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Abstract
We calculate the current–phase relation (CPR) of a SN-S-SN Josephson junction based on a SN bilayer of variable thickness
composed of a highly disordered superconductor (S) and a low-resistivity normal metal (N) with proximity-induced superconduc-
tivity. In such a junction, the N layer provides both a large concentration of phase in the weak link and good heat dissipation. We
find that when the thickness of the S and the N layer and the length of the S constriction are about the superconducting coherence
length the CPR is single-valued and can be close to a sinusoidal shape. The product IcRn can reach Δ(0)/2|e| (Ic is the critical cur-
rent of the junction, Rn is its normal-state resistance, Δ(0) is the superconductor gap of a single S layer at zero temperature). Our
calculations show, that the proper choice of the thickness of the N layer leads both to nonhysteretic current–voltage characteristics
even at low temperatures and a relatively large product IcRn.
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Introduction
Josephson junctions are of interest for applications such as
voltage standards [1], SQUID magnetometers [2], particle
detectors [3], and energy-efficient superconductor logic and
memory circuits [4,5]. These applications need to have a large
critical current Ic to achieve high noise immunity. Also many
of these applications require to have a nonhysteretic
current–voltage characteristic (IVC) and a large characteristic
voltage Vc = IcRn, where Rn is the normal-state resistance of the
junction.

Tunnel superconductor–insulator–superconductor (SIS)
Josephson junctions are characterized by small critical current
densities (significantly smaller than the depairing current densi-
ty of superconducting electrodes) and a hysteretic IVC (the
latter is related with the large capacitance of the insulator layer),
which restricts their applicability. Elimination of hysteresis in
SIS junctions requires an external resistor or a more complex
circuitry. S-c-S Josephson junctions (where “c” is a geometric
constriction) have a small capacitance of the weak link and a
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high critical current (about the magnitude of the depairing
current of a superconductor), which allows one to obtain high
noise immunity. But due to large critical current and bad heat
dissipation their IVCs are hysteretic due to Joule heating
( ) and the subsequent formation of a stable region
with suppressed superconductivity (a so-called “hot spot”) at
I > Ic [6-9]. At temperatures near the critical temperature Tc the
hysteresis is absent because of the low Ic and, therefore, small
dissipation, but this leads to a small voltage Vc.

Therefore, eliminating the thermal hysteresis without sacri-
ficing the voltage Vc is important, albeit a nontrivial problem.
One solution is a normal metal shunt either on top of the junc-
tion [10] or at a distance from it [11,12]. The resistance and the
position of the shunt play an important role and they can lead to
a reduction of the junction characteristics because of the prox-
imity effect or a very small shunt resistance. In [13,14], it was
proposed to use a variable-thickness SN-N-SN bilayer in which
the superconducting layer is partially (or entirely) etched by
means of a focused ion beam. A sufficiently thick normal metal
layer act as a good thermal bath, which yields a nonhysteretic
current–voltage characteristic even at low temperatures. How-
ever, the increase of the thickness of the N layer leads to a sig-
nificant decrease of Rn and, hence, to smaller values of Vc.

In our work, we calculate the current–phase relation and heating
effects in SN-S-SN Josephson junctions of variable thickness
based on a thin dirty superconductor with large normal-state
resistivity, ρS ≥ 100 μΩ·cm, and a thin normal metal layer with
low resistivity, ρN ≥ 2 μΩ·cm. In such a thin SN bilayer the
superconducting current mainly flows in the N layer (due to
proximity-induced superconductivity and ρS/ρN ≫ 1), and the
critical current of the SN bilayer may exceed the critical current
of a single S layer if the thickness of the S and the N layers are
about the superconducting coherence length [15]. Because of
the large diffusion coefficient, DN ≫ DS, the N layer provides
both a large phase concentration in the constriction leading to a
single-valued current–phase relation (CPR) and an effective
thermal bath into which the heat from the junction area could be
dissipated, resulting in nonhysteretic IVC even at relatively low
temperatures. We also find that in comparison with a SN-N-SN
junction, the critical current density could be similar to the
depairing current density of the S layer, which makes it possible
to obtain IcRn ≈ Δ(0)/2|e|.

