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Abstract
The thermal conductance of nanowires is an oft-explored quantity, but its dependence on the nanowire shape is not completely
understood. The behaviour of the conductance is examined as kinks of varying angular intensity are included into nanowires. The
effects on thermal transport are evaluated through molecular dynamics simulations, phonon Monte Carlo simulations and classical
solutions of the Fourier equation. A detailed look is taken at the nature of heat flux within said systems. The effects of the kink
angle are found to be complex, influenced by multiple factors including crystal orientation, details of transport modelling, and the
ratio of mean free path to characteristic system lengths. The effect of varying phonon reflection specularity on the heat flux is also
examined. It is found that, in general, the flow of heat through systems simulated through phonon Monte Carlo methods is concen-
trated into a channel smaller than the wire dimensions, while this is not the case in the classical solutions of the Fourier model.
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Introduction
The thermal conductivity of semiconductor nanostructures is of
great interest because of potential applications in a wide variety
of fields, such as thermal control, communications, and many
others [1-5]. In many nanoscale systems, thermal transport
cannot be simply described as it would be at larger scales [6].
At such scales, the carriers of energy (such as phonons) have
finite transit lengths that are no longer negligible compared to
the system dimensions. Systems where such transport is impor-
tant are said to have significant ballistic transport compared to
the classical scenario, that is, diffusive transport. Ballistic trans-
port can be impacted by features of the system, such as sur-

faces, edges, defects, and inclusions [7-9]. Consequently, the
effect of system design on nanoscale transport is particularly
intriguing and has lead to the investigation of unique structures
[10,11] in an attempt to better understand and develop manufac-
tured devices. The introduction of additional surfaces and the
reduction of direct paths through a system can force additional
scattering of phonons at boundaries and cause interesting effects
due to phonon reflections [12-14]. These effects are typically
not seen at the macroscopic scale, but instead reflect the sophis-
ticated nature of transport and finite sizes at the nano- and
mesoscales.
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Recently, there have been investigations of kinked, serpentine,
or chicaned nanowires, that is, wires with one or more right
angles preventing a straight path along the wire between two
temperature-controlled areas. While there are studies devoted to
simulation [15,16], several examples of synthesis for these
nanowires and nanosystems have been achieved [17-20]. We
have also seen investigations into corrugated nanowires, where
a jagged or sinusoidal pattern is inscribed into the edges of the
wire [21,22].

In such engineered systems, it is common that there is a de-
crease in thermal conductance. There is a lack of free paths for
unfettered ballistic phonon transit, suppressing the contribution
to thermal transport. Heron et al. [23] found that nanowires with
square serpentines with dimensions of a few hundred nanome-
ters exhibit reductions in thermal conductivity of the order of
20–40%. Zhang et al. found that, in boron carbide nanowires
[24], the thermal resistance of a kink can be 30 times larger than
that of the straight portion of a wire. Anufriev et al. [22] investi-
gated serpentine wires over a temperature range from 4–300 K
and likewise found significant reduction in thermal transport,
though this becomes less noticeable at higher temperatures.
This trend couples with system dimensions, where shorter
systems exhibit more noticeable effects than longer ones at the
same temperature. Overall, both simulation and experiment find
significant reductions in thermal transport when bends or kinks
are introduced, though the dependencies for this are myriad and
somewhat complicated to understand.

In this work we explore the effect of kinks where the angle is
different from the 90° bend commonly used in other studies.
We construct nanoscale systems with kinks of varying angles
(ranging from 0° to about 70°) in order to examine the effect of
disruption of ballistic paths in varying degrees on thermal trans-
port. By varying the kinks, it is possible to better understand the
nuances of blocking [23] or partially blocking phonon transport.
Intuitively, we should expect a reduction in thermal transport
with increased angle, as a steeper angling of the wire should
result in reduced quantities of unrestricted ballistic transport.
Gradually increasing the angle effectively reduces the quantity
of unobstructed line of sight (LoS) paths from one end of a
nanowire to the other. We use molecular dynamics (MD) [25]
to study an atomistic approach to thermal transport, as well as a
phonon Monte Carlo (PMC) simulation [26-29]. MD results
will additionally be investigated for effects of lattice orientation
in the wires and compared to a simple theoretical investigation
of the LoS in these wires.

The MD and PMC results cover different views of thermal
transport: MD is more sensitive to characteristics of the lattice,
while PMC ignores lattice properties and provides insight to

Figure 1: Schematic of kinked wire with nomenclature. The use of the
length 2l is a typical example. Note the relation between the angle at
the bend (θ) and the angle at the knee (180° − 2θ).

phonon behaviour. MD and PMC results are compared to a the-
oretical solution of classical heat transport using the Fourier
equation. Combining the three methods (MD, PMC, and the
theoretical solution of the Fourier equation), we find that the
thermal conductance of a kinked nanowire varies significantly
with the kink angle, but that the trend is not a simple monoton-
ic function of the kink angle. Furthermore, heat flux data
yielded by PMC and classical solutions provides detailed
insight into how heat flows through kinked systems. In these
kinked systems we will identify familiar “corner cutting” and
“shadowing effects” [22] as well as heat channelling effects
[30] similar to those seen in 90° serpentine systems. Combin-
ing MD, PMC, and theoretical solutions of the heat equation
serves to better bridge the gap between heat transport phenome-
na at the macro- and the microscale and shows that multiple
factors are significant in kinked systems beyond disruption of
ballistic paths, including lattice orientation and phonon reflec-
tions.

Results and Discussion
To understand the behaviour of the systems in question, we
must elaborate on their geometry and design. The kinked wire
systems consist of a general construction shown in Figure 1. At
each end of the wire is a straight segment of length l, with a
thermostatted region placed at each end. These straight seg-
ments provide a region for the effects of the thermostat on local
heat transport to be reduced before reaching later portions of the
wire. Connecting the two straight segments are two angled seg-
ments of lengths of some multiple of l. The radius of the wire is
denoted r. The joining segments in the wires are referred to as
the knee, connecting the two angled segments, and the bends,
each of which is a connection between a straight segment and
an angled segment. The angle of the angled segments with
respect to the initial direction of the straight segments (at the
bend) is denoted θ and is called the kink angle. The angle be-
tween the two angled segments (at the knee) is consequently
180° minus 2θ.
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Thermal conductance of kinked nanowires
The thermal conductance, C, is one of the most important basic
properties of a nanoscale system. It is obtained from the total
heat flowing through the system per unit time, P divided by
temperature difference ΔT throughout the system:

(1)

Molecular dynamics
In Figure 2 we show the thermal conductance of kinked nano-
wires in MD simulations as they vary with kink angle. The
cylindrical nanowires were simulated using a Lennard-Jones
potential and built on an FCC lattice. Dimensionless Lennard-
Jones units are used throughout this work. Further details can be
found in the Methodology section. The value of l is 30 lattice
constants, with r/l = 1/3. The kink angles range from 0° to 70°.
The upper panel shows the thermal conductance for varying
angled segment lengths. The angled portions of the wire have
values of 1, 1.5, 2, or 3 times the values of l, while the straight
segments remain constant. This means that the shortest systems
have a total path length of 120 lattice constants, and the longest
a path length of about 420 lattice constants. The smallest MD
systems have radii of 5 lattice constants, and the largest of 15
lattice constants. The lower panel of Figure 2 shows the trend
with variation in radius.

