

Asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates with α-fluoro-β-keto esters

Lin Yan¹, Zhiqiang Han¹, Bo Zhu¹, Caiyun Yang¹, Choon-Hong Tan^{*2,3} and Zhiyong Jiang^{*1,2,3}

Full Research Paper	Open Access
Address:	Beilstein J. Org. Chem. 2013, 9, 1853–1857.
¹ Institute of Chemical Biology, Henan University, Jinming Campus, Kaifeng, Henan, 475004, P. R. China, ² Key Laboratory of Natural	doi:10.3762/bjoc.9.216
Medicine and Immuno-Engineering of Henan Province, Henan	Received: 29 May 2013
University, P. R. China and ³ Division of Chemistry and Biological	Accepted: 19 August 2013
Chemistry, Nanyang Technological University, 21 Nanyang Link,	Published: 11 September 2013
Singapore 637371	
	This article is part of the Thematic Series "Transition-metal and
Email:	organocatalysis in natural product synthesis".
Choon-Hong Tan [*] - choonhong@ntu.edu.sg; Zhiyong Jiang [*] -	
chmjzy@henu.edu.cn	Guest Editors: D. YK. Chen and D. Ma
* Corresponding author	© 2013 Yan et al; licensee Beilstein-Institut.
	License and terms: see end of document.
Keywords:	
allylic alkylation; asymmetric catalysis; fluorine; fluoro-β-keto esters;	
Morita–Baylis–Hillman carbonates; natural product	

Abstract

In the presence of a commercially available *Cinchona* alkaloid as catalyst, the asymmetric allylic alkylation of Morita–Baylis–Hillman carbonates, with α -fluoro- β -keto esters as nucleophiles, have been successfully developed. A series of important fluorinated adducts, with chiral quaternary carbon centres containing a fluorine atom, was achieved in good yields (up to 93%), with good to excellent enantioselectivities (up to 96% ee) and moderate diastereoselectivities (up to 4:1 dr).

Introduction

Fluorine is the most electronegative element in the periodic table, resulting in a highly polar C–F bond. This gives fluoroorganic compounds unique properties, compared with their parent compounds [1]. Due to the rareness of organofluorine compounds in nature, synthetic fluorinated compounds have been widely applied in numerous areas, including materials, agrochemicals, pharmaceuticals and fine chemicals [2-4]. In this context, the stereoselective introduction of fluorine atoms in molecules has become one of the most exciting and intense research areas in the recent years.

Lewis base-catalyzed asymmetric allylic alkylations (AAA) of Morita–Baylis–Hillman (MBH) adducts [5,6], such as acetates and carbonates, have become an attractive option to access

Beilstein J. Org. Chem. 2013, 9, 1853–1857.

various chiral C- [7-19], N- [20-25], O- [26-30], P- [31-33] and S-allylic [34] and spirocyclic compounds [35-37]. Several protocols have been established to introduce fluorine atoms in AAA of MBH adducts. For example, to introduce a CF₃ group, Shibata and co-workers [13] and Jiang and co-workers [14] successively reported the asymmetric allylic trifluoromethylation of MBH adducts with Ruppert's reagent [(trifluoromethyl)trimethylsilane, Me₃SiCF₃] in the presence of (DHQD)₂PHAL as catalyst. In 2011, our research group [15], Shibata and co-workers [16] and Rios and co-workers [17] reported the addition of fluoromethyl(bisphenylsulfones) to MBH carbonates to access chiral monofluoromethyl derivatives. Furthermore, Rios and co-workers presented an asymmetric substitution of MBH carbonates with 2-fluoromalonates in good enantioselectivities [38]. Notably, the reaction between an achiral fluorocarbon nucleophile with MBH carbonates, to afford compounds with chiral quaternary carbon centres bearing a fluorine atom, remains a formidable task. Since 2009, we developed a highly enantioselective and diastereoselective guanidine-catalyzed conjugate addition and Mannich reaction of

 α -fluoro- β -ketoesters with excellent results [38-40]. Herein, we wish to report the first allylic alkylation of MBH carbonates with α -fluoro- β -ketoesters in excellent enantioselectivities and moderate diastereoselectivities, furnishing enantiopure fluorinated compounds with chiral quaternary carbon centres containing a fluorine atom.

