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A Cu-mediated trifluoromethylation of benzyl, allyl and propargyl methanesulfonates with TMSCF3 was developed for the first

time. This method offers a convenient and economical approach to various trifluoroethyl-containing compounds.

Introduction

Fluorinated organic molecules are extremely important in agro-
chemicals, pharmaceuticals and materials [1-6]. In recent years,
(trifluoroethyl)arenes have drawn increasing attention in medic-
inal chemistry and related fields [7-9]. Different methods have
been developed for the synthesis of (trifluoroethyl)arenes, such
as CI-F exchange of the trichloroethyl derivatives [10], reduc-
tion of the (trifluoroethyl)aryl derivatives [11] and addition of
2,2-difluorostyrene derivatives [12]. Compared to these
methods, the direct transition metal-mediated trifluoroethyla-
tion of arylboronic acids [13,14] (Scheme 1a) and trifluoro-
methylation of benzyl halides [15-21] (Scheme 1b) are more
convenient. Especially trifluoromethylations of benzyl bro-
mides with a [CuCF3] species, which are generated from

different precursors, are generally employed to afford various

(trifluoroethyl)arenes. Although these methods are proven effi-
cient, it is still highly desirable to develop new protocols from
economic consideration. In continuation of our research on tran-
sition metal-mediated trifluoromethylation [22-27], we report
here the first example of Cu-mediated trifluoromethylation of
benzyl methanesulfonates (Scheme 1c).

Results and Discussion

We initiated our investigation by reacting benzyl methanesul-
fonate 1a with TMSCF3 (2.0 equiv) in the presence of KF
(2.0 equiv) and Cul (0.2 equiv) in DMF (2.0 mL) at 60 °C
under Ar atmosphere. However, only 17% yield of the desired
product 2a was observed in this case (Table 1, entry 1). The

yield was improved to 31% when the reaction was carried out in
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the presence of 1,10-phenanthroline (phen) (Table 1, entry 2).
Increasing the substrate concentration (from 0.1 M to 0.4 M)
could further improve the product yield to 49% (Table 1, entries
3 and 4). Other copper salts such as CuBr, CuCl, CuTc and
CuOAc, were next screened, but none of them was better than
Cul (Table 1, entries 5-8). Interestingly, when the benzyl
methanesulfonate reacted with [CuCF3] generated in situ from
TMSCF3 and a stoichiometric amount of Cul (1.1 equiv)
without phen, the desired product 2a was formed in 68% yield
(Table 1, entry 9). Decreasing or increasing the amount of Cul
resulted in a lower yield (Table 1, entries 10 and 11). The
solvent was next screened and, to our delight, the highest yield

Table 1: Optimization of the reaction conditions.?
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of the product was achieved when using DMF/HMPA (1:1) as
the mixed solvent (Table 1, entry 14).

With the optimal conditions in hand, we next examined the sub-
strate scope of the Cu-mediated trifluoromethylation of benzyl
methanesulfonates with TMSCF3 (Scheme 2). This method
tolerates various functional groups. A wide range of benzyl
methanesulfonates bearing electron-withdrawing groups, such
as nitro (1f), cyano (1g), trifluoromethyl (1h) and ester (1i), as
well as electron-donating groups such as phenyl (1b), smoothly
underwent the transformation, affording the desired products in
moderate to good yield. Importantly, both chloro (1d) and bro-
mo (1e) substituents are also compatible with this method. It is
particularly noteworthy that the reaction can be scaled up effi-
ciently. 2a and 2¢ were successfully prepared on 10 mmol scale,
indicating the good reliability of the process.

The present reaction could also be expanded to the trifluoro-
methylation of allylic methanesulfonates (Scheme 3). Treat-
ment of the substrate 1k under the standard reaction conditions
afforded the linear trifluoromethylated product 2k in 78% yield
with a trace amount of Z isomer. Interesting, the reactions with
the allylic methanesulfonates 11 and 1m gave the same regiose-
lectivity and stereoselectivity with good yields. These observa-
tions indicate that a -allyl/Cu™ complex might be involved in
the Cgp3—CF3 bond formation, but the detailed mechanism
remains to be elucidated.

©/\OMS

+ CF3TMS

1a

entry CuX (equiv) ligand
1€ Cul (0.2) -
2¢ Cul (0.2) phen
3d Cul (0.2) phen
4 Cul (0.2) phen
5 CuBr (0.2) phen
6 CuCl (0.2) phen
7€ CuTc (0.2) phen
8 CuOAc phen
9 Cul (1.1) -
10 Cul (1.5) -
11 Cul (1.0) -
12 Cul (1.1) -
13 Cul (1.1) -
14 Cul (1.1) -