Model
The model system consists of a SN bilayer strip with length L
made of a superconducting film with thickness dS and a normal
metal film with thickness dN. At the center of the bilayer there
is a constriction with length a and thickness dc where the N
layer and, partially, the S layer are removed (Figure 1).

Figure 1: Sketch of a SN-S-SN Josephson junction based on a SN
strip of variable thickness.

We assume that in our system the current flows in the x direc-
tion, and in the y direction the system is uniform. To find the
current–phase relation of such a SN-S-SN Josephson junction at
all temperatures below Tc we solve a 2D Usadel equation for
quasiclassical normal g and anomalous f Green’s functions.
With the angle parametrization g = cos Θ and f = sin Θ exp(iϕ),
the 2D Usadel equation in different layers can be written as

(1)

(2)

where the subscripts S and N refer to the superconducting and
the normal layer, respectively. Here ℏωn = πkBT(2n + 1) are the
Matsubara frequencies (n is an integer number), q = ∇ϕ = (qx,
qz) is the quantity that is proportional to the supervelocity vs,
and ϕ is the phase of the superconducting order parameter. Δ is
the magnitude of the order parameter, which should satisfy the
self-consistency equation

(3)

where Tc0 is the critical temperature of the single S layer. We
assume that Δ is nonzero only in the S layer because of the
absence of attractive phonon-mediated electron–electron cou-
pling in the N layer. Equation 1 and Equation 2 are supple-
mented by the Kupriyanov–Lukichev boundary conditions [16]



Beilstein J. Nanotechnol. 2020, 11, 858–865.

860

between the layers:

(4)

In the model we assume a transparent interface between the N
and the S layer, which leads to the continuity of Θ at the NS
boundary. At the boundaries of the system with the vacuum we
use dΘ/dn = 0.

To find the phase distribution ϕ Equation 1–Equation 3 are
supplemented by a 2D equation,

(5)

Here, js is the superconducting current density, which is deter-
mined by the following expression:

(6)

where ρ is the residual resistivity of the corresponding layer. At
the SN-interface we use a boundary condition similar to Equa-
tion 4, and for the interfaces with the vacuum we use dϕ/dn = 0.
At the system ends rigid boundary conditions are imposed:

(7)

where δϕ is the fixed phase difference between the system ends.
This is different from the phase drop near the junction, which
we define as

(8)

where k = qx (x = 0) is far from the constriction (in a similar
way φ is defined in [17,18]). The value of k is found from the
self-consistings solution of Equation 1–Equation 3 and Equa-
tion 5.

In numerical calculations we use dimensionless units. The mag-
nitude of the order parameter is normalized by kBTc0 =
Δ(0)/1.76, lengths are in units of  ≈ 1.33ξ(0),
where  is the superconducting coherence
length at T = 0, and the current is in units of the depairing cur-
rent Idep of the superconductor at T = 0.

To calculate the CPR we numerically solve Equation 1–Equa-
tion 3 and Equation 5 by using an iteration procedure with fixed

Figure 2: Dependence of the superconducting current Is flowing along
the SN bilayer on q for different dS. The solid line shows the depen-
dence of Is on q for the single S strip. The dashed lines show the criti-
cal values of q. The current is normalized by the depairing current Idep
of the single S strip with thickness dS at T = 0.

δϕ. When self-consistency is achieved (we stop the calcula-
tions when the maximal relative change of Δ between conse-
quent iterations is less than 10−4) the Green’s functions are used
to calculate js and the supercurrent per unit of width, Is:

(9)

We also compare the calculated CPR with the CPR of a 1D
S’-S-S’ system with a large ratio between the diffusion coeffi-
cients DS′/DS ≫ 1 (the length of the superconductor S is equal
to a). For these calculations we use a 1D Usadel equation.

