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Abstract
A Bamberger rearrangement of N-phenylhydroxylamine, Ph–N(OH)H, to p-aminophenol was investigated by DFT calculations for

the first time. The nitrenium ion, C6H5–NH+, suggested and seemingly established as an intermediate was calculated to be absent

owing to the high nucleophilicity of the water cluster around it. First, a reaction of the monoprotonated system, Ph–N(OH)H +

H3O+(H2O)n (n = 4 and 14) was examined. However, the rate-determining transition states involving proton transfers were calcu-

lated to have much larger activation energies than the experimental one. Second, a reaction of the diprotonated system, Ph–N(OH)H

+ (H3O+)2(H2O)13, was traced. An activation energy similar to the experimental one was obtained. A new mechanism of the

rearrangement including the aniline dication-like transition state was proposed.
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Introduction
The fundamental Bamberger rearrangement is defined in

Scheme 1 [1,2].

In the aqueous sulfuric acid, 4-aminophenol was afforded

exclusively by the rearrangement. On the other hand, the 2- and

4-chloro-amino derivatives were afforded when hydrochloric

acid was used. In spite of the classic and well-known reaction,

the mechanism of the Bamberger rearrangement is still unclear.

Heller et al. suggested that an SN1 mechanism is more likely,

but the SN2 one cannot be ruled out [3]. The reaction was

proven to occur via the intermolecular rearrangement by the
18O exchange in Scheme 2 [4].

The intermolecular nature was also proven by a rearrangement

of N-ethyl-N-phenylhydroxylamine, Et–N(OH)–Ph 3, in

methanol leading to p-(ethylamino)anisole 4 (Scheme 3) [5].

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:yamabes@fukui.kyoto-u.ac.jp
http://dx.doi.org/10.3762%2Fbjoc.9.119
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Scheme 4: A mechanism involving the nitrenium-ion intermediate 7. 8a is equal to 6.

Scheme 1: The Bamberger rearrangement. In the square bracket, the
apparent exchange of H and OH is shown.

Scheme 2: The reaction occurs through the intermolecular rearrange-
ment, on the basis that treatment of 1 in H2[18O]H2SO4 provides an
[18O]-incorporated p-aminophenol, 2a.

Through the kinetic measurement, the rearrangement was

claimed to occur by an SN1 mechanism [6]. Also, it was

reported that the elimination of water from Ar–N+H2OH is rate

determining and a diprotonated species, Ar–N+H2OH2
+,

contributes significantly to the observed reaction rate at the

acid-catalyst concentration [H2SO4] > 0.50 mol/L. The acti-

Scheme 3: A reaction of N-ethyl-N-phenylhydroxylamine, which
demonstrates that the Bamberger rearrangement does not take the
route of the direct [1,5]-OH shift.

vation energy of the rearrangement in Scheme 1 was measured

to be 24.8 kcal/mol. The SN1 mechanism suggested by Heller et

al. [3] involves a nitrenium ion 7 as shown in Scheme 4.

In Scheme 4, a water molecule is taken off from the O-proto-

nated form 6, which leads to the nitrenium ion 7. To the para

position of the ion H2O is added, and the subsequent proton

removal and attack give the product 2H+. While the N-proto-

nated species 5 appears to be more favorable than the O-proto-

nated one 6, the former has been regarded as not being an inter-

mediate for the reaction progress. While the mechanism in

Scheme 4 appears to be established, there is a significant ques-

tion as to "…why in some cases, for example where the nucleo-

phile is water, only the 4-isomer product is formed from

phenylhydroxylamine, whereas in other cases, e.g., when

chloride ion is present, both 2- and 4-chloro isomers are

formed" [7]. This is a natural question in light of the ortho–para

orientation onto the cationic phenyl ring.

So far, there have been no theoretical studies of the rearrange-

ment, and in this study DFT calculations were carried out to

address the following three unsolved issues:
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Scheme 5: A reaction scheme of the OH rearrangement containing one proton. Int is an intermediate. Species, 1, 2, 5, 2H+ and 9, are defined in
Scheme 4.

(a) Is the nitrenium ion 7 a plausible intermediate?

(b) How does the N-protonated species (5 in Scheme 4) partici-

pate in the rearrangement? The reverse route (5 → 1 + H+

needed for the reaction progress) seems to be unlikely.

(c) Why is the para-product afforded exclusively in the H2SO4

aqueous media?