The general trends of the thermal conductance with system
dimensions agree with expectations from simple classical
theory and with the general trends at the nanoscale [31-34]. As
the segment length, and consequently the system length, are in-
creased, the overall thermal conductance of the system
decreases, shown by the decreasing values of the curves in the
upper panel of Figure 2. Longer systems lead to longer path
lengths for thermal transport, thus reducing the conductance (or
equivalently, increasing the thermal resistance) for the same
temperature difference. Works on serpentine nanowires show
similar behaviour [22], with thermal conductivity asymptoti-
cally approaching a constant (which is analogous to an inverse
proportionality for thermal conductance).

Similarly, an increase in wire radius for a constant segment
length is expected to result in an increase in thermal conduc-
tance as more cross-sectional area results in more heat transport.
This is seen in the lower panel as the values of the curves
increase with increasing radius.

It is known that nanoscale simulations can result in unexpected
trends of thermal transport with system dimensions [35]. Since
the variation in length and radius is over a small range, we do
not see any anomalous trends in the thermal conductance.

All the systems presented have broadly similar trends up to
about 55° or 60° of kink angle, independent of their segment
lengths or radii. The thermal conductance has a clear depen-
dence on the kink angle. It decreases until approximately 15° to
20° of kink angle before reaching an inflection point and then
increasing to a peak around 45°. Beyond 45° the thermal
conductance begins to decrease again until 55° or so, before
increasing dramatically. The large increase at very high
kink angles is due to the anomalous geometry in the systems.
When the angle becomes steep, the surface area at the knee
begins to grow as the two angled segments begin to clip into
each other. This results in an unusually large cross section at the
knee and also aggravates potential sintering problems. This
effect is related to wire length and radii as these factors
determine when the wire will begin to merge onto itself at the
knee.

It is notable that the scale of the effects seems to be less pro-
nounced for systems with either long segment lengths or
smaller wire radii. The impact of segment length and wire
radius is similar, as both control the ratio r/l. The ratio between
the radius and the segment length partially dictates the quantity
of phonons that can travel large distances without scattering off
a surface. With a small ratio, we must take into account the
nature of phonon scattering and reflection into our model of
heat transport. This idea ties in to the familiar Knudsen number,
Kn = λ/L, with λ being some transport mean free path and L
being a measurement of the typical transport length through the
system. In the case of the kinked nanowires, this transport
length is more likely the wire radius, r, than the total length of
the system. In fluid mechanics, a large Knudsen number (near
or greater than 1) typically indicates the unsuitability of a con-
tinuum approach. In the case of phonon transport, we often take
this as an indicator of strong ballistic transport over diffusive
modelling.

Through the design of these systems, two factors control the
limitation of the mean free path for heat transport by inducing
phonon collisions with a surface. The first is the ratio of the
radius to the system length. It is common in low-dimensional
systems to find unimpeded ballistic heat transport being
suppressed in systems with small radii or long lengths. In such
scenarios, few ballistic transit paths make it through without
scattering against a system boundary; the longer or narrower the
system, the fewer such paths. Given the sizes of the systems
simulated here, these effects are likely to be significant. Contri-
butions to thermal conductivity in simulated systems are signifi-
cant for mean free paths of the order of 10 lattice constants or
more [36]. Second, in kinked systems specifically, the kinks
further limit those paths through a form of phonon blocking
[23]. Introducing a bend in the wire provides a barrier to direct
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Figure 2: Top: thermal conductance of kinked nanowires with varying base segment length. Bottom: thermal conductance of MD-simulated nano-
wires for varying kink angles. Radii of wires varied from 5 to 15 lattice constants. Error bars are 1 standard error. The purple dashed line indicates the
thermal conductance of a straight nanowire with similar length, a radius of 10 lattice constants, and the lattice orientation along the [110] direction. The
shaded purple area indicates 1 standard error from the dashed line. Right: 2D reference sketches for a system with various bend kink angles with
r/l = 1/3 and two lengths of l in each angled segment. This roughly corresponds to the blue squares data set.
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Figure 3: Relative LoS through kinked wires as a function of both kink angle and radius to segment length ratio. Values are expressed as a ratio of
total LoS area to maximum theoretical, and threshold angles where LoS = 0 are highlighted.

ballistic transit, as there are fewer and fewer straight paths
through the system as the bend angle increases.

Theoretical insight on the effects of this barrier can be obtained
through a simple analysis of the LoS. Park et al. [30] catego-
rized systems into blocked LoS systems, where there are no
direct paths for transit from one end to the other, and continu-
ous (or unblocked) LoS systems, where there are direct lines
through the system that do not intersect any walls or bound-
aries. This classification was used to examine the effects of LoS
reduction on thermal transport. In the kinked wire systems we
discuss here, it is possible to approximately quantify the amount
of unblocked LoS by determining the area of overlap of two
circles, one at the bend of a kinked wire and the other at the
knee. The overlap area of the two circles is related to the num-
ber of lines one can trace through the wire from one end to the
other without intersecting a surface (Aoverlap ∼ LoS). Only one
bend needs be considered due to symmetry. For a kinked wire
with radius r, segment length l, and bend kink angle θ, as previ-
ously described, the overlap area (here as a fraction of l2 for
convenience) is given by:

(2)

Figure 3 shows the unblocked LoS of different systems as a
fraction of the maximum possible value, which occurs in a
perfectly straight wire. These coloured curves correspond with
the geometries of the equivalently coloured data points in the
lower graph of Figure 2. Also highlighted are the points at
which the curves reach 0 (i.e., the point at which the LoS is
fully blocked). We see that classifying systems as having fully
blocked (LoS ≤ 0) or partially unblocked (LoS > 0) LoS
depends on the system geometry. For systems with a very small
r/l, angles as low as 10° can be considered as having fully
blocked LoS, while for larger r/l values, LoS can be partially
unblocked up to values just below 30°.

The trend of LoS shares one similarity with the conductance
data: For low kink angles it decreases, up until the point where
LoS is fully blocked. Otherwise, these curves and the conduc-
tance data are dissimilar. There appears to be no significant
changes in where the local minimum conductance occurs with
changing r/l, suggesting that LoS has a rather minimal effect
once the kink angles start to become significant. This would
seem to conflict with results in labyrinthine nanowires [30], but
in the case of the kinked wires studied here, with only one kink,
gradually reducing the LoS does not result in a significant
increase in the path length, as is common in square serpentine
constructions. The kinked wires were specifically constructed to
minimize the change in path length due to the change in kink
angle.

We have shown that the thermal conductance of the wires does
not necessarily align to predictions from LoS analysis. In addi-



Beilstein J. Nanotechnol. 2023, 14, 586–602.