CuX, ligand, KF ©/\CF3
solvent, 60 °C
2a
solvent yield of 2a (%)P
DMF 17
DMF 31
DMF 32
DMF 49
DMF 40
DMF trace
DMF trace
DMF trace
DMF 68
DMF 66
DMF 62
DMSO 38
HMPA 9
DMF/HMPA (1:1) 76

aReaction conditions: 1a (0.2 mmol), ligand (0.2 mmol), TMSCF3 (0.4 mmol), KF (0.4 mmol), DMF (0.5 mL), 60 °C, under Ar atmosphere. Yield was
determined by '9F NMR using benzotrifluoride as an internal standard. ©2.0 mL of DMF. 91.0 mL of DMF. CuTc is copper(l) thiophene-2-carboxylate.
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T oM KF (2.0 equiv) N
R-+ + CF3TMS
% DMF/HMPA (1:1), 60 °C /
1 (2.0 equiv)
©/\CF3 /Ej/\CF \©/\ ©/\CF3
Ph™ 7 Br
2a, 76%° 2b, 79% 2c, 75%° 2d, 72% 2e, 78%
/@/\CF NC\Ej/\CF O/\CFs /©/\CF3 CF3
2N = 3C MeO,C
2f 40% 29, 81% 2h, 80% 2i, 68% 2j, 78%

Scheme 2: Cu-mediated trifluoromethylation of benzyl methanesulfonates. Reaction conditions: 1 (2.0 mmol), Cul (2.2 mmol), TMSCF3 (4.0 mmol),
KF (4.0 mmol), DMF/HMPA (1:1, 5.0 mL), 60 °C, under Ar atmosphere; Isolated yield. 2Isolated yield after distillation on 10.0 mmol scale.

(a)

\M/\/\/OMS CF3;TMS (2.0 equiv)
5 Cul (1.1 equw) CFs

W

1k or KF (2.0 equiv)
: X DMF/HMPA (1:1) 2k, 78% (E:Z = 32:1)
OMs 60°C (from 1Kk);
1 80% (E:Z = 32:1)
(b) CF3TMS (2.0 equiv) (from 11);
OMs Cul (1.1 equw)
KF (2.0 equiv) \M/\/\/CFz
4 Z DMF/HMPA (1:1) ~ #
1m 60 °C

2m, 87% (E/Z = 23:1)

Scheme 3: Cu-Mediated trifluoromethylation of allyl methanesul-
fonates.

We were next interested in the trifluoromethylation of propargyl
methanesulfonate derivates. Both aliphatic and aryl-substituted
linear propargyl methanesulfonates under standard reaction
conditions afforded the corresponding trifluoromethylated
propargylic products in moderate yields (Scheme 4a). However,
the reaction of the branched substrates under identical condi-
tions gave the trifluoromethylated allenylic products in good to
excellent yields, without any trifluoromethylated propargylic
products (Scheme 4b). Thus, this reaction provides an efficient
protocol for the synthesis of allenylic-CF3 derivatives, which
are useful building blocks for pharmaceuticals [28,29].

Conclusion
In summary, we have developed an efficient copper-mediated
trifluoromethylation of benzyl methanesulfonates at the

benzylic position under mild conditions. The reaction can be

(a) CF3TMS (2.0 equiv)

Cul (1.1 equiv)
/OMS

KF (2.0 equiv)

/CF:;

R - R
1n (R = n-CyHys) oot MPA M) o0 (R = n-CHyg), 64%
10 (R = Ph) 20 (R = Ph), 50%
(b) CF3TMS (2.0 equiv) H

OMs Cul(11equiv)
Ph KF (2.0 equiv) .«CF3

X —_—— 2 Y
2 X__ DMF/HMPA (1:1)
R 60 °C R

1p (R = Me) 2p (R =Me), 89%
1q (R = n-Bu) 2q (R =n-Bu), 93%
1r (R = TMS) 2r (R = TMS), 70%

Scheme 4: Cu-Mediated trifluoromethylation of propargyl methanesul-
fonates.

casily scaled up and allows for the efficient synthesis of a series
of (trifluoroethyl)arenes with excellent functional group
compatibility. Furthermore, the method could also be extended
to the trifluoromethylation of allyl and progargyl methanesul-
fonates, affording the corresponding allylic-, progargylic- and
allenylic-CF3 derivatives.

Experimental

General procedure for the Cu-mediated trifluoromethyla-
tion of benzyl methanesulfonates: Cul (2.2 mmol) and KF
(4.0 mmol) were added into a Schlenk tube equipped with a
magnetic stirring bar under Ar atmosphere. DMF (5.0 mL) and
Me;3SiCF3 (2.0 equiv) were added. After stirring for 20 minutes,
the mixture was heated to 60 °C and then benzyl methanesul-
fonate (2.0 mmol) was added under N, atmosphere. The reac-

tion mixture was kept at 60 °C for 4 hours and then cooled to
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room temperature. The resulting mixture was diluted with
diethyl ether, washed with water and brine, dried over sodium
sulfate, and concentrated. The crude products were purified by
column chromatography on silica gel to give the products.

Supporting Information

Supporting Information File 1

Experimental details, characterization data of all products
and copies of NMR spectra.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-9-322-S1.pdf]
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