
1303

Magnetohydrodynamic stagnation point on a Casson
nanofluid flow over a radially stretching sheet
Ganji Narender*1, Kamatam Govardhan2 and Gobburu Sreedhar Sarma1

Full Research Paper Open Access

Address:
1Department of Humanities and Sciences (Mathematics), CVR
College of Engineering, Hyderabad, Telangana State, India and
2Department of Mathematics, GITAM University, Hyderabad Campus,
Telangana State, India

Email:
Ganji Narender* - gnriimc@gmail.com

* Corresponding author

Keywords:
Casson nanofluid; magnetohydrodynamics (MHD); stagnation point;
thermal radiation; viscous dissipation

Beilstein J. Nanotechnol. 2020, 11, 1303–1315.
https://doi.org/10.3762/bjnano.11.114

Received: 30 October 2019
Accepted: 07 August 2020
Published: 02 September 2020

Associate Editor: N. Motta

© 2020 Narender et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
This article proposes a numerical model to investigate the impact of the radiation effects in the presence of heat generation/absorp-
tion and magnetic field on the magnetohydrodynamics (MHD) stagnation point flow over a radially stretching sheet using a Casson
nanofluid. The nonlinear partial differential equations (PDEs) describing the proposed flow problem are reduced to a set of ordi-
nary differential equations (ODEs) via suitable similarity transformations. The shooting technique and the Adams–Moulton method
of fourth order are used to obtain the numerical results via the computational program language FORTRAN. Nanoparticles have
unique thermal and electrical properties which can improve heat transfer in nanofluids. The effects of pertinent flow parameters on
the nondimensional velocity, temperature and concentration profiles are presented. Overall, the results show that the heat transfer
rate increases for higher values of the radiation parameter in a Casson nanofluid.
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Introduction
The heat transfer mechanism has been known for its significant
importance in many fields of engineering and medical science
in the last decades Since heat energy provides society with
several benefits, the field of thermodynamics is applicable to
and effectively connected with other fields. Heat transport pro-
cesses plays a fundamental role in building design [1], fuel-
filling systems [2], air compressor manufacturing [3], food
industry [4], and in many other fields. In this regard, fluid dy-
namics is essential for regulating thermal energy through the

usage of different fluids with good thermophysical properties.
Research efforts have been focused on developing strategies to
enhance thermal processes. For example, the fabrication of
porous media, open and closed cavities and the implementation
of magnetic effects, nanofluids and micrometer-sized
channels have been employed to enhance thermal convection
processes. Choi and collaborators [5] have used the term
“nanofluid” for the first time to refer to a colloidal mixture of
nanoparticles and a base fluid. Evidence has shown that metallic
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particles transfer more heat energy as compared to nonmetallic
particles.

A Casson fluid is a non-Newtonian fluid in nature and there-
fore, behaves similarly to an elastic solid. When the stress rate
is zero, the Casson fluid can be considered as a shear-thinning
liquid, with infinite viscosity. On the other hand, when the
stress rate approaches an infinite value the viscosity of the
Casson fluid drops to zero [6]. Jam, tomato ketchup, honey, and
concentrated fruit syrups are some quotidian examples of
Casson fluids. In addition, Casson fluids have been imple-
mented in the preparation of printing ink, silicon suspensions
and polymers [7]. Over the past few years, a vast range of ex-
periments and investigations have been carried out using
Casson fluids due to their broad applicability in the scientific
and engineering fields. Dash et al. [6] used a homogeneous
porous medium inside a pipe to examine its flow behavior by
using the Casson fluid model. The stagnation point flow for
mixed convection and convective boundary conditions was
analyzed by Hayat et al. also using the Casson fluid model [8].
In addition, Mukhopadhyay et al. [9] investigated the flow be-
havior over an unsteady stretching surface using the same ap-
proach. Moreover, different aspects of these flows were
explored in other recent studies that applied the Casson fluid
model to their systems [10-14].