591

tion, the conductance is not monotonically decreasing. To
explain the increase in conductance for angles beyond 20°, we
must consider that the thermal transport in a nanostructure may
differ when travelling along orientations of a crystalline lattice
different from the [100] direction. Though the thermal conduc-
tivity of a theoretical crystal with cubic symmetry is isotropic
(and investigations of perfectly cubic systems have found such
[37]), because of the limited dimensions of a nanostructure
along certain crystal axes the contribution to thermal transport
in the lattice can be anisotropic. In addition, anisotropic heat
transport has been found in silicon nanosystems [38], where the
thermal conductivity can vary based on the lattice orientation
along the direction of transport. It is possible that this effect is
related to how lattice orientation can affect surface scattering.
Zhou, Chen and Hu showed that a [110] surface-oriented lattice
has a significantly increased thermal conductivity compared to a
[100] surface-oriented lattice [39].

There are then two competing factors here in the thermal
conductance, namely the complex effects of the kink itself and
the orientation of the lattice along those kinked segments. Since
the wire is single crystalline, the main direction of heat trans-
port along the angled segments will be along a lattice direction
that corresponds to that angle. At 45°, the angled segments are
oriented along the [110] direction of the crystalline lattice,
which results in a significant increase in thermal transport. The
dashed purple line in the lower panel of Figure 2 represents the
thermal conductance of a straight [110] FCC wire with r = 10
lattice constants. We see that it is significantly increased com-
pared to its equivalent (blue squares) data set. This is because
this wire does not have a kink, but rather is perfectly straight.

To better understand the effect of the kink itself versus the
effects of lattice orientation, we have simulated a set of straight
wires with r = 10 lattice constants where the lattice orientation
is angled as to mimic the lattice orientation in the angled seg-
ments of a corresponding kinked wire. Using these results, it is
possible, with proper weighting, to estimate the conductance of
a kinked wire where only the lattice orientation matters.
Figure 4 shows the previous kinked wire data, a set of data for
the straight wires with angled lattice orientations, and the
conductance estimate. From Figure 4, we see that overall the
thermal conductance of the straight wires with angled lattices is
quite high, while the conductance estimate is overall higher than
the true kinked wire data. This implies that the lattice orienta-
tion is not the only important effect here, even though the
effects of the angled lattice closely follow those of the kinked
wires with varying angle. One would expect that the angles in
the wire limit the quantity of ballistic phonons able to transit
freely through the system without scattering off a surface, and
the consistent disparity between the conductance estimate and

the true kinked wires shows that this is a contributing phenome-
non.

Figure 4: Comparison of thermal conductances for kinked wires,
straight wires with angled lattices, and a series resistance estimate.

Phonon Monte Carlo and Fourier equation
We believed that a significant decrease in the thermal conduc-
tance of the wires would occur corresponding primarily to the
reduced number of straight ballistic paths through the wire, or
equivalently the LoS. It would instead appear that the changes
in conductance in MD results are as much due to the angling of
the lattice as the kink effects. In order to further investigate the
effects of the kinks, we turn to phonon Monte Carlo simula-
tions. PMC simulations usually treat the simulated material as
isotropic. While this is typically seen as a missing component in
PMC, in our case it provides a significant advantage: We can
examine the thermal transport of phonons without including the
effects of the lattice orientation. This is particularly useful for
insight into applications where lattice orientation is less of a
concern, such as in larger nanosystems.

2D nanowire systems constructed with a similar geometry to
those in the MD simulations were simulated with PMC to ex-
amine thermal transport. The segment length l is set to 120 nm
and the wire radius is 40 nm. The PMC simulates the transit of
acoustic phonons through these 2D systems and factors in scat-
tering with boundaries, but does not incorporate optical
phonons. Results are compared to a numerical solution of the
Fourier equation for the steady state. This will provide a theo-
retical method to contrast the nature of heat transport in a diffu-
sive scenario to the phonon-based picture of PMC.
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Figure 5 presents the thermal conductance of systems against
kink angle for three scattering rates. The three scattering rates
(1×, 10×, and 100×) are used to trend the results of the PMC
simulations to more and more diffusive cases. The 1× scat-
tering rate corresponds to rates observed in silicon, while the
higher rates represent an artificial case where ballistic transport
is suppressed. Details on the methods used for calculation of
scattering rates are elaborated in the Methodology section of
this work. The thermal conductance of these 2D systems was
extrapolated to 3D by assuming a square cross section for the
wire. In addition, we have varied the scattering rate to allow us
to see how much ballistic transport impacts thermal conduc-
tance in the systems. The dashed purple line in Figure 5 shows
the mean system flux for the numerical solutions of the Fourier
equation. Since the temperature difference is constant, this
mean system flux is related to the thermal conductance by a
constant and is scaled to match the PMC result for 0°. At 0° of
kink angle, we have the least geometric effects occurring in the
wire. Hence, we can expect some degree of similarity in behav-
iour between the purely diffusive solution of the Fourier equa-
tion and the ballistic scenario occurring in the PMC simulation.

Figure 5: Thermal conductances calculated from 2D PMC simulations
of kinked nanowires with varying kink angles. Three scattering rates
are shown. The purple line shows the (rescaled) conductance yielded
by the Fourier result.

In Figure 5 we see that the PMC thermal conductance decreases
with increasing kink angle until about 50°. After this point, the
conductance begins to increase again. As this is not due to
lattice orientation, this effect must be due to the interactions of
travelling phonons with the surfaces of the wire due to the kink

angle. In the PMC simulation, phonons are reflected from a sur-
face after collision based on their angle of incidence. As these
travelling phonons have a chance to scatter because of the pres-
ence of other phonons, this tends to increase the distances
phonons must travel to transit from one heat bath to the other.
As the kink angle increases, more and more phonons scatter off
a boundary surface at least once, and as the angle increases
further, more of them are reflected multiple times in the wire.
Interestingly, as the angle increases beyond around 50°, there is
an increase. This may be due to a geometric effect, that is, there
should be some angles, based on wire shape and kink angle, that
are local minima for the number of reflections occurring for
most paths. Cook and Varga [40] show that this can be the case
in 1D nanowires, where kinks in general result in poor transmis-
sion, but there can be resonant states for certain geometries.
Note that the trajectory of a phonon travelling straight out of the
initial portions of the wire should deviate by an angle of 2θ as it
collides with the inside part of the kink.

Comparing this data with the results from the solution of the
Fourier equation, the initial few points seem to align quite well.
The conductance slowly begins to decrease with increasing kink
angle. As we increase the kink angle, we see that the PMC
result begins to decrease more than the theoretical result from
the Fourier equation. The reflective nature of the ballistic
phonons causes them to more often take indirect paths through
the system. The Fourier solution, in contrast, decreases rather
smoothly through this region. When the kink angle approaches
60° or so, the conductances begin to agree again, right before
anomalous geometric effects dominate (if one were to continue
the dashed line, one would find that the curve increases dramat-
ically as we approach the ill-defined 90° kink angle). The dip in
conductance from the PMC simulations when compared to the
solution of the Fourier equation may reflect geometric effects
discussed earlier. As the phonons travel in a ballistic fashion,
they can be more significantly affected by a large kink angle,
leading to a steeper slope.