Results
Current–phase relation of the SN-S-SN
Josephson junction
The function Is(q) in the SN bilayer may have one or two
maxima depending on the value of dS (see Figure 2) or of dN
(see Figure 3a in [15]). The maximum at small q is connected
with the suppression of proximity-induced superconductivity in
the N layer at  while the second maximum at

 comes from the suppression of super-
conductivity in the S layer when q > qc2. The large difference
between qc1 and qc2 leads to a larger phase concentration in the
S constriction (see Figure 1) in comparison with the variable-
thickness strip (or Dayem bridge) made of the same material
and having the similar geometrical parameters. Because of that,
for relatively thin S layers the CPR is single-valued (see
Figure 3a), which is not easy to achieve in a Dayem bridge [19].
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Figure 3: (a) Current–phase relation of a SN-S-SN Josephson junction at different dS. The current is normalized by the depairing current Idep of the
single S strip with thickness dc at T = 0. The junction parameters are shown in the figure. (b) Comparison of current–phase relations calculated on the
basis of 1D and 2D models. For the 2D case the parameters are dS = dN = ξc, dc = 0.5ξc, T = 0.2Tc0. For the 1D case the temperature T = 0.6Tc0 cor-
responds to T = 0.6Tc, where Tc = 0.32Tc0 is the critical temperature of the SN bilayer with the chosen parameters. The superconducting current is
normalized by the critical current of the Josephson junction.

For relatively large dS there is a noticeable contribution to the
total supercurrent from the S layer, which means a smaller cur-
rent (phase) concentration in the constriction like in a common
Dayem bridge, and the CPR becomes multi-valued (see
Figure 3a for dS = 2ξc and 3ξc).

In some respect, the studied Josephson junction resembles
Josephson junctions based on a S’-S-S’system composed of two
superconductors S and S’ having DS′ ≫ DS and the same thick-
nesses dS = dS′ [17,20,21]. A Josephson junction based on this
quasi 1D system has a single-valued CPR, which approaches a
sinusoidal shape with increasing temperature. In Figure 3b we
compare the CPRs calculated for 1D S’-S-S’ and 2D SN-S-SN
systems. Since in the 1D model there is no suppression of Tc
through the N layer, we use in the calculations the ratio T/Tc0,
which corresponds to the ratio T/Tc of the 2D SN structure.
Visible differences between the calculated CPRs using differ-
ent models could be related with a transversal inhomogeneity
near the S constriction in the 2D case.

We have also studied the evolution of the CPR of the SN-S-SN
Josephson junction when varying different parameters. In
Figure 4a we demonstrate that with increase of the temperature
the current–phase relation comes close to a sinusoidal shape. At
T = 0.3Tc0 the amplitude of the first harmonic, sin ϕ, is 0.98Ic

and the amplitude of the second harmonic, sin 2ϕ, is −0.19Ic).
This is typical for S’-S-S’ junctions [21] and is related to the
increase of the temperature-dependent coherence length ξ(T).
The effect of different dN is shown in Figure 4b. An increase in
dN leads to a slight shift of the maximum of Is(φ) to the left and
a decrease of Ic. This can be explained by a lowering of Tc of
the SN bilayer for thicker N layers. A lower Ic means smaller
values of IcRn. However, as we discuss below, a large value of
dN provides better cooling of the S constriction and nonhys-
teretic IVCs.

An increase of the length of the weak link, a, leads to the shift
of the maximum of Is(φ) to the right (see Figure 4c) as it is
typical for common Josephson junctions with variable thick-
ness. Interestingly, in contrast to common junctions, Ic in-
creases in the SN-S-SN system. This can be explained by a
lower value of the superconducting order parameter in SN
banks in comparison with Δ in the S constriction at Is = 0. With
increasing a the superconducting order parameter in the
constriction increases and Ic increases too.

Finally, Figure 4d illustrates that a decrease of the ratio ρS/ρN to
a third of the initial value hardly changes the current–phase
relation. Both the critical current and the shape of the CPR vary
only little.
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Figure 4: Variation of current–phase relation of SN-S-SN junction as a function of: (a) the temperature; (b) the thickness of the N layer dN; (c) the
length of the constriction, a; (d) the ratio between the resistivities. The current is normalized by the depairing current Idep of the superconducting strip
with thickness dc at T = 0.