Results and Discussion

In the preliminary experiments, we investigated the reaction of α -fluoro- β -ketoester **1a** with MBH carbonate **2a** as the model substrate, in the presence of several commercially available *Cinchona* alkaloids as Lewis base catalysts (Table 1). First, the reaction was conducted in the presence of quinine at 50 °C in dichloroethane (DCE) as the solvent (Table 1, entry 1). The desired adduct **3aa** was obtained in 53% yield with poor enantio- and diastereoselectivity. Cinchonine provided similarly poor results (Table 1, entry 2). Next, we screened a series of C_2 -symmetric bis-*Cinchona* alkaloids as catalysts under the same conditions (Table 1, entries 3–7). (DHQD)₂PHAL showed moderate catalytic activity; **3aa** was obtained in 67% yield with

Table 1: Catalyst screening ^a .								
	Ph F 1a	OBoc O Ph OMe 2a	catalyst (10 mol %) 96 h, 50 °C	Ph Ph O Ph OMe EtO O 3aa				
Entry	Catalyst	Solvent	Yield (%) ^b	ee (%) ^c	dr ^c			
1	quinine	DCE	53	32 (27)	55:45			
2	cinchonine	DCE	59	21 (10)	55:45			
3	(DHQD) ₂ PHAL	DCE	67	71 (57)	60:40			
4	(DHQD) ₂ AQN	DCE	53	-5 (-5)	56:44			
5	(DHQ) ₂ PHAL	DCE	64	-35 (-1)	52:48			
6	(DHQ) ₂ PYR	DCE	60	-25 (-1)	59:41			
7	(DHQ) ₂ AQN	DCE 47		–11 (–10)	55:45			
8	(DHQD) ₂ PHAL	DCM 56		69 (55)	58:42			
9	(DHQD) ₂ PHAL	toluene 78		85 (65)	67:33			
10	(DHQD) ₂ PHAL	Et ₂ O	59	45 (30)	55:45			
11	(DHQD) ₂ PHAL	EA	58	55 (30)	55:45			
12	(DHQD) ₂ PHAL	THF	61	31 (49)	63:37			
13	(DHQD) ₂ PHAL	MeCN	57	49 (19)	65:35			
14	(DHQD) ₂ PHAL	MeOH	63	35 (20)	60:40			
15	(DHQD) ₂ PHAL	o-xylene	74	85 (65)	72:28			
16	(DHQD) ₂ PHAL	<i>m</i> -xylene	65	87 (74)	70:30			
17	(DHQD) ₂ PHAL	<i>p</i> -xylene	72	85 (55)	68:32			
18	(DHQD) ₂ PHAL	mesitylene	78	89 (72)	71:29			
19 ^d	(DHQD) ₂ PHAL	mesitylene	67	92 (69)	74:26			
20 ^e	(DHQD) ₂ PHAL	mesitylene	45	94 (55)	75:25			

^aUnless otherwise noted, reactions were performed with 0.05 mmol of **1a**, 0.15 of **2a**, and 0.005 mmol of catalyst in 0.5 mL solvent. ^bYield of isolated product. ^cDetermined by HPLC methods. The data in parenthesis is the ee value of the minor diastereoisomer ^dThe reaction was conducted at 25 °C, 1.0 mmol scale in 1.0 mL of mesitylene. ^eThe reaction was conducted at 10 °C, 1.0 mmol scale in 1.0 mL of mesitylene.

71% ee and 60:40 dr (entry 3). The effects of solvent were then investigated (Table 1, entries 8–18). The best-performing solvent was mesitylene with respect to enantio- and diastereose-lectivity; providing **3aa** in 78% yield with 89% ee and 71:29 dr (entry 18). The reaction temperature can be decreased to 25 °C and 67% yield of **3aa** with 92% ee and 74:26 dr was obtained (entry 19). A slight increase in enantio- and diastereoselectivity could be obtained when the reaction temperature was decreased to 10 °C, but the reaction rate became too sluggish to be useful (Table 1, entry 20).