Artificially tuning the scattering rates allows us to investigate
certain hypotheses. As the transport becomes less ballistic, the
effects of the kink should be reduced overall. Looking to the
10× increased scattering rate, we see that much of the effects
due to the kink seem to vanish, save for a slow increase with in-
creasing kink angle. With the scattering rate becoming large,
and consequently the mean free path of phonons becoming
short, the effect of scattering off surfaces becomes negligible,
and the heat flow becomes more diffusive (it is also reduced in
magnitude due to overall reduced transport). In contrast, the
trends in conductance seen in the previously discussed (1×
PMC and solution to the Fourier equation) curves are not well
observed in these curves. This may be due to the fact that the
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higher scattering rates here are not truly diffusive, and that the
scale of the systems is such that the ballistic effects seen at a
lower scattering rate (equivalently, a larger mean free path) are
not prevalent here.

In many cases, the slow increase with high kink angles might
come from a “corner cutting” behaviour. As the kink angle in-
creases, because the wire has a finite thickness, there are small
“shortcuts” that the heat flow can use to reduce its effective
path length, much like a race-car driver taking the inside
corners of a series of curves. This corner cutting has been seen
and discussed previously in the context of right-angled serpen-
tine nanowires [20,22,30].

To reiterate a point mentioned earlier, in all the previous figures
(for all simulation types), we have seen a notable jump in the
last couple of data points. Because the kinked wires in the 3D
MD simulations are constructed by intersecting two cylinders at
an angle of θ, when this angle becomes large (typically above
60°) the cross-sectional area of the intersection becomes signifi-
cant and this change in area affects the result both by artifi-
cially amplifying corner cutting and by allowing for a larger
surface through which heat can flow. The 2D systems simu-
lated here were constructed to reflect this fact and have, thus, a
wider cross section at the knee. In the extreme cases towards
90° kink angle, the straight portions of the wire nearly contact
each other and the result is a rather short, nearly straight wire
with a large wire attached perpendicularly at the middle. As
such, results for values above 65° of kink should be taken with
a grain of salt, particularly in the MD simulations.

Heat flux field
In systems with complex geometry, the nuances of heat transfer
beyond broad thermal conductance can be understood by exam-
ining the heat flux throughout the system. By investigating the
flux through kinked systems, it is possible to identify under-
lying phenomena such as corner cutting and reflections. The
existence of these effects can be indicators of the importance of
nanoscale heat transport phenomena in the systems in question.
In addition, these phenomena can result in non-uniform flows of
heat through systems, which may significantly affect function-
ality. Using colour maps and 2D vector plots, it is possible to
take an in-depth look at heat transport in the kinked nanowires.

PMC simulations yield information about the distribution of the
heat flux throughout the system. As the MD simulations do not
lend themselves to the effective collection of heat flux data for
long simulation times, we have opted to compare only the
simple classical solution of the Fourier equation for heat flow
with the PMC results. Figure 6 shows three vector plots, one
showing the heat flux in the Fourier case and the others

showing the heat flux in the PMC simulations for the standard
scattering rate and the simulations with the scattering rate in-
creased by a factor of 10. Note that the flux vectors have been
normalized by the mean flux through each individual system,
and the colour scale has been set to encompass the maximum
and minimum values of all three systems, to enable effective
comparison.

Perhaps unsurprisingly, there are no significant variations in the
direction of the flux through the systems. In the colour detail
one finds notable differences between the three systems in the
areas of the bends and knee. Generally, the heat flux is not
uniform throughout the systems. In the Fourier heat flux vector
plot, we see an expected result, namely a fairly smoothly
varying heat flux throughout the system, with strong gradients
near the corners. The corner cutting effect is present here:
Higher flux regions can be seen along the short path, or near the
inside corners. In the centre plot, we see the heat flux in the
PMC simulations. It shares similarities with the classical
Fourier solution, where there seems to be more heat flowing
through the inside corners and consequently less through the
outside corners, though the effect seems overall to be subtler.
The increased scattering rate plot yields a result closer to the
Fourier result, with small bright and dark spots occurring more
similarly to the previous scenario. In the 10× scattering plot, we
note that the flux in tight corners is subject to noise, and that the
heat flux is overall less smoothly varying than the other
systems.

Looking to a more easily assessed visualization, namely a
colour map, distinct kinds of behaviour can be seen in the PMC
result when compared to the Fourier solution. Figure 7 shows
colour maps of the (normalized) magnitude of the heat flux in
PMC and Fourier systems with standard scattering rate, shown
for four kink angles. The normalization here is again by the av-
erage flux through the system. The differences of colours in
these figures allow us to examine the variation of heat flux
within an individual system. A first examination of the effects
of the kink angle on the distribution of the heat flux shows two
principal differences between the two methods.

The first difference between the two is in the high (low) flux in
the inside (outside) corners of the bends and knee. In the solu-
tions of the Fourier equation, effects of the kink are localized.
Far from the knee and bends, the heat flux is slowly varying. In
the regions of the knee and bends, the variation of the flux is
significant, showing clear high and low flux regions. Increasing
the kink angle increases the size and intensity of the regions
where the flux is non-uniform. There is an increase in the size
of both high and low flux areas, a manifestation of the corner
cutting effect.
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Figure 6: 2D vector plots of heat flux in 45° kinked wires. The colour mapping indicates the value of the heat flux, normalized by the mean flux,
through the system, yielding a unitless flux. Top: Fourier steady-state calculation. Middle: PMC simulation. Bottom: PMC with 10× multiplier on the
scattering rate.

Conversely, in the PMC result, the behaviour with kink angle
seems to follow a similar trend, though the size and intensity of
the high and low flux regions are much less. The corner cutting
here appears to be lesser, as this would seem to be an effect that
is more significant in diffusive scenarios. Phonons do not have
a null mean free path and as such can be thought of as over-
shooting the optimal corner cut path. For the high flux inside
corners, some phonons will not scatter and will continue past,
while for the low flux areas, unscattered phonons may continue
their trajectory there. This has the effect of muting the differ-
ence between the high and low flux regions. Essentially, while
increasing the kink angle seems to promote corner cutting,
the ballistic behaviour in the PMC systems moderates its inten-
sity.

The second difference is seen by looking at the behaviour in the
angled segments of the wires. As one would expect from a clas-
sical solution with continuous derivatives, the Fourier results
show smoothly varying flux along the angled segments, while
in the PMC simulation the overall flux seems to be much more
homogeneous.

A careful eye might also note some faint patterning in the
colours of the PMC results. As the colour scale for Figure 7
spans a large range, we can look to a more convenient visualiza-
tion in Figure 8. Here we have clipped the colour range, setting
the extreme low and high values in the bends and knee corners
to grey. This allows the colour scale to span the range in the
angled segments with higher resolution at the cost of hiding the
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Figure 7: Colour maps of heat flux for PMC simulation (left column) and Fourier equation solution (right column) in kinked wires with kink angles of
15°, 30°, 45°, and 60°. The colour mapping indicates the value of the heat flux, normalized by the mean flux, through the system. The flux is unit-
less.

highest and lowest values. In so doing, a clear and unique phe-
nomenon emerges in the PMC result for standard scattering
rates. There seem to be bright bands and a shadowing effect in
the flux of these systems when compared to the Fourier solu-
tion. The bright band begins just before the lower portion of the
left angled segment. It deflects upward, and then again as it
reaches the upper boundary of the system, it deflects horizon-
tally through the knee. It then deflects again off of the upper
surface before being reflected down to the lower, mirroring the
opposite angled segment. This concentration of the heat flux,
especially as it seems more significant with larger kink angles,
might explain the reduced conductances seen in the PMC simu-
lations in Figure 5 when compared to the solution of the Fourier
equation.

