparation for DMB-TT-TPA (8).

Thermal properties

The thermal properties of DMB-TT-TPA (8) were investigated
through thermal gravimetric analysis (TGA) at 750 °C at a
heating rate of 10 °C min~! under N, atmosphere (Figure 4).
The initial mass loss (5%) around 120 °C could be due to
residual water and/or solvent. The highest decomposition was
observed at around 405 °C and 14% of DMB-TT-TPA (8)
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Figure 2: (a) Current efficiency—luminance, (b) current efficiency—voltage, (c) luminance—voltage, and (d) current density—voltage characteristics of

DMB-TT-TPA (8).
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Figure 3: (a) Power efficiency—luminance, (b) external quantum efficiency—luminescence, (c) electroluminescence—wavelength characteristics of

DMB-TT-TPA (8).

Table 2: Photophysical data of DMB-TT-TPA (8).

compound Von? (V) CEP (cd/A) LC (cd/m?)

DMB-TT-TPA 2.9 10.6 752

AeLd (nm) EQE® (%) PEmax' (IM/W) CIE9 (x, y)

512 4.61 6.70 (0.16, 0.51)

aTurn-on voltage, recorded at the luminance of 1 cd-m2. PMaximum current efficiency. “Maximum luminance. ®Maximum electroluminescence wave-
length. IMaximum current efficiency. Maximum external quantum efficiency. Maximum power efficiency. 9Chromaticity coordinates according to the

CIE 1931 diagram.

remained without ash up to 750 °C, indicating that the com-
pound has an excellent thermal stability. The high thermal
stability is profitable for the preparation of stable and durable
OLED devices.

Computational chemistry

Ground-state geometry optimization of DMB-TT-TPA (8) was
performed using density functional theory (DFT) calculations
with the Gaussian 16 software at the B3LYP/6-31G (d,p) level

(Figure S3 in Supporting Information File 1) [23,43]. The
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) energy levels were
calculated to be —4.93 and —1.83 eV, respectively (Figure 5).
While the HOMO electrons were distributed mainly on the
triphenylamine and TT units, the LUMO was found to be delo-
calized through the dimesitylboron and TT ring, the results
being in line with the experimental values of our previous study
[23].
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On the basis of the optimized ground-state geometry, time-de-

100 - pendent DFT (TD-DFT) calculations were conducted in THF to
investigate the absorption properties and theoretical band gap

(Table 3). The optical band gap value (Epic) Was calculated to
be 2.06 eV, considering the Agpger (605 nm) of the UV-vis
curve. The calculated absorption maximum was centered at

80 -~

60
470 nm (Figure S4 in Supporting Information File 1), which

Weight (%)

40 4 was found to be in a good agreement with the experimentally

determined UV—-vis spectrum.

20 4

Conclusion

1 — A small fluorophore molecule, DMB-TT-TPA (8), containing
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Temperature (°C) linked through a thieno[3,2-b]thiophene core having a

4-MeOPh group, was designed as a D-m—A model and synthe-

Figure 4: Thermal gravimetric analyses (TGA) of DMB-TT-TPA (8).

9

sized in 85% yield. Its photophysical properties were investigat-
ed by UV-vis and fluorescence spectroscopy. The obtained ex-
perimental results were found to be in good agreement with
computational investigations. An OLED fabrication, where
DMB-TT-TPA (8) was employed as an emitter, showed a
maximum luminescence efficiency of 752 cd/m?, a maximum
external quantum efficiency of 4.61%, a maximum power effi-
ciency of 6.70 Im/W, and a maximum current efficiency of
10.6 cd/A on 2.9 V turn on voltage with CIE coordinates of
0.16 and 0.51 at Agr. = 512 nm. The OLED, optical and thermal
properties indicated that the composition of thienothiophene,
triphenylamine, and boron is a highly suitable combination for

fluorescent organic electronics in display technology.

Experimental
General methods

'H and !3C NMR spectra were recorded on a Varian model
NMR spectrometer (500 and 126 MHz) and chemical shift
values are reported in ppm downfield from tetramethylsilane
(TMS). UV-vis absorption spectra were obtained using a
HITACHI U-0080D spectrophotometer. Fluorescence spectra
were recorded on a HITACHI F-4500 fluorescence spectropho-
tometer. Time-resolved fluorescence studies were performed on
a Horiba, FL3-2IHR fluorescence spectrophotometer. Solid-

state and solution-state quantum yields were measured using a

9
9 LUMO ’ 9 Hamamatsu Quantaurus-QY Absolute PL Quantum Yield Spec-
J . . .
trometer. Thermal gravimetric analysis (TGA) was performed
Figure 5: HOMO and LUMO diagrams calculated at the B3LYP/6-31G on a PerkinElmer Diamond TA/TGA with a heating rate of

d,p) level of theory. . .
@) y 10 °C min~! under nitrogen flow.