Effect of Joule heating in SN-S-SN junctions
The absence of hysteresis in the current–voltage characteristics
is important for devices based on Josephson junctions. The
hysteresis in Dayem bridge, variable-thickness, S’-S-S’ or S-N-
S junctions is mainly caused by the temperature rise in the
weak-link region in the resistive state due to Joule heating and
the formation of hot spots [7-9]. A relatively large gap Δ in
superconducting banks plays an important role here because it
prohibits heat dissipation from the S or the N link at low tem-
peratures kBT < Δ and it leads to hysteresis even for S-N-S
junctions of variable thickness [22]. This problem could be
resolved by adding heat sinks (voltage leads attached to the N
link could play such a role [23]). However, this complicates the
geometry of the junction. Local heat production is expected to
be large in a SN-S-SN junction due to large critical current den-
sity, which is about the depairing current density of the super-
conductor. As we show below, the presence of a relatively thick
N layer with large diffusion coefficient and small minigap in the
electron spectra provides efficient cooling of the constriction.

To estimate the increase of temperature in the resistive state we
use a two-temperature (2T) model [24,25] for the SN-S-SN
junction. We suppose that electron temperature Te = T + δTe
and phonon temperature Tp = T + δTp are close to the substrate
temperature, δTe, δTp ≪ T and do not vary along the thickness.
In the N layer the proximity-induced gap (minigap) is small,
and, due to the inverse proximity effect, the gap in the relative-
ly thin S layer (dS ≤ 1.5ξc) is also suppressed in comparison
with a single S layer, which permits heat diffusion from the N
to the S layer in SN banks. In the S constriction being in the
resistive state at I > Ic the superconducting order parameter is
also suppressed. It allows us to use normal-state heat conduc-
tivity both in the SN and the S region in the heat conductance
equation for the calculation of δTe. This is in contrast to S-N-S
and S’-S-S’ junctions where heat conductivity is suppressed in
the superconducting banks. In our model Joule dissipation is
taken into account only in the S constriction, because in the SN
bilayer it is considerably lower due to the much lower resis-
tivity and lower current density. Because of the small length of
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the constriction and the large difference in diffusion coeffi-
cients and thicknesses in constriction and banks we can neglect
heat flow to phonons and substrate in the constriction (the main
cooling of the junction comes from the diffusion of hot elec-
trons to SN banks). In the SN bilayer DN ≫ DS and heat diffu-
sion occurs mainly along the N layer. With above assumptions
we obtain the following equation for δTe:

(10)

where  is the electron heat conductivity
of the S layer in the normal state, and N(0) is the one-spin den-
sity of states on the Fermi level,

(11)

is the thermal healing length, β = [γτesc 450ζ(5)T/[τ0π4Tc0],
ζ(5) ≈ 1.03, τesc is the escape time of nonequilibrium phonons
to the substrate, γ = 8π2Ce(Tc0)/Cp(Tc0) is the ratio between
electron and phonon heat capacity at T = Tc0 and τ0 determines
the strength of electron–phonon inelastic scattering in the S and
the N layer (see Equations 4 and 6 in [25]). For τ0 we use the
smallest time for S and N materials due to the assumably good
transfer of electrons between the S and the N layer and the
small thickness of the layers. On the boundary between S and
SN regions we use a continuity of the electron temperature,
δTe|a/2−0 = δTe|a/2+0, and of the heat flux

Using Equation 10 and above boundary conditions, we find the
maximal temperature increase in the constriction:

(12)

In the following estimations we use the parameters of NbN
(S layer) and Cu (N layer): Tc0 = 10 K, DS = 0.5 cm2/s,
ρS = 200 μΩ·cm, DN = 40 cm2/s, ρN = 2 μΩ·cm, τ0 = 1 ns (theo-
retical estimation for NbN taken from [25]), ξc = 6.4 nm, γ = 9,
dS  = 1.25ξc ,  dN  = 2ξc ,  τesc  = 4(dN  + dS)/u  ≈  41 ps
(u = 2·105 cm2/s is the mean speed of sound), T/Tc0 = 0.3,
Tc/Tc0 = 0.43, a= 0.5ξc, dc = 0.5ξc. With these parameters

β ≈ 0.53, Ic ≈ 0.22Idep(0) (see Figure 4b) and 
is small, thanks to DN ≫ DS and dN ≫ dc.