The field of research in which the magnetic properties of elec-
trically conducting fluids are studied is called magnetohydrody-
namics (MHD). Magnetic fluids, liquids, metals and mixtures
containing water, salt and other electrolytes are examples of
materials that can be investigated via MHD. Hannes Alfen was
the first to introduce the term MHD. MHD applies a sequence
of Navier–Stokes equations and Maxwell’s equations to under-
stand the flow behavior of a fluid with electromagnetic proper-
ties, as discussed by Chakraborty and Mazumdar [15]. Shah et
al. [16] explored the MHD and heat transfer effects on the
upper-convected Maxwell (UCM) fluid upon Joule heating and
thermal radiation, using the Cattaneo–Christov heat flux model.
Hayat et al. [17] investigated the mass exchange and MHD flow
of a UCM fluid passing over an extended sheet. Ibrahim and
Suneetha [18] studied the effects of Joule heating and viscous
dissipation on steady Marangoni convective MHD flow over a
surface in the presence of radiation.

The point in the flow field where the velocity of the fluid is zero
is called the stagnation point. The study of viscous and incom-
pressible fluids passing over a permeable plate or sheet is of
great importance for the field of fluid dynamics. Over the past
few decades, these studies have become even more important
due to its applicability in manufacturing industries. The refrig-
eration of electronic instruments with a fan, cooling of atomic

receptacles during an emergency power outage, and solar
receivers for storage of thermal energy are a few examples in
which viscous and incompressible fluids are directly applied.
The study of a two-dimensional stagnation point flow was first
investigated by Hiemenz [19]. Later on, Eckert [20] extended
this problem by adding the energy equation in order to get a
more accurate solution. In view of that, Mahapatra and Gupta
[21], Ishak et al. [22], and Hayat et al. [23] have studied the
effects of heat transfer at the stagnation point over a permeable
plate. The MHD Casson fluid, including the effects of heat
source/sink and convective boundary conditions was analyzed
by Prabhakar et al. [24]. Besthapu et al. [25] examined the
MHD stagnation flow of non-Newtonian fluids over a convec-
tive stretching surface. Ibrahim et al. [26] investigated the MHD
stagnation point flow over a nonlinear stretching sheet by using
a Casson nanofluid with velocity and convective boundary
conditions. Ibrahim and Makinde [27] investigated the effect of
slip and convective boundary conditions on a MHD stagnation
point flow, considering heat transfer due to a Casson nanofluid
passing over a stretching sheet.

Moreover, the flow analysis of nanofluids passing over radially
stretched surfaces have many applications in several industry
sectors, such as drawing of plastic films, manufacturing of
glass, production of paper, and refining crude oil. Recently,
many researchers have been focusing their attention on nano-
particles, since they exhibit remarkable electrical, optical, and
chemical properties in addition to having Brownian motion and
thermophoretic properties. Due to these features, nanoparticles
are widely used in catalysis, imaging, energy-based research,
microelectronics, and in other applications in the medical and
environmental fields. These nanoparticles are composed of
metals and nonmetals and are frequently infused into heat
transfer fluids (e.g., water, diethylene glycol and propylene
glycol) to increase their efficiency. Rafique et al. [28] studied
the impact of Casson nanofluid boundary layer flow over an
inclined extending surface, considering Soret and Dufour
effects. In addition, Rafique et al. [29] studied the impact of
Brownian motion and thermophoresis diffusion on Casson
nanofluid boundary layer flow over a nonlinear inclined
stretching sheet. An unsteady flow of a Casson fluid along a
nonlinear stretching surface was studied by Ullah et al. [30]. A
Casson fluid over a non-isothermal cylinder, subjected to
suction/blowing was analyzed by Ullah et al. [31]. Moreover,
various researchers have been investigating the Casson fluid
model for different flow problems [32-36].

Motivated by the previous findings on non-Newtonian and
Newtonian fluids, the study of the stagnation point MHD flow
using Casson nanofluids has been presented. The governing
partial differential equations (PDEs) have been converted to a
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Figure 1: Schematic of the physical model in which a Casson nanofluid is passing a radially stretched surface in the proximity of a stagnation point.

set of ordinary differential equations (ODEs) through suitable
similarity transformations and the numerical solution has been
derived by the shooting method.