Table 3: The HOMO and LUMO energy levels and absorption values calculated by TD-B3LYP/6-31G (d,p) level of theory.
Compound HOMO (eV) LUMO (eV) Amax (nm) Aonset (NM) Eoptic (€V)

DMB-TT-TPA (8)  -4.93 -1.83 470 605 2.06
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Materials

3-Bromothiophene (97%, Across), 2-bromo-4’'-methoxyace-
tophenone (97% Merck), N-bromosuccinimide (Sigma-
Aldrich), polyphosphoric acid (PPA, 115% H3POy4 basis,
Sigma-Aldrich), n-butyllithium (2.5 M in hexanes, Sigma-
Aldrich), sodium sulfate (Merck), 4-bromotriphenylamine
(Sigma-Aldrich), dimesitylboronfluoride (90%, Sigma-Aldrich),
4.,4,5,5-tetramethyl-1,3,2-dioxaborolane (Sigma-Aldrich),
tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4, 99%,
Sigma-Aldrich), were used as received. Diethyl ether and THF
were dried over metallic sodium. Dimethylformamide (HPLC
grade) was stored over activated molecular sieves (4 A).
Dichloromethane (Aldrich), methanol (Merck), and sodium
carbonate (Merck) were used as received. Compounds 2—-6 were
synthesized following our previous reports [20-23,44-47]. The
characterization data of 7 and 8 are compatible with the
published data in ref. [23].

Synthesis of 7

Synthesized as described in [23]. To a mixture of thienothio-
phene 4 (250 mg, 0.770 mmol) and borolane 6 (320 mg,
0.845 mmol) dissolved in THF (25 mL) and degassed for
45 min with N, was added K,COj3 (2.5 mL, 2.5 M) and
Pd(PPh3)4 (0.077 mmol). The mixture was then saturated with
N>, the reaction flask sealed and the mixture stirred at 75 °C for
48 h. Afterwards, the reaction mixture was filtered through
celite eluting with CH,Cl,, extracted with CH,Cl,/water, and
the organic phase was washed with sodium carbonate solution
(10%) and water, dried over sodium sulfate, filtered, and the
solvent was evaporated under reduced pressure. The crude
product was purified by column chromatography eluting with
n-hexane/CH,Cl, 4:1 to obtain the title compound 7 (300 mg,
81%) as a white powder. Mp 141-142 °C; 'H NMR (500 MHz,
CDCl3) & 7.42 (d, J = 8.8 Hz, 2H), 7.35 (d, J = 5.2 Hz, 1H),
7.28 (t,J = 8.7 Hz, 5H), 7.20 (d, J = 8.7 Hz, 2H), 7.13 (d, J =
7.6 Hz, 4H), 7.05 (t, J = 7.3 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H),
6.92 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H); 13C NMR (126 MHz,
CDCl3) 6 158.89, 147.36, 147.17, 142.04, 139.51, 135.73,
130.12, 129.87, 129.29, 128.34, 127.96, 125.86, 124.80, 123.24,
122.53,119.81, 114.14, 55.22.

Synthesis of DMB-TT-TPA (8)

Synthesized as described in [23]. To a solution of compound 7
(200 mg, 0.410 mmol) in dry THF (50 mL) was added terz-
butyllithium (0.3 mL, 1.7 M, 0.490 mmol) dropwise at =78 °C
under a nitrogen atmosphere over a period of 45 min. Then,
dimesitylborofluoride (130 mg, 0.490 mmol) was added rapidly.
The mixture was further stirred at =78 °C for 1 h, then, allowed
to warm to room temperature and stirring was continued
overnight. The solution was extracted with dichloromethane,

and the organic layer was washed with Na,CO3 solution (10%)

Beilstein J. Org. Chem. 2023, 19, 1849-1857.

and water. The organic layer was dried over Na,SQOy, filtered
and the solvent was evaporated under reduced pressure. The
crude product was purified by flash column chromatography
eluting with a mixture of n-hexane/CH;,Cl; 3:1 and then crystal-
lized from ethanol to give the title compound DMB-TT-TPA
(8) as a yellow powder in 85% yield (256 mg). Mp 165-166 °C;
TH NMR (500 MHz, CDCl3) d 7.59 (s, 1H), 7.39 (d, J = 8.8 Hz,
2H), 7.28 (d,J = 7.8 Hz, 4H), 7.19 (d, J = 8.7 Hz, 2H), 7.12 (d,
J =17.6 Hz, 4H), 7.05 (t,J = 7.3 Hz, 2H), 6.93 (d, J = 8.7 Hz,
2H), 6.87 (d, J = 8.8 Hz, 2H), 6.84 (s, 4H), 3.82 (s, 3H), 2.32
(s, 6H), 2.17 (s, 12H); 13C NMR (126 MHz, CDCl3) &
158.92, 153.46, 151.26, 147.60, 147.20, 143.95, 141.05, 140.90,
138.50, 137.96, 132.59, 130.25, 129.86, 129.49, 129.33, 128.14,
127.85, 127.57, 125.01, 123.45, 122.08, 114.12, 55.23, 23.54,
21.22.

Supporting Information

Supporting Information File 1

General experimental device methods, life time spectra,
theoretical computation data, 'H and '3C NMR spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-19-137-S1.pdf]
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