It will be shown that the size of the hydrogen-bond network of

water clusters in the diprotonated system controls the reactivity

of the rearrangement.

Theoretical calculations
The reacting systems were investigated by density functional

theory (DFT) calculations. The B3LYP [8,9] method was used

to trace the reaction path. The basis sets employed were

6-31G(d) and 6-311+G(d,p), where the latter was adopted for

the key (OH transfer) steps. For the Cl-containing model,

6-31(+)G(d) was used where the diffuse sp function is only the

chlorine atom.

Transition states (TSs) were sought first by partial optimiza-

tions at bond-interchange regions. Second, by the use of

Hessian matrices, TS geometries were optimized. They were

characterized by vibrational analyses, which checked whether

the obtained geometries have single imaginary frequencies

(ν≠s). From TSs, reaction paths were traced by the intrinsic

reaction coordinate (IRC) method [10,11] to obtain the energy-

minimized geometries.

Relative energies (ΔEs) were obtained by single-point calcula-

tions of the B3LYP/6-311+G(d,p) method (SCRF = PCM,

solvent = water) [12-14] on the B3LYP/6-31G(d) and B3LYP/

6-311+G(d,p) geometries and their zero-point vibrational ener-

gies (ZPEs).

All the calculations were carried out by using the Gaussian 09

[15] program package. The computations were performed at the

Research Center for Computational Science, Okazaki, Japan.

Results and Discussion
The monoprotonated reacting system
First, the possibility of the nitrenium intermediate 7 was exam-

ined by the use of a model of 7 + (H2O)18. Figure S1,

Supporting Information File 1 exhibits the assumed initial

geometry (a) and B3LYP/6-31G(d) and B3LYP/6-311+G(d,p)

optimized ones (b).

By both computational methods, the nitrenium ion disappeared,

and the 7 + (H2O)18 model was converted to a geometry of

o-OH imine and H3O+(H2O)16. The nitrenium ion was calcu-

lated to be inevitably subject to the nucleophilic attack of OH2.

This attack proceeds energetically downhill without the tran-

sition state, and the nitrenium ion was absent. Thus, there

should be a mechanism other than that in Scheme 4. Second, a

reaction model (Scheme 5) involving proton transfers was

investigated.

In the scheme, the N-protonated form Int1 (i.e., 5 in Scheme 4)

undergoes the transfer via the water dimer (or trimer) at TS2.

The transfer pattern is drawn for the rearrangement to the para

position (apparently, a [1,5]-OH shift); that to the ortho one

would be a [1,3]-OH shift. Figure S2, Supporting Information

File 1 shows the three obtained TS2 geometries. Their presence

demonstrates that paths involving [1,5]- and [1,3]-shifts with

more water molecules than those in Figure S2 should be exam-

ined on an equal footing. Figure S3, Supporting Information
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Figure 1: Geometric changes in the reaction of model II, (HO)HN–C6H5 + H3O+(H2O)14 → H3N+–C6H4–OH + (H2O)15.

File 1 shows the path calculated by a model, called here

model(I), composed of Ph–NH(OH) and H3O+(H2O)4.

The geometric changes expected in Scheme 5 were obtained:

Precursor(I) → TS1(I) → Int1(I) → TS2(I, 2H2O) → Int2(I),

Int2'(I) → TS3(I) → Int3(I) → Product(I). Here, Int2(I) and

Int2'(I) are isomers where the positions of water clusters are

different. TS4(I) leading to the protonated p-aminophenol could

not be obtained, probably owing to the limited size of the reac-

tion system. TS2(I, 3H2O) and TS2(I, [1,3]-shift) were also

obtained and are shown at the end of Figure S3. Here, TS2(I,

2H2O), TS2(I, 3H2O) and TS2(I, [1,3]-shift) correspond to

three TS2s in Figure S2, respectively.

Figure 1 shows the path calculated by a further extended reac-

tion system, Ph–NH(OH) and H3O+(H2O)14, called here

model(II). This is constructed on the basis of the hydrogen-bond

network depicted in Figure 2. Again, the geometric changes
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Figure 3: Energy changes (in kcal/mol) of Δ(E+ZPE) by B3LYP/6-311+G(d,p) SCRF = PCM//B3LYP/6-31G(d) and by [B3LYP/6-311+G(d,p) SCRF =
PCM//B3LYP/6-311+G(d,p) at TS2] of model II. The corresponding geometries are shown in Figure 1. In the broken box, three activation energies of
TS2(I, 2H2O), TS2(I, 3H2O) and TS2(I, [1,3]-shift) of Figure S3 are exhibited.