Mathematical Modelling
The present model aims to investigate the laminar, incompress-
ible and steady flow of a Casson nanofluid passing a radially
stretched surface in the proximity of a stagnation point. Consid-
ering the thermal radiation and heat generation/absorption
effects, the characteristics of the flow and heat transfer are ex-
amined. The coordinate system is chosen such that the r-axis is
along the direction of the flow whereas the z-axis is perpendicu-
lar to the flow direction (Figure 1).

The velocity of the outer flow is designated as Ue and the direc-
tion of the uniform magnetic field is chosen to be normal to the
surface of the fluid flow. The Brownian motion and ther-
mophoretic effects have been considered as well as the convec-
tive surface conditions. A convective heating process is applied
to regulate the sheet temperature Tw. The nanoparticle concen-
tration, Cw, is assumed to be constant. When y values tend to
infinity, the concentration and temperature of the nanofluid is
represented by C∞ and T∞, respectively. The constitutive equa-
tions of the Casson nanofluid model are described as follows
[10-14].

Firstly, the continuity equation considers the physical principle
of mass conservation:

(1)

In addition, the momentum is described by Newton’s second
law:

(2)

Following the principles of conservation of energy, the energy
equation is written as

(3)

and the mass transfer equation is

(4)

The corresponding boundary conditions at the boundary sur-
face are
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(5)

(6)

In the previous equations, νf is the kinematic viscosity, ρf is the
fluid density, α represents the thermal diffusivity, Cp represents
a constant pressure for a specific heat value, k0 denotes a chemi-
cal reaction coefficient, (ρcp)f represents the heat capacity, DB
represents the Brownian diffusion coefficient, Q0 represents the
volumetric heat generation, DT is the thermophoresis diffusion
coefficient, σ is the electrical conductivity, β represents the
Casson fluid parameter, and T represents the nanofluid tempera-
ture.

The following similarity variables are taken into consideration:

(7)

Finally, the ODEs describing the proposed flow problem can be
written as

(8)

(9)

(10)

The transformed boundary conditions are

(11)

and the dimensionless parameters are defined as

(12)

The formulas for the dimensional form of the skin-friction coef-
ficient Cf, the Nusselt number Nu, and Sherwood number Sh,
are given by

(13)

and the formulas for τw, qw, and qm are

(14)

The result of the transformation of the above formulas into their
dimensionless form is

(15)

where Re = rUw/νf is the local Reynolds number and νf = µ/ρ is
the kinematic viscosity.

Solution Methodology
In order to solve the system of ODEs (Equation 8–Equation 10)
subjected to the boundary conditions (Equation 11) the shooting
technique has been used. First, Equation 8 is solved numeri-
cally and then the computed results of f, f' and f''are used in
Equation 9 and Equation 10. For the numerical treatment of
Equation 8, the missing initial condition, f''(0), has been denoted
as s and the following notations have been considered:
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(16)

Using the previous notations, Equation 8 can be converted into
a system of three first-order ODEs. The first three of the
following ODEs correspond to Equation 8 and the other three
are obtained by differentiating the first three equations with
respect to S:

The Adams–Bashforth–Moulton method has been used to solve
the previous initial value problem. In order to get the approxi-
mate numerical results, the domain of the problem was bounded
(i.e., [0, η∞], where η∞ is chosen to be an appropriate finite pos-
itive real number such that the variation in the solution for
η > η∞ can be ignored). The missing condition for the previous
system of equations is chosen such that (h2(η∞))s = A. This alge-
braic equation is solved by using the Newton’s method
governed by the following iterative formula:

(17)

The stopping condition for the shooting method is set as

(18)

in which ε is a very small positive number.

