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A visible-light-induced nickel-catalyzed cross coupling of alkyl carboxylic acids with N-trifluoroethoxyphthalimide is described.

Under purple light irradiation, an a-hydroxytrifluoroethyl radical generated from a photoactive electron donor—acceptor complex

between Hantzsch ester and N-trifluoroethoxyphthalimide was subsequently engaged in a nickel-catalyzed coupling reaction with in

situ-activated alkyl carboxylic acids. This convenient protocol does not require photocatalysts and metal reductants, providing a

straightforward and efficient access to trifluoromethyl alkyl acyloins in good yields with broad substrate compatibility. The com-

plex bioactive molecules were also compatible with this catalytic system to afford the corresponding products.

Introduction

Acyloins (also known as a-hydroxy ketones) are widely found
as structural motif in natural products [1-7] and bioactive mole-
cules [8-11] (Figure 1). They can also be used as building
blocks in organic synthesis [12-14], involved in numerous
transformations to other important functional groups such as

dicarbonyls [15], diols [16], amino ketones [17] and so on.

Recently, the introduction of a trifluoromethyl group into
organic molecules has received great attention due to their wide
applicability in medicinal [18,19] and materials [20,21] chem-

istry. The toxicological experiments showed that trifluoro-
methyl acyloins can selectively induce apoptosis in human oral
cancer cells [22,23] and have therefore attracted much more
attention. However, trifluoromethyl acyloins were not widely
used due to the challenge associated with their synthesis.

Certain progress has been made in the synthesis of trifluoro-

methyl aromatic acyloins. Maekawa’s group [24] developed a

tandem reaction of the reductive coupling between arylalde-
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Figure 1: Selected natural products and pharmaceuticals bearing
acyloins.

hydes and ethyl trifluoroacetate in the presence of magnesium
and chlorotrimethylsilane, followed by desilylation to produce
the trifluoromethyl aromatic acyloins (Scheme 1a). Anand’s
group [25] demonstrated that a NHC-catalyzed selective acyloin
condensation between aromatic aldehydes and trifluoroacetalde-
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hyde ethyl hemiacetal afforded the analogous products
(Scheme 1b). In comparison, the synthesis of trifluoromethyl
aliphatic acyloins is still challenging, and to the best of our
knowledge, only Kawase's group [26] reported the preparation
of such compounds starting from a-hydroxy acids or a-amino
acids in the presence of trifluoroacetic anhydride and pyridine
with very limited substrate scope (Scheme 1c). Therefore, the
development of a more general and practical method for the
synthesis of trifluoromethyl aliphatic acyloins is highly desir-
able.

Carboxylic acids are widely used in organic reactions because
they are chemically stable, less toxic, and commercially avail-
able in a large structural variety [27-30]. The nickel-catalyzed
direct conversion of carboxylic acids to ketones is an important
chemical transformation [31-38]. However, to the best of our
knowledge, this protocol has not been used for the synthesis of
fluoroalkylated ketones so far. Very recently, we have de-
veloped a visible-light-induced nickel-catalyzed coupling of
aryl bromides with an a-hydroxytrifluoroethyl radical for the
synthesis of trifluoromethyl aryl alcohols [39]. Encouraged by
this work, we envisioned that the nickel-catalyzed coupling of
carboxylic acids-derived acyl electrophiles with an a-hydroxy-
trifluoroethyl radical might be feasible. Herein, we disclose a
visible-light-induced nickel-catalyzed cross-coupling of alkyl

a) tandem reactions of reductive trifluoroacetylation and desilylation

(0]
o] o) Mg TMSQ  CFs n-BuyNF CF
+ Ar OEt Ar)J\( 3
Ar)J\H F3CJ\OEt TMSCI H  OTMS THF I
b) NHC-catalyzed intermolecular cross acyloin condensation
e i
j\ ) ﬂﬁ N\/N—Ph (10 mol %) Ar)J\/CB’
Ar H F3sC~ "OEt OH
c) traditional synthesis for a-trifluoromethylated alkyl acyloins
0 (] (0]
R3 Bz
OH N
1J\ or 2J\ Fac)J\O)J\CFs R1K/CF3 or RZH\(CF?’
RT "CO-H R "COMH pyridine OH OH

(R" =Bn, CgHy3; RZ = Bn; R3 = alkyl)

limited examples

d) this work: nickel-catalyzed radical coupling of carboxylic acids

0
% CF
X /—CF3
alkyl)I\OH * EXN_O
l ° |

O O OH

Ao * aQCFs

alkyl O t-Bu

Scheme 1: Strategies for the synthesis of a-trifluoromethyl acyloins.