In addition to the shadowing effects, the variation of the flux
within the angled segments in the PMC solution appears to be

predominantly due to random noise resulting from the simula-
tion method. This is in contrast with the solution of the Fourier
equation, which varies much more smoothly in the angled seg-
ments. This is further emphasized by the centre two colour
maps for systems with increased scattering rate, which show an
increase in the noise throughout PMC systems.

The presence of these coloured bands in the PMC result indi-
cate that the flux through the system is concentrated into a
channel narrower than the wire itself. Although the angle of the
channel seems to be similar to the angle of specular reflection
of the phonons, it may not be exactly this. Similar patterns can
be seen in other angled PMC systems. This behaviour is
perhaps better explained by examining the shadowed areas that
create the channel. In this case, those areas, which are immedi-
ately around corners, are shadowed as phonons travel past them
unscattered, leading to a channel between dark areas. Over-
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Figure 8: Clipped colour maps of normalized heat flux for the 45° system using (from top to bottom) PMC, PMC with 5× scattering, PMC with 10×
scattering, and Fourier solution. The colour bar shows values where the colour scale is applied and where it is set to grey to improve resolution.

shoot and corner cutting are important here, as they are in other
works involving serpentine nanowires [22].

If we look again to Figure 8 and focus on the results with in-
creased scattering rates, the reflected ballistic phonons become
more evident. Increasing the scattering rate by a factor of ten
reduces the mean free path of phonons accordingly. As such,
few, if any, phonons travel far enough to be reflected in an

optical fashion, and the heat flux profile resembles the classical
case.

The previous discussion of heat maps has been for cases where
the phonon reflections at surfaces in the PMC solution have
perfect specularity. In light of the discussed shadowing effect, it
becomes interesting to investigate different scenarios for reflec-
tion specularity, ranging from perfectly specular (100% specu-
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Figure 9: Clipped colour maps of normalized heat flux for 45° systems using (from top to bottom) PMC with 0% specularity, PMC with 50% specu-
larity, PMC with 100% specularity and Fourier solution. The colour scale shows values where colour is clipped (set to grey) to improve resolution.

larity) to perfectly diffusive (0% specularity). Perfectly diffuse
surfaces can somewhat mimic nanoscale systems with high sur-
face roughness. Note the probability of specular reflection is
constant here and not a function of the phonon wavelength or
incidence angle, so specularities between 0% and 100% should
be taken with this in mind. More sophisticated methods for
calculating the probability of specularity and its wavelength de-

pendence have been suggested [38,41,42] and may be interest-
ing for an expansion of this work.

Figure 9 shows colour maps for the normalized flux for 45°
kinked wires as solved using PMC (with varying degrees of
specularity) and Fourier equation solutions. Colour scale clip-
ping is again used to make the flow in intermediate regions
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more visible. In the uppermost graph, where the specularity is
minimum, it is possible to see low flux regions along the sides
of the wire, with a high flux band in the centre. This high flux
band runs through the system from one end to the other,
concentrating the flux in the middle of the wire and resulting in
less flux near the edges. This is reminiscent of effects seen in
labyrinthine nanowires [30]. As we increase the specularity, this
effect remains to a certain degree, with still evidently lower
flow along the surfaces of the wire and a concentration in the
centre. At maximum specularity (the third graph), we return to
the scenario seen in Figure 8, where reflections seem signifi-
cant. In the perfectly specular case the flow reduction along the
surfaces of the wire is no longer clearly visible at all points
along the surface. Comparing all these PMC results with the
Fourier result in the final graph of Figure 9, we do not see the
same darkened edges but instead a smooth progression of the
flux. The low flow region along the surface that can occur in
PMC does not occur in the classical solution.

The tendency of flow to be reduced along the surface in low
specularity systems seems reasonable, as the possibility of
random reflection on contact with the surface would naturally
lead to a reduction of flux in the direction of initial flow after
reflection. Specular reflections result in less overall change of
direction of the flux after reflection in contrast to diffuse reflec-
tions, which, in the limiting case, would result in flux being
uniformly emitted in a semicircular region about the point of
reflection.

Essentially, in the PMC model, the statement that the flux
appears concentrated in a band narrower than the system dimen-
sions seems further reinforced. Especially in low specularity
cases, the flux of heat seems channelled in a narrow “river”
through the wire itself, with lower flow along the surfaces of the
system. This is somewhat reminiscent of frictional slowing of
flow along a surface.

Conclusion
In this work, we studied the effects of simple kinks of varying
angles on thermal transport in simulated nanowires. The general
trends of thermal conductance for low-dimensional systems are
present here: nanowires exhibit reduced thermal conductance
with increased length and increased thermal conductance with
increased cross-sectional area [31-34]. As always, these can be
among the most significant predictors of thermal transport. The
length scaling seen here is similar to those seen in other works
on serpentine nanowires [22], and the wires were not found to
exhibit any non-monotonic anomalous behaviour [35].

In all systems investigated, the introduction of kinks with small
bend angles produced a reduction in thermal conductance. This

reduction is not necessarily monotonic. In the non-lattice-based
simulations, the reduction of thermal conductance continued to
much higher kink angles than in the lattice-based MD simula-
tions.

MD simulations showed that around 20° of kink angle, the ther-
mal conductance behaviour reversed, reaching a (local)
maximum at 45°, corresponding to a [110] lattice orientation in
the angled segments. Increased thermal conductivity along
certain lattice directions has been seen in other nanosystems
[38,39]. Beyond 45°, the thermal conductance decreases again.

In the case of the PMC simulations, the thermal conductance
(for the standard scattering rate) decreases until about 50° of
kink angle, after which it increases slightly. This may be related
to symmetry angles, which minimise the number of reflections
for ballistic phonons transiting through the system [40]. Fourier
equation solutions scaled to match show an overall slower de-
crease of conductance with a minimum at a higher angle,
though the two agree again around 60°.

All systems showed unstable results at very high kink angles,
where anomalies in geometry greatly affect cross-sectional
areas and, combined with the well-known corner cutting effect
[22], necessitate very skeptical examination.

Overall, these results have strong implications for device
design. When constructing nanodevices (single-crystalline ones
in particular), one must be aware of the effects of bends and
angles. Small bends seem to result in decreases in conductance
overall, while the effects of larger bends depend on the nature
of the system. When lattice effects dominate, lattice orientation
must be taken into account. When ballistic phonon transport is
significant, specularity and symmetry angles can be impactful.

Examining the heat flux in PMC simulations and comparing it
to theoretical solutions of the heat equation is useful to under-
stand which portions of a system dominantly influence thermal
transport. For low kink angles, PMC and classical results gener-
ally agree. Phonon interaction with surfaces here is less than
when the kink is large, leading to less reflective effects and long
distances for phonons to travel uninterrupted. When kinks are
introduced, and a careful investigation is done cleverly using
colour scaling, it is possible to identify bands of heat flow
through systems and the ever present corner cutting. This type
of behaviour has been seen in various calculations for serpen-
tine [22] and labyrinthine nanowires [30].