Now to solve Equation 9 and Equation 10 numerically, the
missing initial conditions, θ(0) and ϕ(0), have been denoted by l
and m, respectively. Therefore, after taking the new notation
into account, we have

(19)

By incorporating the above notations, a system of first order
ODEs is achieved, as follows:

The Adams–Bashforth–Moulton method has been taken into
account to solve the initial value problem. For the previous
system of equations, the missing conditions were chosen, such
that

(20)
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Table 1: Comparison between the computed values of f''(0) and the values given by Attia [37], when Nt = Nb = R = Ec = Sc = 0.

Ha A f''(0) Ha A f''(0)

Attia Present Attia Present

0 0.1 −1.1246 −1.1246260 2 0.1 −2.1138 −2.1137140
0.2 −1.0556 −1.0555810 0.2 −1.9080 −1.9079860
0.5 −0.7534 −0.7534078 0.5 −1.2456 −1.2455380
1.0 0.0000 0.0000000 1.0 0.0000 0.0000000
1.1 0.1821 0.1820637 1.1 0.2691 0.2690781
1.2 0.3735 0.3735214 1.2 0.5445 0.5445290
1.5 1.0009 1.0008780 1.5 1.4080 01.4080270

1 0.1 −1.4334 −1.4334070 3 0.1 −2.9174 −2.9173560
0.2 −1.3179 −1.3178900 0.2 −2.6141 −2.6140730
0.5 −0.9002 −0.9001369 0.5 −1.6724 −1.6723740
1.0 0.0000 0.0000000 1.0 0.0000 0.0000000
1.1 0.2070 0.2070196 1.1 0.3494 0.3494373
1.2 0.4004 0.4223360 1.2 0.7037 0.7037439
1.5 1.1157 1.1156770 1.5 1.7954 1.7954280

The above algebraic equations have been solved by using
Newton’s method governed by the following iterative formula:

The stopping criteria for the shooting method is set as:

(21)

in which ε is set as a very small positive number. In this work, ε
is set as 10−5 whereas η∞ is set as 7.

Results and Discussion
In this section, the numerical results of the skin-friction coeffi-
cient, Nusselt and Sherwood numbers are listed in tables and
shown in graphs. The different values obtained depend on the
flow parameters chosen. The physical parameters have the
following admissible ranges: 0 ≤ Ha ≤ 2, 0.3 ≤ A ≤ 2.5, 0.1 ≤ β
≤ 1.5, 0.3 ≤ Pr ≤ 2.0, 0.5 ≤ Ec 2.5, 0.1 ≤ R ≤ 0.5, 0.1 ≤ Q ≤ 0.5,
0.3 ≤ Sc ≤ 0.6, 0.1 ≤ γ ≤ 2.0, 0.1 ≤ Nt ≤ 2.0, 0.1 ≤ Nb ≤ 2.0, γ =
1.0, 1 ≤ Bi1 ≤ 2.0, and 1 ≤ Bi2 ≤ 2.0.

Skin-friction coefficient, Nusselt and
Sherwood numbers
Prabhakar et al. [24] used a fourth-order Runge–Kutta method
to obtain the numerical solution of the discussed model, where-
as Attia [37] used the shooting technique and the computational
software MATLAB. In the present study, the shooting tech-
nique along with the fourth order Adams–Moulton method were
used to reproduce the previously published solution [24,37].

To validate the code written in the computational program lan-
guage Fortran, the results of –f''(0) and –θ'(0) were reproduced
for the problem discussed by Attia [37] and Prabhakar et al.
[24].

Tables 1–3 show that there is an excellent agreement between
the results yielded by the present code and the previously
published results.

Table 4 and Table 5 show the numerical results of the skin-fric-
tion coefficient along with the Nusselt and Sherwood numbers
for the present model, taking into account changes in the values
of various parameters, such as β, Ha, R, A, Pr, Q, Nb, Nt, Ec and
Sc.

Velocity, temperature and concentration
Figures 2–4 present the influence of the Hartmann number on
the velocity, temperature and concentration distributions. For
high values for Ha, the fluid velocity decreases while the tem-
perature and concentration of the fluid increase. This stems
from the fact that an opposing force generated by the magnetic
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Table 2: Comparison between the computed results of Nusselt number –θ'(0) and the results given by Attia [37], when Nt = Nb = R = Ec = Sc = 0.

