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Abstract
There has been great endeavor to engineer molecular rotors operated by an electrical current. A frequently met operation principle
is the transfer of angular momentum taken from the incident flux. In this paper, we present an alternative driving agent that works
also in situations where angular momentum of the incoming flux is conserved. This situation arises typically with molecular rotors
that exhibit an easy axis of rotation. For quantitative analysis we investigate here a classical model where molecule and wires are
represented by a rigid curved path. We demonstrate that in the presence of chirality, the rotor generically undergoes a directed
motion, provided that the incident current exceeds a threshold value. Above this threshold, the corresponding rotation frequency
(per incoming particle current) for helical geometries turns out to be 2πm/M1, where m/M1 is the ratio of the mass of an incident
charge carrier and the mass of the helix per winding number.
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Introduction
Experiments employing scanning tunneling microscopy (STM)
have achieved the directed rotation of molecules controlled by
an electrical current. Correspondingly, realizations of molecu-
lar switches and rotors have been reported, [1-9], with potential
relevance for future molecular technologies.

The theory describing the working principle of such molecular
motors often employs angular Langevin equations [9,10]. This
method has been established by Hänggi [11] and Astumian [12]
and their collaborators in the context of Brownian motors. It de-
scribes the dynamics of a classical angular variable ϑ that is

subject to a “ratchet”-type potential in the presence of a
(phenomenologically treated) driving torque. Ab initio expres-
sions for the current-induced torques have been obtained within
the non-equilibrium Green’s function formalism [13,14]. The
current excites a variety of molecular vibrational modes,
rendering the atomistic analysis of the torque very complex (see
[6] for an ab initio calculation of the vibrations).

To bring about a controlled unidirectional rotation in the STM
setup requires a degree of symmetry breaking. There are two
typical situations, that is, either the molecule by itself exhibits a

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:korytar@karlov.mff.cuni.cz
https://doi.org/10.3762/bjnano.14.57


Beilstein J. Nanotechnol. 2023, 14, 711–721.

712

handedness (chirality) or chirality is imposed by the geometry
of the molecular junction [6,10]. The purpose of this article is to
provide a qualitative description of the current-induced mechan-
ical torque within a toy model framework.

We consider a classical model of the molecular rotor where the
molecule is modeled as a one-dimensional curve (“molecular
wire”) that guides the flow of the charge carriers (see Figure 1
(left) for illustration). The motion of the particle along the mol-
ecule obeys Lagrangian dynamics. The wire can rotate around a
given axis with angle ϑ. The torque driving the rotation is provi-
ded by the back action of moving particle. In the absence of a
potential V(ϑ), angular momentum is conserved.

Figure 1: Left: A particle of mass m is constrained to move along a
path (red curve). An axis is assumed so that the initial and final radius
of the path with respect to the axis is zero. Furthermore, the path is
allowed to rotate (angle ϑ) around the axis. Right: An N-helix that
smoothly evolves from a straight line to its radius R, parameterized by
the formulas in the Appendix section. Here, the number of turns is
N = 10 and the full radius sets in from zero after δN = 1 turns.

The main outcome of this work is that the wire rotates even if
the net transfer of angular momentum of the transmitted parti-
cles is zero. The operation principle is that the particle exerts a
torque when entering and leaving the molecular wire. Even if
both exactly compensate, the wire rotates while the particle
travels along, so that each transmitted particle results in a shift
δϑ. This operational principle is different than an earlier re-
ported one [15], where an electric field was needed to continu-
ously accelerate the electrons while they travel along a helical
wire. When the rotation of the molecule is hindered by a poten-
tial barrier V(ϑ), we find that the mass current needs to over-
come a threshold for the wire to rotate. The resulting time-aver-
aged angular velocity is time-independent and directional for all
supercritical currents.

Finally, we consider a situation where the net torque exerted by
the transmitted particle does not vanish. In this situation, the
rotation trivially appears due to the angular momentum transfer

(“garden hose effect”). This situation represents molecular junc-
tions where the incoming or outgoing current can carry a non-
vanishing angular momentum. We present the characteristics of
the crossover between both regimes.

To exemplify our results, we employ a helical geometry.
Helical molecular wires have sparked a lot of attention because
of reports of spin-selective transport [16-18]. This phenomenon
falls under the umbrella term “chirality-induced spin selectivity
(CISS)”. The full explanation of CISS remains elusive, howev-
er [19]. Therefore, the problem of current-induced angular
momentum generation in helical molecules remains open, with
broader scientific and technological significance.

Summarizing, our work provides insights into the operation
principles of molecular rotors, specifically the velocity–current
characteristics and threshold currents. Our results can support
the design of nanoscale mechanical devices.

Model
Model geometry (kinematics)
Our classical model contains a particle (mass m) moving on a
rigid path, which can rotate around an axis, see left part of
Figure 1. The rotation angle of the path is denoted by ϑ. In
absence of a rotational degree of freedom of the path, the parti-
cle would experience constrained dynamics. With the rotation
allowed, the motion of the particle can exert a torque on the
path. Conversely, the dynamics of the path around its angle
affects the passage of the particle.