Corner cutting occurs more strongly in the diffusive heat equa-
tion solutions and in PMC results with artificially inflated scat-
tering rates (e.g., more diffusive transport). In PMC results with
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low scattering rate, the heat flux shows some similarity to the
behaviour of optical rays as it is reflected off the inside of the
kink. Ray “phononics” (an analogue to ray optics) has been pro-
posed as a tool for controlled heat flow in nanosystems [42].

An investigation of the effects of specularity in PMC results
shows that systems with diffuse reflections tend to produce a
“river-like” heat flow, while those with specular reflections
result in a more “optics-like” banding effect.

The concentration of heat flux into areas smaller than the wire
itself has significant implications for device design. Areas with
more significant heat flow can amplify the effects of small
changes in the wire. This is particularly true when impurities or
defects are a concern [24]. Introduction of a source of scat-
tering should produce different results if the flux of heat near
the scattering source is large or small. It can even lead to a rela-
tive increase in thermal conductance depending on the position
[15]. Understanding the flux could allow a device manufacturer
to strategically place inclusions to modify thermal transport in a
desired fashion.

Further investigations into variably kinked nanowires may
include a study of temperature dependence. It is known that in
serpentine nanowires [22] at higher temperatures ballistic be-
haviour is reduced. It is likely that variably kinked nanowires
will show stronger kink effects below room temperature.

Methodology
Molecular dynamics
For this work, a Lennard-Jones potential [43-46] was used to
simulate a solid with a face-centred cubic lattice in the well-
known LAMMPS simulation framework [47]. The Lennard-
Jones parameters σ and ε, effectively the length and energy
scales, were set to 1, and a cut-off for the potential was set at
2.5σ. The set value of 1 for ε and σ fixes us to dimensionless
units. Systems have an equilibrium temperature of 0.005, and
they are under a thermostat at each end, for a temperature
difference between the two of 0.001. Systems are simulated
using open boundary conditions, that is, there is no use of peri-
odic boundary conditions for these systems.

The kinked wires used in MD are shaped from a single crystal
oriented so that the straight portions follow along the [100]
direction. These systems are build from cylindrical wires of
radius r, and with fundamental segment length l, very similar to
what is described in Figure 1. The thermostats occupy one third
of the straight segments at either end. A spherical ball joint is
used to join the wires at the bends and the knee, not shown in
the aforementioned schematic. They are centred at the central
joining point at the end of both cylinders. These joints are used

to yield a more stable equilibration process, smoothing out
sharp corners. Harsh angles can result in sintering during simu-
lation, which can deform the wire, and must be handled care-
fully by observing the results of the various steps of prepara-
tion for the system. A visualization of a typical MD system can
be see in Figure 10.

Figure 10: Image of the MD system for a wire with a kink angle of 40°.
Visualization via OVITO [48].

The use of a single [100] crystal for construction leads to differ-
ent effective heat transport directions in the angled segment,
depending on the kink angle of the wire. Additional unkinked
systems where the lattice itself is oriented along the directions
equivalent to those in the angled segments were constructed
with dimensions to match the straight, unkinked wire (the 0°
case).

In order to properly examine the kinked wire systems, a straight
wire was first simulated at the equilibrium temperature for a
lengthy period, and the effective lattice parameter at simulation
temperature was calculated by examining the system dimen-
sions. This was used as the lattice parameter for the kinked
wires. The kinked wires then also underwent a lengthy equili-
bration process to allow them to expand as needed and remove
any rotations about the centre of mass. This careful and exten-
sive process allows us to create systems that avoid sintering at
the inside of the knee, even for steep kink angles.

Phonon Monte Carlo
The Boltzmann transport equation [49] is an excellent method
for the description of phonon-based heat transport in nanoscale
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systems. Phonon Monte Carlo is a method that makes it
possible to find solutions of the Boltzmann transport equation
even for systems with complicated geometries. The first PMC
simulations were published by Mazumder and Majumder [29]
based on a preliminary work by Peterson [50]. The method was
then further developed in the works by Lacroix et al. [27] and
Péraud and Hadjiconstantinou [26,51]. PMC simulations simu-
late the propagation of packets of phonons through a system
while utilizing stochastic methods to simulate the effect of scat-
tering processes. Our implementation of the method closely
follows the previous works [26,27,29,51]. Details of the imple-
mentation are given in [52].

Carrying out PMC simulations requires a model for the disper-
sion relations and scattering rates of the phonons in the system.
In our work, we are using the parameters for silicon given by
Jean et al. [28] in their work on simulations of nanoporous
silicon and germanium. In that work, an isotropic model based
on a parabolic fit is used for the description of the dispersion
relations of the acoustic phonons. Since we are not attempting
to obtain exact quantitative data for a specific material, we do
not expect the limitation to acoustic phonons to be problematic.
For the scattering rates of the phonons, Jean et al. [28] use a
parametrization based on the formulas developed by Holland
[53]. The values given in [28] correspond to the 1× scattering
rate used in this work. Higher scattering rates, such as 10×,
merely involve multiplying the rates by a constant factor. No
impurity scattering was assumed in this work, and all simula-
tions were carried out at a mid-point temperature of 300 K with
a temperature difference of 20 K between the hot and cold ends
of the system.

When a phonon packet interacts with a surface in a PMC simu-
lation, the phonons scatter in one of two modes, namely diffu-
sive or specular. Similar to previous works [27,29,54], our
implementation of the PMC simulation method assumes a con-
stant probability for specular reflection that is independent from
the phonon wave length and incidence angle [52]. In order to
obtain quantitative results, a more sophisticated approach such
as Soffer’s equation [41] might be necessary. In this work, how-
ever, our goal was to show how an increase of diffusive reflec-
tion modifies the flow patterns observed at perfectly clean sur-
faces with 100% specularity. We believe that for this purpose a
constant probability is sufficient.

The 2D geometry of the PMC simulations is a polygon that
mimics the proportions of the corresponding MD system. The
third dimension is treated as infinite in depth in the PMC simu-
lations. This is equivalent to a system of finite depth but with
perfectly specular surfaces perpendicular to that direction. This
polygon takes into account any variations in width at the joins

that occur from the joints used in the MD simulation. The
supplementary sketches in Figure 2 illustrate this.

Classical heat transport solutions
Fourier solutions were obtained through the use of Mathe-
matica’s standard heat transfer library [55], built on a geometry
matching that of the PMC, with appropriate boundary condi-
tions to match the isothermal regions implemented in the PMC.
Dimensionless units are used for these theoretical calculations.

Weighted conductance estimate
The conductance estimate used in Figure 4 calculates the
conductance by constructing a theoretical straight wire from the
conductance of a 0° wire and the conductance of a wire where
the lattice is oriented matching the angle of the angled seg-
ments. Building a wire out of these new components, it is
possible to determine the weighting by treating all the segments
as resistors in series. The new conductance Ca(θ) estimate is
then:

(3)

where l0 and lθ are the total lengths of the straight and angled
segments of the wire, respectively, C0 is the conductance of a
straight [100] wire, and Cθ is the conductance of a straight wire
whose lattice is oriented along an angle θ with respect to the
[100] wire.