Pr A –θ'(0) Pr A –θ'(0)

Attia Present Attia Present

0.05 0.1 0.1273 0.166529400 0.5 0.1 0.4691 0.476318600
0.2 0.1421 0.175023100 0.2 0.5223 0.526475900
0.5 0.1845 0.201851100 0.5 0.6345 0.633877500
1.0 0.2439 0.247389100 1.0 0.7699 0.764000400
1.1 0.2545 0.256288100 1.1 0.7933 0.786525000
1.2 0.2632 0.265061900 1.2 0.8136 0.808239000
1.5 0.2919 0.290530900 1.5 0.8793 0.849610600

0.1 0.1 0.1618 0.194615100 1 0.1 0.7657 0.772774200
0.2 0.1911 0.212448800 0.2 0.8152 0.818562500
0.5 0.2615 0.265139300 0.5 0.9332 0.929409300
1.0 0.3343 0.342184300 1.0 1.0888 1.077056000
1.1 0.3581 0.355768200 1.1 1.1166 1.103455000
1.2 0.3700 0.368815700 1.2 1.1408 1.129085000
1.5 0.4080 0.405144700 1.5 1.2200 1.202041000

Table 4: The computed results for the skin-friction coefficient, Nusselt and Sherwood numbers, for γ = 1, Bi1 = 0.1 = Bi2, where a1 = (1 + 1/β) and
a2 = (1 + 4/3·R).

β Ha A R Pr Q Nb Nt Ec Sc −a1f´´(0) −a2θ´(0) −ϕ´(0)

0.5 1.0 0.1 0.1 0.7 0.1 0.5 0.1 0.1 1.2 2.485303 0.0859357 0.0939868
5.0 – – – – – – – – – 1.570312 0.0860365 0.0937332
10 – – – – – – – – – 1.503451 0.0859404 0.0937079

– 1.2 – – – – – – – – 2.688387 0.083406 0.0940580
– 1.4 – – – – – – – – 2.911371 0.0805399 0.0941407
– – 0.3 – – – – – – – 2.0619300 0.0913473 0.0938944
– – 0.5 – – – – – – – 1.5593120 0.0942490 0.0938664
– – – 0.2 – – – – – – 2.4853030 0.0954124 0.0939689
– – – 0.3 – – – – – – 2.4853030 0.1047357 0.0939546
– – – – 1.0 – – – – – 2.4853030 0.0871634 0.0940612

Table 3: Comparison between the computed values of f''(0) and the
results given by Prabhakar et al. [24].

λ Ha f''(0)

Prabhakar et al.
[24]

Present

0 1.0 1.64532 1.645239000
0.2 1.0 1.38321 1.383139000
0.5 1.0 0.92353 0.923487700
0.5 0.0 0.78032 0.780284500

1.0 0.92353 0.923487700
5.0 1.35767 1.357532100

10.0 1.75768 1.757437000

field, generally referred to as the Lorentz force, reduces the
fluid motion, resulting in a reduction in the momentum bound-
ary layer thickness and an increase in the thermal and concen-
tration boundary layer thickness values.

Figures 5–7 show the effect of A on the velocity, temperature
and concentration distributions. An increase in the flow velocity
is observed for A > 1, whereas a reduction in the flow velocity
is observed for A < 1. Also, both the temperature and concentra-
tion profiles decrease when A assumes higher values. As the
value of A increases, the heat transfer from the sheet to the fluid
reduces and, as a result, the temperature significantly decreases.
Furthermore, the thermal boundary layer thickness is reduced as
well as the concentration boundary layer thickness.
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Table 4: The computed results for the skin-friction coefficient, Nusselt and Sherwood numbers, for γ = 1, Bi1 = 0.1 = Bi2, where a1 = (1 + 1/β) and
a2 = (1 + 4/3·R). (continued)