(6]
O CFs
alkyl

HE, PinO OH

T

alkyl/u\Ni CF,

1373



carboxylic acids with N-trifluoroethoxyphthalimide to deliver
trifluoromethyl aliphatic acyloins under mild conditions
(Scheme 1d). Furthermore, this platform bypasses the need for
exogenous photocatalysts, providing a direct and robust access
to trifluoromethyl aliphatic acyloins.

Results and Discussion

Initially, we commenced our exploration by choosing 4-phenyl-
butyric acid (1a) as the model substrate to react with N-tri-
fluoroethoxyphthalimide (2, Table 1). On basis of the previ-
ously reported elegant strategies on direct conversion of in situ-
activated carboxylic acids for ketone synthesis [27,35,38], we
chose dimethyl dicarbonate (DMDC, A1) as the activating
reagent. To our delight, the reaction of 1a and 2 in the presence
of NiBr;(dtbbpy) (10 mol %), Hantzsch ester (HE) and A1 in
DMACc under the irradiation of purple LEDs afforded the
desired coupling product 3a in 50% yield (Table 1, entry 1).
Further screening of other activators (Table 1, entries 2-5) indi-
cated that pivalic anhydride (A3) was optimal, delivering 3a in

Table 1: Optimization of the reaction conditions.?
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56% yield. The yield of 3a was increased to 74% when
3.0 equiv of HyO were added to the reaction mixture [40]
(Table 1, entry 6), but the addition of more water did not
improve the reaction efficiency further (Table 1, entry 7). The
structure of nickel catalysts played a significant role in the reac-
tion efficiency. Switching the Ni catalyst to NiCl,(dtbbpy),
NiBr;(bpy), NiBry(phen) or other nickel salts led to compa-
rable or dramatically decreased yields (Table 1, entries 8§—12).
Other polar non-protonic solvents such as NMP and DMF led to
diminished yields (Table 1, entries 13 and 14).

Having identified the optimal reaction conditions, we sought to
evaluate the substrate scope of this photoinduced nickel-cata-
lyzed cross coupling reaction. As illustrated in Scheme 2, a
broad array of aliphatic carboxylic acids reacted smoothly in
this protocol, providing the corresponding trifluoromethyl ali-
phatic acyloins in moderate to excellent yields. This mild reac-
tion showed a good tolerance of a diverse range of functional
groups, including methoxy (3b), methyl (3¢), chloro (3d.i),

0O
. o}
(0] CF. Nisalts (10 mol %)
Ph\/\)J\OH + N—o/_ ’ activator Ph\/\)H/OH
HE (1.5 equiv) CF,
1a ) 2 purple LED 3a
(1.5 equiv) solvent
__________________________________________________ S
activating agent 0 o

o
o

A1 (R = Me); t—Bu)J\OJ\t—Bu s

A2 (R = t-Bu) A3 A4 A5
entry Ni salt (ligand) activator solvent yield (%)P
1 NiBra(dtbbpy) A1l DMAc 50
2 NiBra(dtbbpy) A2 DMAc 0
3 NiBro(dtbbpy) A3 DMAc 56
4 NiBra(dtbbpy) A4 DMAc 0
5 NiBro(dtbbpy) A5 DMAc 0
6° NiBro(dtbbpy) A3 DMAc 74
7d NiBro(dtbbpy) A3 DMAc 68
8¢ NiCly(dtbbpy) A3 DMAc 37
9 NiBra(bpy) A3 DMAc 67
10¢ NiBro(phen) A3 DMAc 8
11¢ NiBrodiglyme/4,4-dCOsMe-bpy A3 DMAc 61
12¢ NiBrodiglyme/4,4-dMeO-bpy A3 DMAc 65
13¢ NiBro(dtbbpy) A3 NMP 53
14° NiBra(dtbbpy) A3 DMF trace

@Reaction conditions: 1a (0.1 mmol), 2

(0.15 mmol), Ni catalyst (0.01 mmol), Hantzsch ester (0.15 mmol), solvent (1.0 mL), activator (0.15 mmol),

purple LEDs, 7 h. PYields determined by 'F NMR spectroscopy using trifluoromethoxybenzene as an internal standard. Adding 3.0 equiv H,0.

dAdding 10.0 equiv HyO.
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Scheme 2: Substrate scope. Standard conditions: a solution of alkyl carboxylic acid 1 (0.4 mmol), 2 (0.6 mmol), NiBrx(dtbbpy) (0.04 mmol), Hantzsch
ester (0.6 mmol), PivoO (0.6 mmol) and HoO (1.2 mmol) in DMAc (4.0 mL) was irradiated by purple LEDs for 7 h. Isolated yields are presented. 8The

reaction was performed in a 1.0 mmol scale.