Using the established conditions, allylic alkylations of α -fluoro- β -ketoesters **1b–g** with MBH carbonate **2a** were found to afford the products **3ba–ga** in 67–79% yield with 88–96% ee and 3:1 to 4:1 dr (Table 2, entries 1–6). The results showed that the introduction of various aryl substituents in α -fluoro- β -ketoesters did not affect the reactivity and stereoselectivity. Subsequently, the scope of the allylic alkylation with respect to various MBH carbonates **2** and α -fluoro- β -ketoester **1a** was investigated (Table 2, entries 7–20). The desired allylic alkylation adducts

3ab-o were achieved in moderate to good yields with good to excellent enantioselectivities and moderate diastereoselectivities. MBH carbonates (Table 2, 2b-k) with electron-withdrawing groups appended on the aromatic rings were more active than those (Table 2, 2l-m) with electron-neutral and donating groups. Excellent ee values with moderate dr values were obtained when the phenyl groups of MBH carbonates were replaced with hetereoaromatic groups, such as thiophene and furan (Table 2, 2n-o).

Conclusion

We have developed an asymmetric allylic alkylation of MBH carbonates with α -fluoro- β -ketoesters, catalyzed by a commercially available *Cinchona* alkaloid. Several fluorinated adducts, with chiral quaternary carbon centres containing a fluorine atom, were successfully prepared in 50–93% yields with 84–96% ee and a dr of 3:1 to 4:1. The absolute configurations of adducts still have to be determined and will be reported in due course.

Table 2: Allylic a	lkylation of α-fluoro-(β-ketoesters 1 with M	IBH carbonates 2	a			
	Ar ¹ F 1	(DEt ⁺ Ar ^{2/}	OBoc O OMe 2	(DHQD) ₂ PH (10 mol % mesitylene, 2	AL 6) 25 °C Ar ¹ EtO	$Ar^2 O O O O Me$	
Entry	Ar ¹ , 1	Ar ² , 2	Time (h)	3	Yield (%) ^b	ee (%) ^c	dr ^d
1	<i>p</i> -FPh, 1b	Ph, 2a	40	3ba	71	88	3:1
2	<i>p</i> -ClPh, 1c	Ph, 2a	70	3ca	79	93	3:1
3	<i>p-</i> BrPh, 1d	Ph, 2a	70	3da	75	96	3:1
4	<i>m</i> -BrPh, 1e	Ph, 2a	70	3ea	72	90	3:1
5	3,5-Cl ₂ Ph, 1f	Ph, 2a	70	3fa	69	88	3:1
6	<i>p</i> -MePh, 1g	Ph, 2a	50	3ga	67	94	4:1
7	Ph, 1a	<i>p</i> -NO ₂ Ph, 2b	70	3ab	91	95	3:1
8	Ph, 1a	<i>p</i> -CF ₃ Ph, 2c	70	3ac	65	87	4:1
9	Ph, 1a	<i>p</i> -FPh, 2d	70	3ad	71	90	3:1
10	Ph, 1a	<i>p</i> -ClPh, 2e	70	3ae	73	93	4:1
11	Ph, 1a	<i>p</i> -BrPh, 2f	96	3af	64	91	4:1
12	Ph, 1a	<i>m</i> -NO ₂ Ph, 2g	96	3ag	93	95	3:1
13	Ph, 1a	<i>m</i> -ClPh, 2h	70	3ah	81	91	3:1
14	Ph, 1a	<i>m</i> -BrPh, 2i	70	3ai	78	90	4:1
15	Ph, 1a	<i>o</i> -FPh, 2j	96	3aj	73	86	4:1
16	Ph, 1a	o-ClPh, 2k	70	3ak	84	86	4:1
17	Ph, 1a	<i>p</i> -MePh, 2I	70	3al	53	91	4:1
18	Ph, 1a	<i>p</i> -MeOPh, 2m	70	3am	50	91	3:1
19	Ph, 1a	2-thienyl, 2n	90	3an	78	92	4:1
20	Ph, 1a	2-furyl, 2o	96	3ao	73	84	3:1

^aReactions were performed with 0.1 mmol of **1**, 0.3 mmol of **2**, and 0.005 mmol of (DHQD)₂PHAL in 1.0 mL mesitylene. ^bYield of isolated product. ^cDetermined by chiral HPLC on the major diastereoisomer. ^dDetermined by ¹H NMR analysis.