– – – – 2.0 – – – – – 2.4853030 0.0874003 0.0942927
– – – – – 0.5 – – – – 2.4853030 0.0688995 0.0944750
– – – – – 0.7 – – – – 2.4853030 0.1130105 0.0935984
– – – – – – 0.7 – – – 2.4853030 0.0858337 0.0939400
– – – – – – 0.8 – – – 2.4853030 0.0857826 0.0939254
– – – – – – – 0.2 – – 2.4853030 0.0858089 0.0941674
– – – – – – – 0.3 – – 2.4853030 0.0856807 0.0943550
– – – – – – – – 0.5 – 2.4853030 0.0366119 0.0959349
– – – – – – – – 1.0 – 2.4853030 −0.025837 0.0983850
– – – – – – – – – 1.4 2.4853030 0.0859497 0.0944484
– – – – – – – – – 1.6 2.4853030 0.0859616 0.0948187

Table 5: The computed results of the skin-friction coefficient, Nusselt and Sherwood numbers for β = 0.5, Ha = 1, A = 0.1, R = 0.1, Pr = 0.7, Q = 0.1,
Nt = 0.1, Nb = 0.5, Ec = 0.1, Sc = 1.2, where a1 = (1 + 1/β) and a2 = (1 + 4/3·R).

γ Bi1 Bi2 −a1f''(0) −a2θ'(0) −ϕ'(0)

1.0 0.1 0.1 2.485303 0.0859357 0.0939868
1.5 – – 2.485303 0.0859589 0.0946673
2.0 – – 2.485303 0.0859759 0.0951565

– 0.2 – 2.485303 0.1514275 0.0937815
– 0.3 – 2.485303 0.2029085 0.0936212
– – 0.2 2.485303 0.0857094 0.1770382
– – 0.3 2.485303 0.0855062 0.2509579

Figure 2: The velocity profile of a fluid for increasing values of the
Hartmann number, Ha.

Figures 8–10 show the effect of the Casson parameter on the
velocity, temperature and concentration fields. The velocity
profile shows an increasing trend when β increases. On the
other hand, the velocity boundary layer thickness decreases for
higher values of β. This stems from the fact that the plasticity of
the Casson fluid increases when β decreases, leading to an
increase in the momentum boundary layer thickness. In addi-
tion, the values of the temperature distribution as well as the

Figure 3: The temperature profile of a fluid for increasing values of the
Hartmann number, Ha.

thermal boundary thickness increase when β increases. A rise in
the nanoparticle volume fraction and an increase in the concen-
tration boundary layer thickness are observed for higher values
of β.

Figure 11 and Figure 12 show the effect of Pr on the tempera-
ture and concentration distributions. Since Pr is directly
proportional to the viscous diffusion rate and inversely
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Figure 4: The concentration profile of a fluid for increasing values of
the Hartmann number, Ha.

Figure 5: The velocity profile for increasing values of A.

Figure 6: The temperature profile for increasing values of A.

proportional to the thermal diffusivity, the thermal diffusion
rate is reduced for higher estimated values of Pr. As a
consequence, the temperature of the fluid is significantly
reduced as well as the thermal boundary layer thickness. Con-
versely, the nanoparticle volume fraction of the fluid and the

Figure 7: The concentration profile for increasing values of A.

Figure 8: The velocity profile for increasing values of β.

Figure 9: The temperature profile for increasing values of β.

concentration boundary layer thickness increase for higher
values of Pr.

The outcome of Ec on the temperature profiles is characterized
in Figure 13. Physically, the Eckert number depicts the relation
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Figure 10: The concentration profile for increasing values of β.

Figure 11: The temperature profile for increasing values of Pr.

Figure 12: The concentration profile for increasing values of Pr.

between the kinetic energy of the fluid particles and the bound-
ary layer enthalpy. The kinetic energy of the fluid particles in-
creases for higher values of Ec. Hence, the temperature of the
fluid rises marginally and therefore, the associated momentum
and thermal boundary layer thickness are enhanced.

Figure 13: The temperature profile for increasing values of Ec.