Funding
The authors extend their thanks for the generous support of the
Natural Sciences and Engineering Research Council of Canada
(NSERC), grant number RGPIN/6563-2018, Laurentian
University, and the Ontario Graduate Scholarship program.

ORCID® iDs
Alexander N. Robillard - https://orcid.org/0000-0003-4827-2841
Ralf Meyer - https://orcid.org/0000-0003-0106-7066

References
1. Salhi, B.; Hossain, M. K.; Mukhaimer, A. W.; Al-Sulaiman, F. A.

J. Electroceram. 2016, 37, 34–49. doi:10.1007/s10832-016-0037-y
2. Gonella, S.; To, A. C.; Liu, W. K. J. Mech. Phys. Solids 2009, 57,

621–633. doi:10.1016/j.jmps.2008.11.002
3. Moore, A. L.; Shi, L. Mater. Today 2014, 17, 163–174.

doi:10.1016/j.mattod.2014.04.003
4. Majumdar, A. Nat. Nanotechnol. 2009, 4, 214–215.

doi:10.1038/nnano.2009.65
5. Yoo, J.-K.; Kim, J.; Jung, Y. S.; Kang, K. Adv. Mater. (Weinheim, Ger.)

2012, 24, 5452–5456. doi:10.1002/adma.201201601

https://orcid.org/0000-0003-4827-2841
https://orcid.org/0000-0003-0106-7066
https://doi.org/10.1007%2Fs10832-016-0037-y
https://doi.org/10.1016%2Fj.jmps.2008.11.002
https://doi.org/10.1016%2Fj.mattod.2014.04.003
https://doi.org/10.1038%2Fnnano.2009.65
https://doi.org/10.1002%2Fadma.201201601


Beilstein J. Nanotechnol. 2023, 14, 586–602.

601

6. Dhar, A. Adv. Phys. 2008, 57, 457–537.
doi:10.1080/00018730802538522

7. Alvarez, F. X.; Jou, D.; Sellitto, A. Appl. Phys. Lett. 2010, 97, 033103.
doi:10.1063/1.3462936

8. Marconnet, A. M.; Asheghi, M.; Goodson, K. E. J. Heat Transfer 2013,
135, 061601. doi:10.1115/1.4023577

9. Maldovan, M. J. Appl. Phys. 2011, 110, 034308.
doi:10.1063/1.3607295

10. Hopkins, P. E.; Reinke, C. M.; Su, M. F.; Olsson, R. H., III;
Shaner, E. A.; Leseman, Z. C.; Serrano, J. R.; Phinney, L. M.;
El-Kady, I. Nano Lett. 2011, 11, 107–112. doi:10.1021/nl102918q

11. Meyer, R. Phys. Status Solidi A 2016, 213, 2927–2935.
doi:10.1002/pssa.201600387

12. Malhotra, A.; Maldovan, M. Nanotechnology 2019, 30, 372002.
doi:10.1088/1361-6528/ab261d

13. Majumdar, A. J. Heat Transfer 1993, 115, 7–16.
doi:10.1115/1.2910673

14. Anufriev, R.; Ramiere, A.; Maire, J.; Nomura, M. Nat. Commun. 2017,
8, 15505. doi:10.1038/ncomms15505

15. Zhao, Y.; Yang, L.; Liu, C.; Zhang, Q.; Chen, Y.; Yang, J.; Li, D.
Int. J. Heat Mass Transfer 2019, 137, 573–578.
doi:10.1016/j.ijheatmasstransfer.2019.03.104

16. Jiang, J.-W.; Yang, N.; Wang, B.-S.; Rabczuk, T. Nano Lett. 2013, 13,
1670–1674. doi:10.1021/nl400127q

17. Tian, B.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M.
Nat. Nanotechnol. 2009, 4, 824–829. doi:10.1038/nnano.2009.304

18. Adhila, T. K.; Elangovan, H.; Chattopadhyay, K.; Barshilia, H. C.
Mater. Res. Bull. 2021, 140, 111308.
doi:10.1016/j.materresbull.2021.111308

19. Sandu, G.; Avila Osses, J.; Luciano, M.; Caina, D.; Stopin, A.;
Bonifazi, D.; Gohy, J.-F.; Silhanek, A.; Florea, I.; Bahri, M.; Ersen, O.;
Leclère, P.; Gabriele, S.; Vlad, A.; Melinte, S. Nano Lett. 2019, 19,
7681–7690. doi:10.1021/acs.nanolett.9b02568

20. Anufriev, R.; Gluchko, S.; Volz, S.; Nomura, M. Nanoscale 2019, 11,
13407–13414. doi:10.1039/c9nr03863a

21. Blanc, C.; Rajabpour, A.; Volz, S.; Fournier, T.; Bourgeois, O.
Appl. Phys. Lett. 2013, 103, 043109. doi:10.1063/1.4816590

22. Anufriev, R.; Gluchko, S.; Volz, S.; Nomura, M. arXiv 2018,
1809.09808. doi:10.48550/arxiv.1809.09808

23. Heron, J.-S.; Bera, C.; Fournier, T.; Mingo, N.; Bourgeois, O.
Phys. Rev. B 2010, 82, 155458. doi:10.1103/physrevb.82.155458

24. Zhang, Q.; Cui, Z.; Wei, Z.; Chang, S. Y.; Yang, L.; Zhao, Y.; Yang, Y.;
Guan, Z.; Jiang, Y.; Fowlkes, J.; Yang, J.; Xu, D.; Chen, Y.; Xu, T. T.;
Li, D. Nano Lett. 2017, 17, 3550–3555.
doi:10.1021/acs.nanolett.7b00666

25. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon
Press: Oxford, UK, 1989.

26. Péraud, J.-P. M.; Hadjiconstantinou, N. G. Phys. Rev. B 2011, 84,
205331. doi:10.1103/physrevb.84.205331

27. Lacroix, D.; Joulain, K.; Lemonnier, D. Phys. Rev. B 2005, 72, 064305.
doi:10.1103/physrevb.72.064305

28. Jean, V.; Fumeron, S.; Termentzidis, K.; Tutashkonko, S.; Lacroix, D.
J. Appl. Phys. 2014, 115, 024304. doi:10.1063/1.4861410

29. Mazumder, S.; Majumdar, A. J. Heat Transfer 2001, 123, 749–759.
doi:10.1115/1.1377018

30. Park, W.; Romano, G.; Ahn, E. C.; Kodama, T.; Park, J.; Barako, M. T.;
Sohn, J.; Kim, S. J.; Cho, J.; Marconnet, A. M.; Asheghi, M.;
Kolpak, A. M.; Goodson, K. E. Sci. Rep. 2017, 7, 6233.
doi:10.1038/s41598-017-06479-3

31. Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.;
Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163–167.
doi:10.1038/nature06381

32. Yang, N.; Zhang, G.; Li, B. Nano Today 2010, 5, 85–90.
doi:10.1016/j.nantod.2010.02.002

33. Volz, S. G.; Chen, G. Appl. Phys. Lett. 1999, 75, 2056–2058.
doi:10.1063/1.124914

34. Lee, J.; Lee, W.; Lim, J.; Yu, Y.; Kong, Q.; Urban, J. J.; Yang, P.
Nano Lett. 2016, 16, 4133–4140. doi:10.1021/acs.nanolett.6b00956