Figure 2: An assumed reaction system composed of Ph–NHOH and
H3O+(H2O)14. The green area represents the reaction region of TS2.
To protons of H3O+ and H2O in the area, catalytic water molecules are
linked in the O─H•••OH2 hydrogen-bond pattern.

expected in Scheme 5 were obtained: Precursor(II) → TS1(II)

→ Int1(II) → TS2(II, 2H2O) → Int2(II) → TS3(II) → Int3(II)

→ TS4(II) → Product(II) along with TS(II, 3H2O) and TS2(II,

[1,3]-shift). Thus, the reaction pattern predicted in Scheme 5

holds for the system Ph–NH(OH) and H3O+(H2O)n (n = 4 and

14).

Figure 3 shows the energy change of the reaction in Figure 1.

The reaction was calculated to be very exothermic

(= −40.70 kcal/mol at Product(II)). However, the activation

energ ies  o f  the  th ree  TS2s ,  +38 .59 ,  +37 .48  and

+43.13 kcal/mol, of the high-energy steps are much larger than

the experimental one, +24.8 kcal/mol [6]. Also, the three acti-

vation energies of model I in the broken box are large, +34.14,

+35.83 and 37.09 kcal/mol. Thus, although reasonable

geometric changes were obtained in Figure 1, these large ener-

gies demonstrate that the monoprotonated reaction is unlikely.

Diprotonated reacting systems
The large activation energies of TS2s in the monoprotonated

systems would arise from the poor proton-donating strength to

the oxygen of the N–O bond in the model of Scheme 5. In order

to enhance the donation, a dication system was constructed at

the left of Scheme 6. However, the bond-interchange transition

state could not be obtained in spite of many attempts. Attempts

including more water molecules also failed. An alternative

model was considered and is shown in Scheme 7. This model

was constructed in light of the results of preliminary calcula-

tions shown in Figure S4 and Figure S5, Supporting Informa-

tion File 1.

Figure S4a shows that a TS geometry was successfully obtained

in a model in which one H2O molecule is subtracted from that

in Scheme 7. However, when the size of the water cluster is
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Scheme 6: A trans-type bond interchange was assumed. But, the reaction path could not be obtained. The group (i) works as a proton donor and the
group (ii) acts as an acceptor.

Scheme 7: An alternative model for the OH [1,5]-rearrangement in the dication system.

enlarged, the TS structure cannot be obtained, as shown in

Figure S4b. On the other hand, a TS geometry following

Scheme 7 could be obtained as shown in Figure S5, Supporting

Information File 1. These results demonstrate that not

H3O+(H2O) (in Figure S4) but H3O+(H2O)2 (in Figure S5)

should participate in the reaction center.

On the basis of the result in Figure S5, paths in a reaction of

(HO)HN–C6H5 + (H3O+)2(H2O)13 → H3N+–C6H4–OH +

(H3O+)(H2O)14 were investigated and are shown in Figure 4.

This system is called here model III and is isoelectronic with

that in Figure 1.

Geometric changes similar to those in Figure 1 were obtained:

Precursor(III) → TS1(III) → Int1(III), Int1'(III) → TS2(III) →

Int2(III), Int2'(III) → TS3(III) → Int3(III) → TS4(III) → Prod-

uct(III) along with TS2(III, [1,3]-shift). Geometries of TS2(III)

and TS2(III, [1,3]-shift) are like those of the aniline dication

and (H2O)16.

Figure 5 shows the energy change of the reaction in Figure 4.

The rate-determining step is TS2, and TS2(III,[1,3]-shift) =

+32.20  kca l /mol  i s  much la rger  than  TS2(I I I )  =

+26.25 kcal/mol. The latter value is close to the experimental

one, +24.8 kcal/mol [6], and the superiority of the [1,5]-OH

shift over the [1,3]-OH one is clearly indicated. Thus, the dica-

tion system may be subject to the Bamberger rearrangement in

the para-orientation, which is in line with the experimental

suggestion [6].