Figure 14 and Figure 15 elucidate the effect of the radiation pa-
rameter, R, and the heat generation/absorption parameter, Q, re-
spectively, on the temperature distributions. Since the heat
transfer increases marginally for higher estimated values of R,
an increment in the temperature of the fluid and also in the ther-
mal boundary layer is seen. However, as the value of Q rises,
more heat is generated, causing a rise in both the temperature
and thermal boundary layer thickness. On the other hand, as the
value of Q decreases, the absorbed heat results in a decrease of
both the temperature and associated thermal boundary layer
thickness.

Figure 14: The temperature profile for increasing values of R.

Figure 16 and Figure 17 show the effects of Sc and γ on the
concentration fields. The concentration of the fluid decreases
for higher values of Sc. This behavior stems from the fact that
both the Schmidt number and mass diffusion rate have an
inverse relation. Therefore, for higher Sc values, the mass diffu-
sivity process slows down, decreasing the concentration profile
and also the concentration boundary layer thickness. Further-
more, the chemical reaction parameter has a similar effect on
the concentration profile. For higher values of γ there is a de-
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Figure 15: The temperature profile for increasing values of Q.

crease in the chemical molecular diffusion rate and, conse-
quently, both the concentration of the fluid and the associated
concentration boundary layer thickness decrease.

Figure 16: The concentration profile for increasing values of Sc.

Figure 17: The concentration profile for increasing values of γ.

Figure 18 and Figure 19 show the influence of the ther-
mophoresis parameter on the temperature and concentration dis-

tributions. Both the temperature and concentration profiles
increase for higher values of Nt. In addition to this, an increase
in the associated thermal boundary layer thickness and in the
concentration boundary layer is noticed.

Figure 18: The temperature profile for increasing values of Nt.

Figure 19: The concentration profile for increasing values of Nt.

Figure 20 and Figure 21 display the influence of the Brownian
motion parameter on the temperature and concentration distri-
butions. The temperature profile increases marginally for higher
values of Nb. This happens because, as the value of Nb rises,
the movement of the nanoparticles increases significantly, in-
creasing the kinetic energy of the nanoparticles. Consequently,
the temperature rises and the thermal boundary layer thickness
increases. On the other hand, the concentration of the fluid and
the concentration boundary layer thickness decrease as Nb
assumes higher values.

The impact of the thermal Biot number on the temperature and
concentration distributions and also on the nanoparticle volume
fraction is shown in Figure 22 and Figure 23. It is remarkable
that the temperature can be observed as an increasing function
of Bi1 and the concentration of the fluid also increases as Bi2
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Figure 20: The temperature profile for increasing values of Nb.

Figure 21: The concentration profile for increasing values of Nb.

increases. In addition, the associated thermal and concentration
boundary layer thickness values are enhanced.

Figure 22: The temperature profile for increasing values of Bi1.

Conclusion
The numerical investigation of the MHD flow nearby a stagna-
tion point over a radially stretching sheet using Casson

Figure 23: The concentration profile for increasing values of Bi2.

nanofluids is presented in this article. Moreover, the radiation
effects and the magnetic field are examined. In addition to this,
the effects of heat generation/absorption are also explored. It is
important to mention that the thermophysical properties vary
with the flow rate, temperature and volume concentration. The
conversion of nonlinear partial differential equations, describing
the proposed flow problem, to a set of ordinary differential
equations has been carried out by employing appropriate simi-
larity transformations. The shooting method along with the
Adams–Moulton method of fourth order is employed for the nu-
merical treatment. The numerical results show that when the
Hartmann number, Ha, increases, the velocity decreases where-
as an opposite trend is observed for the temperature and concen-
tration fields. In addition, for high values of the Casson parame-
ter, the velocity, temperature and concentration profiles
increase. When the Prandtl number increases, the temperature
decreases while the concentration of the fluid increases. Addi-
tionally, the increase in the Eckert number increases the
velocity and the temperature profiles. When the thermophoresis
parameter increases, the heat and mass transfer rates also
increase. Last but not least, the heat transfer rate also increases
with the radiation parameter in Casson fluids.
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