Experimental

Representative procedure for the synthesis of 3aa: α -Fluoro- β -ketoester 1a (21.0 mg, 1.0 equiv, 0.1 mmol) and (DHQD)₂PHAL (7.8 mg, 0.1 equiv, 0.01 mmol) were dissolved in mesitylene (1.0 mL) at 25 °C. After the addition of MBH carbonate 2a (3.0 equiv, 0.3 mmol) the reaction mixture was stirred at 25 °C. The reaction was monitored by TLC. After 96 hours, flash chromatography affords product 3aa (25.7 mg, 67% yield) as colorless oil.

Supporting Information

Supporting Information File 1

Experimental details and spectroscopic data. [http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-9-216-S1.pdf]

Acknowledgements

This work was supported by NSFC (nos. 21072044, 21202034), the Program for New Century Excellent Talents in University of the Ministry of Education (NCET-11-0938) and Excellent Youth Foundation of Henan Scientific Committee (114100510003). Z.J. also appreciates the generous financial support from Nanyang Technological University for the senior research fellow funding.

References

- O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319. doi:10.1039/b711844a
- Hiyama, T. Organofluorine Compounds: Chemistry and Applications; Springer: Berlin, 2000. doi:10.1007/978-3-662-04164-2
- 3. Uneyama, K. Organo-fluorine Chemisry; Blackwell: Oxford, 2006.
- Filler, R.; Kobayashi, Y.; Yagupolskii, L. M., Eds. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications; Elservier, 1993.
- Rios, R. Catal. Sci. Technol. 2012, 2, 267–278. doi:10.1039/c1cy00387a
- Liu, T.-Y.; Xie, M.; Chen, Y.-C. Chem. Soc. Rev. 2012, 41, 4101–4112. doi:10.1039/c2cs35017c
- Cho, C.-W.; Krische, M. J. Angew. Chem., Int. Ed. 2004, 43, 6689–6691. doi:10.1002/anie.200461381
- van Steenis, D. J. V. C.; Marcelli, T.; Lutz, M.; Spek, A. L.;
 van Maarseveen, J. H.; Hiemstra, H. Adv. Synth. Catal. 2007, 349, 281–286. doi:10.1002/adsc.200600467
- Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am. Chem. Soc. 2008, 130, 7202–7203. doi:10.1021/ja802422d
- Cui, H.-L.; Peng, J.; Feng, X.; Du, W.; Jiang, K.; Chen, Y.-C. Chem.–Eur. J. 2009, 15, 1574–1577. doi:10.1002/chem.200802534
- 11. Jiang, K.; Peng, J.; Cui, H.-L.; Chen, Y.-C. *Chem. Commun.* **2009**, *45*, 3955–3957. doi:10.1039/b905177e
- Cui, H.-L.; Huang, J.-R.; Lei, J.; Wang, Z.-F.; Chen, S.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 720–723. doi:10.1021/ol100014m
- Furukawa, T.; Nishimine, T.; Tokunaga, E.; Hasegawa, K.; Shiro, M.; Shibata, N. Org. Lett. 2011, 13, 3972–3975. doi:10.1021/ol201490e