The reaction pattern exhibited in Scheme 7 was examined

further by a large system composed of Ph–NH(OH) +

(H3O+)2(H2O)24 with the molecular formula of the system,

C6H61NO27
2+. This is called here model IV. Geometries of

TS2(IV) and TS2(IV, [1,3]-shift) are shown in Figure 6. They

are similar to those of TS2(III) and TS2(III, [1,3]-shift) in

Figure 4, respectively. Again, the aniline dication-like struc-

tures were obtained. The proton-transfer pattern depicted in

Scheme 7 was confirmed. As for the activation energies of
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Figure 4: Geometric changes in the reaction of model III, (HO)HN–C6H5 + (H3O+)2(H2O)13 → H3N+–C6H4–OH + (H3O+)(H2O)14.

TS2(IV), Δ(ET + ZPE) = +27.58 kcal/mol by B3LYP/6-

311+G(d,p) SCRF = PCM//B3LYP/6-31G(d) and {+26.04 by

B3LYP/6-311+G(d,p) SCRF = PCM//B3LYP/6-311+G(d,p)}

are close to the experimental one (+24.8). These are much

smaller than +36.25 kcal/mol and {+35.28} of TS2(IV, [1,3]-

shift), respectively. Thus, the calculated results showed that the

para-orientation of the rearrangement is superior to the ortho

one.

The monoprotonated reacting system with
Cl−
In the Introduction, the experimental result that the rearrange-

ment gave the 2- and 4-chloro-amino derivatives in

hydrochloric acid was cited [1]. The nucleophile Cl− would be

free from the hydrogen-bond constraint depicted in Scheme 7.

Then, such less sterically congested trans substitution as that

shown in Scheme 6 becomes feasible. By the use of a model
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Figure 5: Energy changes (in kcal/mol) of model III. The corresponding geometries are shown in Figure 4. The apparent small reversal of energies of
Int3(III) and TS4(III) comes from the splicing method, B3LYP/6-311+G(d,p) SCRF = PCM//B3LYP/6-31G(d), Et(B3LYP/6-31G(d)) of Int3(III) =
−1509.9900126 Hartree and Et(B3LYP/6-31G(d)) of TS4(III) = −1509.9895045 Hartree.

Figure 6: TS2(IV) and TS2(IV, [1,3]-shift) in the reaction (model IV), Ph–NH(OH) + (H3O+)2(H2O)24 → HO–C6H4–NH3
+ + H3O+(H2O)25.

(called here model V) of Ph–NH(OH) + (H3O+)2(H2O)13 + Cl−,

the trans-type substitution paths were traced. In fact, TS2(V)

and TS2(V, [1,3]-shift) geometries were obtained and are

shown in Figure 7. Their activation energies were calculated to

be +28.52 kca/mol and +29.57 kcal/mol relative to the energy of

Int1(V), respectively. These similar values indicate that both 2-

and 4-Cl-substituted anilines may be formed almost equally

according to the normal ortho- and para-orientation.

Conclusion
In this work, the Bamberger rearrangement was studied by

means of DFT calculations. In the Introduction, three questions

(a), (b), and (c) were raised:

1. The nitrenium ion 7 was calculated to be absent. It

cannot intervene owing to the high nucleophilicity of the

water cluster.
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Figure 7: TS2(V) and TS2(V, [1,3]-shift) in the reaction (model V), Ph–NH(OH) + (H3O+)2(H2O)13 + Cl− → o- and p-Cl–C6H4–NH3
+ + (H2O)16.

Scheme 8: A mechanism of the Bamberger rearrangement based on the present results. 1, 2, 2H+, 5 and 9 are defined in Scheme 4. In parentheses,
our notations such as (Precursor) and (Int1) are shown. TS2 is regarded as the complex of the aniline di-cation and (H2O)5 cluster.

2. The N-protonated substrate (5 in Scheme 4) is in the

reaction route. By the protonation, the N–O bond

becomes directed to the π space of the phenyl ring. The

direction is fit for the subsequent bond interchange of

TS2 in the diprotonated system.

3. Without good nucleophiles such as Cl−, a constrained

hydrogen-bond network shown in Scheme 7 may give

the OH shift via bond interchanges. The ortho-position is

too close to the N–O bond and is not fit for the

constrained network.

On the basis of the calculated results, Scheme 4 may be revised

to Scheme 8.

Supporting Information
Supporting Information File 1
Figures S1–S5, Cartesian coordinates of TS geometries.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-9-119-S1.pdf]
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