fluoro (3f,g), and ethers (3i,1,p). Notably, aryl bromide (3e) was
also tolerated in this protocol, probably due to the higher reac-
tivity of the mixed anhydride formed between carboxylic acid
and pivalic anhydride than aryl bromide. The halides provided
versatile synthetic handles for further transformations. Sub-
strates bearing thiophene (3k) furan (3j) and other heterocycle
(31,m) moieties were also applicable to this reaction. This
protocol allowed for the coupling of not only primary
carboxylic acids but also secondary carboxylic acids (3n-s).
We were pleased to find that cyclic carboxylic acids, including

strained 3- and 4-membered rings, participated in this transfor-

mation and delivered the corresponding products in good yields.
It should be mentioned that aromatic and more sterically
hindered tertiary carboxylic acids were unfortunately not com-
patible with the reaction conditions. The structures of products
3a and 3s were unambiguously confirmed by single-crystal
X-ray diffraction. Notably, the reaction of 1a could be easily
scaled up to 1.0 mmol scale, affording 3a in a slightly lower
yield. To further demonstrate the amenability toward pharma-
ceutically active molecules, chloroambucil (1t) and dehydro-
cholic acid (1u) were successfully subjected to the reaction

conditions, delivering the desired products in moderate yields.
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However, the analogous reaction with N-difluoroethoxyphthal-
imide as the fluoroalkylating reagent failed to afford the desired
product.

According to our previous work [39] and literature precedent
[27,35,38], a possible mechanism is proposed in Figure 2.
The interaction between 2 and HE generates an electron
donor—acceptor (EDA) complex A, which undergoes a light-in-
duced charge transfer event to give trifluoroethoxyl radical B,
followed by a 1,2-hydrogen atom transfer (HAT), producing the
stable radical C. For the nickel cycle, it is initiated by oxidative
addition of Ni(0) catalyst E to acyl electrophile D formed in situ
from carboxylic acid 1 with pivalic anhydride as activator to
afford Ni(Il) intermediate F. Subsequently, trapping of the alkyl
radical C generates high-valent Ni(IIl) intermediate G, which
undergoes facile reductive elimination to furnish the final cou-
pling product 3 and Ni(I) intermediate H. The single-electron
transfer (SET) reduction of intermediate H (Ered(NiI/NiO) =
—1.17 V vs SCE [41]) by photoexcited HE* (Ered(HE*/HE'+) =
—2.28 V vs SCE [42]) regenerates the active Ni(0) species E

and closes the catalytic cycle.

Conclusion
In conclusion, we have demonstrated a visible-light-induced
nickel-catalyzed radical cross coupling of readily available alkyl

Beilstein J. Org. Chem. 2023, 19, 1372-1378.

carboxylic acids with N-trifluoroethoxyphthalimide. The
present study provides a mild and efficient method for the prep-
aration of trifluoromethyl alkyl acyloins in moderate to high
yields and with good functional group compatibility. Further
studies on expansion of the reaction scope and development of
related enantioselective photoinduced nickel-catalyzed radical
cross-coupling reactions are currently underway in our laborato-

ry.

Experimental

General procedure for the visible-light-induced nickel-
catalyzed cross coupling of alkyl carboxylic acids with N-tri-
fluoroethoxyphthalimide: In the glove box with nitrogen at-
mosphere, to an 8 mL vial equipped with a magnetic stir bar,
NiBr,(dtbbpy) (19.6 mg, 0.04 mmol, 10 mol %), alkyl
carboxylic acid 1 (0.4 mmol, 1.0 equiv), N-trifluoroethoxy-
phthalimide (2, 147.1 mg, 0.6 mmol, 1.5 equiv), Hantzsch ester
(152.0 mg, 0.6 mmol, 1.5 equiv), and anhydrous N,N-dimethyl-
acetamide (4.0 mL) were added. The vial was then re-capped
and taken out of the glove box, and Piv,0 (111.8 mg, 0.6 mmol,
1.5 equiv) and H,O (21.6 mg, 1.2 mmol, 3.0 equiv) were added.
The vial was sealed and the reaction mixture was then stirred
under irradiation by purple LEDs (Ajpax = 399 nm) for 7 h. After
the reaction was complete, the reaction mixture was poured into
water and extracted with EtOAc. The combined organic phase

O EDA complex G-
CF3 By * O iopar  OH
. 2-
N-O + HE — : :: CF —EE'—»
C: N—O/_ 8 CF3 &CF:;
o 2 o) A B c
___________________________________________ /_______________ - - -z \
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CF, .
radical I
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Figure 2: Proposed reaction mechanism.
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