- 14. Li, Y.; Liang, F.; Li, Q.; Xu, Y.-C.; Wang, Q.-R.; Jiang, L. Org. Lett. 2011, 13, 6082–56085. doi:10.1021/ol202572u
- Yang, W.; Wei, X.; Pan, Y.; Lee, R.; Zhu, B.; Liu, H.; Yan, L.; Huang, K.-W.; Jiang, Z.; Tan, C.-H. *Chem.–Eur. J.* 2011, *17*, 8066–8070. doi:10.1002/chem.201100929
- Furukawa, T.; Kawazoe, J.; Zhang, W.; Nishimine, T.; Tojunaga, E.; Matsumoto, T.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 9684–9688. doi:10.1002/anie.201103748
- Company, X.; Valero, G.; Ceban, V.; Calvet, T.; Font-Bardía, M.; Moyano, A.; Rios, R. Org. Biomol. Chem. 2011, 9, 7986–7989. doi:10.1039/C1OB06308A
- 18. Yang, W.; Tan, D.; Li, L.; Han, Z.; Yan, L.; Huang, K.-W.; Tan, C.-H.; Jiang, Z. J. Org. Chem. 2012, 77, 6600–6607. doi:10.1021/jo3012539
- Tong, G.; Zhu, B.; Lee, R.; Yang, W.; Tan, D.; Yang, C.; Han, Z.; Yan, L.; Huang, K.-W.; Jiang, Z. J. Org. Chem. 2013, 78, 5067–5072. doi:10.1021/jo400496z
- Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337–1339. doi:10.1021/ol049600j
- 21. Park, H.; Cho, C.-W.; Krische, M. J. J. Org. Chem. 2006, 71, 7892–7894. doi:10.1021/jo061218s
- Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. *Angew. Chem., Int. Ed.* 2009, 48, 5737–5740. doi:10.1002/anie.200902093
- Huang, J.-R.; Cui, H.-L.; Lei, J.; Sun, X.-H.; Chen, Y.-C. Chem. Commun. 2011, 47, 4784–4786. doi:10.1039/c0cc05616b
- Deng, H.-P.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2011, 1956–1960. doi:10.1002/ejoc.201001660
- 25. Lin, A.; Mao, H.; Zhu, X.; Ge, H.; Tan, R.; Zhu, C.; Cheng, Y. Chem.-Eur. J. 2011, 17, 13676–13679. doi:10.1002/chem.201102522
- 26. Trost, B. M.; Tsui, H.-C.; Toste, F. D. *J. Am. Chem. Soc.* **2000**, *122*, 3534–3535. doi:10.1021/ja994326n
- Kim, J. N.; Lee, H. J.; Gong, J. H. Tetrahedron Lett. 2002, 43, 9141–9146. doi:10.1016/S0040-4039(02)02274-8
- Feng, X.; Yuan, Y.-Q.; Jiang, K.; Chen, Y.-C. Org. Biomol. Chem. 2009, 7, 3660–3662. doi:10.1039/b912110b
- 29. Hu, Z.; Cui, H.; Jiang, K.; Chen, Y. Sci. China, Ser. B: Chem. 2009, 52, 1309–1313. doi:10.1007/s11426-009-0187-8
- 30. Zhu, B.; Yan, L.; Pan, Y.; Lee, R.; Liu, H.; Han, Z.; Huang, K.-W.; Tan, C.-H.; Jiang, Z. J. Org. Chem. 2011, 76, 6894–6900. doi:10.1021/jo201096e
- Hong, L.; Sun, W.; Liu, C.; Zhao, D.; Wang, R. Chem. Commun. 2010, 46, 2856–2858. doi:10.1039/b926037d
- 32. Sun, W.; Hong, L.; Liu, C.; Wang, R. Org. Lett. 2010, 12, 3914–3917. doi:10.1021/ol101601d
- 33. Deng, H.-P.; Shi, M. Eur. J. Org. Chem. 2012, 2012, 183–187. doi:10.1002/ejoc.201101365
- 34. Lin, A.; Mao, H.; Zhu, X.; Ge, H.; Tan, R.; Zhu, C.; Cheng, Y. Adv. Synth. Catal. 2011, 353, 3301–3306. doi:10.1002/adsc.201100522
- 35. Tan, B.; Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc. 2011, 133, 4672–4675. doi:10.1021/ja110147w
- 36. Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 7837–7841. doi:10.1002/anie.201102094
- 37. Peng, J.; Huang, X.; Jiang, L.; Cui, H.-L.; Chen, Y.-C. Org. Lett. 2011, 13, 4584–4587. doi:10.1021/ol201776h
- 38. Wang, B.; Comany, X.; Li, J.; Moyano, A.; Rios, R. Tetrahedron Lett. 2012, 53, 4124–4129. doi:10.1016/j.tetlet.2012.05.121
- 39. Jiang, Z.; Pan, Y.; Zhao, Y.; Ma, T.; Lee, R.; Yuang, Y.; Huang, K.-W.; Wong, M. W.; Tan, C.-H. Angew. Chem., Int. Ed. 2009, 48, 3627–3631. doi:10.1002/anie.200900964

40. Pan, Y.; Zhao, Y.; Ma, T.; Yang, Y.; Liu, H.; Jiang, Z.; Tan, C.-H. *Chem.-Eur. J.* **2010**, *16*, 779–782. doi:10.1002/chem.200902830

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.9.216