35. Zhou, Y.; Zhang, X.; Hu, M. Nano Lett. 2017, 17, 1269–1276.
doi:10.1021/acs.nanolett.6b05113

36. Zhou, Y.; Zhang, X.; Hu, M. Phys. Rev. B 2015, 92, 195204.
doi:10.1103/physrevb.92.195204

37. Sæther, S.; Erichsen, M. F.; Xiao, S.; Zhang, Z.; Lervik, A.; He, J.
AIP Adv. 2022, 12, 065301. doi:10.1063/5.0094170

38. Aksamija, Z.; Knezevic, I. Phys. Rev. B 2010, 82, 045319.
doi:10.1103/physrevb.82.045319

39. Zhou, Y.; Chen, Y.; Hu, M. Sci. Rep. 2016, 6, 24903.
doi:10.1038/srep24903

40. Cook, B. G.; Varga, K. Appl. Phys. Lett. 2011, 98, 052104.
doi:10.1063/1.3551711

41. Soffer, S. B. J. Appl. Phys. 1967, 38, 1710–1715.
doi:10.1063/1.1709746

42. Anufriev, R.; Nomura, M. Mater. Today Phys. 2020, 15, 100272.
doi:10.1016/j.mtphys.2020.100272

43. Lennard-Jones, J. E. Proc. Phys. Soc., London 1931, 43, 461–482.
doi:10.1088/0959-5309/43/5/301

44. Jones, J. E. Proc. R. Soc. London, Ser. A 1924, 106, 441–462.
doi:10.1098/rspa.1924.0081

45. Jones, J. E. Proc. R. Soc. London, Ser. A 1924, 106, 463–477.
doi:10.1098/rspa.1924.0082

46. van der Hoef, M. A. J. Chem. Phys. 2000, 113, 8142–8148.
doi:10.1063/1.1314342

47. Plimpton, S. J. Comput. Phys. 1995, 117, 1–19.
doi:10.1006/jcph.1995.1039

48. Stukowski, A. Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012.
doi:10.1088/0965-0393/18/1/015012

49. Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt, Rinehart and
Winston: New York, NY, USA, 1976.

50. Peterson, R. B. J. Heat Transfer 1994, 116, 815–822.
doi:10.1115/1.2911452

51. Péraud, J.-P. M.; Hadjiconstantinou, N. G. Appl. Phys. Lett. 2012, 101,
153114. doi:10.1063/1.4757607

52. Gibson, G. Monte Carlo simulated heat transport in semiconductor
nanostructures. Ph.D. Thesis, Laurentian University of Sudbury,
Sudbury, Canada, 2022.
https://zone.biblio.laurentian.ca/jspui/handle/10219/4005

53. Holland, M. G. Phys. Rev. 1963, 132, 2461–2471.
doi:10.1103/physrev.132.2461

54. Mittal, A.; Mazumder, S. J. Heat Transfer 2010, 132, 052402.
doi:10.1115/1.4000447

55. Mathematica, Version 13.1; Wolfram Research, Inc.: Champaign,
Illinois, USA, 2022.

https://doi.org/10.1080%2F00018730802538522
https://doi.org/10.1063%2F1.3462936
https://doi.org/10.1115%2F1.4023577
https://doi.org/10.1063%2F1.3607295
https://doi.org/10.1021%2Fnl102918q
https://doi.org/10.1002%2Fpssa.201600387
https://doi.org/10.1088%2F1361-6528%2Fab261d
https://doi.org/10.1115%2F1.2910673
https://doi.org/10.1038%2Fncomms15505
https://doi.org/10.1016%2Fj.ijheatmasstransfer.2019.03.104
https://doi.org/10.1021%2Fnl400127q
https://doi.org/10.1038%2Fnnano.2009.304
https://doi.org/10.1016%2Fj.materresbull.2021.111308
https://doi.org/10.1021%2Facs.nanolett.9b02568
https://doi.org/10.1039%2Fc9nr03863a
https://doi.org/10.1063%2F1.4816590
https://doi.org/10.48550%2Farxiv.1809.09808
https://doi.org/10.1103%2Fphysrevb.82.155458
https://doi.org/10.1021%2Facs.nanolett.7b00666
https://doi.org/10.1103%2Fphysrevb.84.205331
https://doi.org/10.1103%2Fphysrevb.72.064305
https://doi.org/10.1063%2F1.4861410
https://doi.org/10.1115%2F1.1377018
https://doi.org/10.1038%2Fs41598-017-06479-3
https://doi.org/10.1038%2Fnature06381
https://doi.org/10.1016%2Fj.nantod.2010.02.002
https://doi.org/10.1063%2F1.124914
https://doi.org/10.1021%2Facs.nanolett.6b00956
https://doi.org/10.1021%2Facs.nanolett.6b05113
https://doi.org/10.1103%2Fphysrevb.92.195204
https://doi.org/10.1063%2F5.0094170
https://doi.org/10.1103%2Fphysrevb.82.045319
https://doi.org/10.1038%2Fsrep24903
https://doi.org/10.1063%2F1.3551711
https://doi.org/10.1063%2F1.1709746
https://doi.org/10.1016%2Fj.mtphys.2020.100272
https://doi.org/10.1088%2F0959-5309%2F43%2F5%2F301
https://doi.org/10.1098%2Frspa.1924.0081
https://doi.org/10.1098%2Frspa.1924.0082
https://doi.org/10.1063%2F1.1314342
https://doi.org/10.1006%2Fjcph.1995.1039
https://doi.org/10.1088%2F0965-0393%2F18%2F1%2F015012
https://doi.org/10.1115%2F1.2911452
https://doi.org/10.1063%2F1.4757607
https://zone.biblio.laurentian.ca/jspui/handle/10219/4005
https://doi.org/10.1103%2Fphysrev.132.2461
https://doi.org/10.1115%2F1.4000447


Beilstein J. Nanotechnol. 2023, 14, 586–602.

602

License and Terms
This is an open access article licensed under the terms of
the Beilstein-Institut Open Access License Agreement
(https://www.beilstein-journals.org/bjnano/terms), which is
identical to the Creative Commons Attribution 4.0
International License
(https://creativecommons.org/licenses/by/4.0). The reuse of
material under this license requires that the author(s),
source and license are credited. Third-party material in this
article could be subject to other licenses (typically indicated
in the credit line), and in this case, users are required to
obtain permission from the license holder to reuse the
material.

The definitive version of this article is the electronic one
which can be found at:
https://doi.org/10.3762/bjnano.14.49

https://www.beilstein-journals.org/bjnano/terms
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.3762/bjnano.14.49

	Abstract
	Introduction
	Results and Discussion
	Thermal conductance of kinked nanowires
	Molecular dynamics
	Phonon Monte Carlo and Fourier equation

	Heat flux field

	Conclusion
	Methodology
	Molecular dynamics
	Phonon Monte Carlo
	Classical heat transport solutions
	Weighted conductance estimate

	Funding
	ORCID iDs
	References