Discussion
We use an Usadel model to calculate the current–phase relation
of a SN-S-SN Josephson junction based on a high-resistivity
superconductor and a low-resistivity normal metal. In [15],
from comparison of experiment and theory it was concluded
that the Usadel model underestimates proximity-induced super-
conductivity in the N layer and overestimates the inverse prox-
imity effect in the S layer in NbN/Al, NbN/Ag and MoN/Ag bi-
layers. Namely, the suppression of the critical temperature of
the SN bilayer is smaller while the change in magnetic field
penetration depth of the SN bilayer is larger than the Usadel
model predicts. Therefore, the present results should be consid-
ered only as a route for a possible experimental realization of
SN-S-SN Josephson junctions. They demonstrate that the thick-
ness of the S layer should not exceed ca. 1.5ξc, otherwise the
current–phase relation is not single-valued for reasonable
lengths and thicknesses of the S constriction. The thickness of
the N layer should not be too small (a small dN leads to large
overheating) and not too large (a larger dN leads to lower Tc and
smaller Ic at a fixed substrate temperature).

Our results show that the SN-S-SN Josephson junction in many
respects resembles Dayem bridge, variable-thickness, S’-S-S’ or
S-N-S junctions. The product

(13)

can reach 0.5Δ(0)/|e| at a low temperature (T = 0.1Tc0) and
a = ξc (see Figure 4c) due to use of a superconductor in the
constriction area, instead of a normal metal as in [13]. In case of
NbN with Tc0 = 10 K one may have Vc = 0.75 mV but accord-
ing to Equation 12),  will be larger than T when using
these parameters. However there is the hope, that the critical
temperature of a real SN bilayer is higher than the Usadel
model predicts (see discussion above) and therefore large Ic
values could be reached at higher operating temperatures T/Tc0,
leading to a drastic reduction of  (see Equation 12).

SN-S-SN junctions made of a NbN/Al bilayer have been fabri-
cated recently [26] and indications of the Josephson effect (the
presence of Shapiro steps and a Fraunhofer-like dependence of
the critical current on the magnetic field) have been observed.
But due to not optimized parameters (dS = dc ≈ 15 nm ≈ 2.3 ξc,
dN ≈ 29 nm ≈ 4.5 ξc, a = 20 nm ≈ 3.1 ξc) the IV curves were
hysteretic already at temperatures close to the critical tempera-
ture and the width of Shapiro steps did not follow the theoreti-
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cal expectations [26]. Modern technology allows one to fabri-
cate constrictions with lengths of about 5 nm, which is smaller
than ξc in NbN, with the help of helium ion beam lithography.
The successful implementation of this method could lead to the
creation of low-temperature nanoscale Josephson junctions and
arrays of them. For example, SN-S-SN junctions can be promis-
ing to use in programmable voltage standards [1], where a large
value of Vc allows for a reduction of the number of junctions
and for the use of Shapiro steps of orders higher than one.
Nonhysteretic current–voltage characteristics with large Vc at
low temperatures allow for the use of these structures for
various low-temperature applications, e.g., particle detectors
[3].

Conclusion
We have calculated the current–phase relation of a Josephson
junction based on a SN-S-SN strip of variable thickness, where
S is a dirty superconductor with large normal-state resistivity
and N is a low-resistivity normal metal. We find a range of pa-
rameters for which the CPR is single-valued, is close to a sinu-
soidal shape, and IcRn ≤Δ(0)/2|e|. Our estimations demonstrate
that a relatively thick N layer serves as effective heat conductor
yielding weak overheating and a nonhysteretic current–voltage
characteristic of the SN-S-SN Josephson junction.
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