The trajectory (path) at rest (  = 0, ϑ = 0) will be expressed
parametrically in a cylindrical coordinate system:

(1)

The parameter s could be the distance along the path; for the
purpose of this work it is not required. For simplicity, we
further stipulate that z(s) is monotonously increasing with s, and
that the trajectory never intersects itself.

The model contains two dynamical variables, the degree of free-
dom of the particle, s(t), and ϑ(t), the latter being the angle of
the path with respect to a static coordinate system. Our aim is to
investigate the dynamics of ϑ under the condition that the in-
coming and outgoing particles do not carry any angular
momentum. We achieve this by conditioning the path to have
vanishing radius at its start and at the end,

(2)
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Later on, we also employ a path with a finite final radius,
allowing for an angular momentum transfer. As we shall
demonstrate, paths satisfying Equation 2 will still turn when
subjected to particles, if the path is chiral (lacks reflection
symmetry). We shall employ a helical path, with the radius
smoothly raising from zero, effecting N turns, and decreasing at
the end, see Figure 1b. The mathematical expression of the path
can be found in the Appendix section.

Lagrangian dynamics
We construct the equations of motion from a Lagrangian,

.

Static path
For a fixed path, ϑ = 0, the Lagrangian of this model reduces to
the Lagrangian of a particle subject to a constraint,

(3)

Formally, as a consequence of the constraint, the model adopts
the form of a free particle with an s-dependent mass. Recalling
the conservation of energy, the formal integration of the
Lagrangian in Equation 3 is trivial.

Dynamic path
To allow for a dynamical rotational degree of freedom ϑ for the
path, we now introduce the actual angle ϕ of the particle in a
static cylindrical system, defined by

(4)

and introduce it in Equation 3.

Without a particle on a path, the dynamics of the rotor will be
governed by the kinetic energy  and the potential energy
V(ϑ).

The full Lagrangian of the coupled system becomes

(5)

It provides two equations of motion (EOM), which are listed in
the Appendix section. We integrate the EOM using a
Runge–Kutta method, see Appendix section.

Basic parameters and scales
The parameters that enter the coupled dynamical problem
governed by the Lagrangian in Equation 5 are: (1) The particle
mass m. (2) The definition of the path (Equation 1); it will be
assumed that the path has a characteristic radius R ∼ maxρ(s),
which will serve as a length scale. Helical paths are primarily
distinguished by the number of turns N, which controls the time
particle spends on the helix. (3) The moment of inertia of the
path Θ; the latter can be expressed through the characteristic
radius as MR2, defining mass M. The ratio μ = m/M enters in the
collision characteristics. (4) The potential V(ϑ) that hinders the
motion of the path (setting a preferred direction). The differ-
ence between minimum and maximum is denoted by ΔV. This
is the energy scale that needs to be overcome when inducing an
unbound rotation; if not, one is trapped in the potential valley.
(5) The above parameters of the path combine to give a time
scale , which equals 0.334 times the period of
small harmonic oscillations of the path without the particle
around the potential minimum. We shall use T as a unit of time
in our numerical results. (6) The initial velocity of the particle,
at s = −∞, denoted by , that is “the impact velocity”. A
suitable unit for the latter is R/T, and it is inversely proportional
to the time spent in the curved path. The precise initial place-
ment of the particle, z(−∞), is irrelevant because the particle
decouples from the path when ρ = 0.

Conservation laws
Consider a single collision event, with particle starting at
s = −∞, passing through the rotor (where ρ ≠ 0) and leaving
towards s = ∞.

Energy conservation
If before the collision the path is at rest, energy conservation
implies that

(6)

This is a consequence of the invariance of the Lagrangian in
Equation 5 with respect to time translations. The right hand side
of Equation 6 describes the energy loss of the particle
after the collision. We shall focus on the regime where the
energy gain of the path, ΔE, is small, usually not higher than
ΔV. In the limit of fast impact velocities, Equation 6 implies
that the relative decrease of the particle velocity after the colli-
sion is small.
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Angular momentum conservation
When V(ϑ) = const., the Lagrangian in Equation 5 is invariant
with respect to rotations. The total angular momentum

(7)

is time-independent. For paths satisfying Equation 2, J equals
the angular momentum of the path before and after the colli-
sion.

Path under a current: stroboscopic dynamics
We will also investigate a dynamics of the path when the parti-
cles appear sequentially, that is, the path under a current. When
the particles arrive to the path periodically, with period Δt, the
particle current reads

(8)

The time-averaged current reads ⟨I(t)⟩ = I = 1/Δt.

We will assume for each incident particle identical initial condi-
tions, that is, at each time nΔt the same z and . However,
the initial conditions for ϑ and  will be different, correspond-
ing to the dynamical state of the path. In between the sequential
collisions, the path evolves under its independent equation of
motion, .

We remark that our formalism does not allow more than one
particle on the molecule at any time. This approximation is
valid in the limit of low currents. Even in this limit, we observe
an interesting threshold behavior.

Results
First, we demonstrate how a particle that does not carry any
angular momentum can turn the path. It is instructive to begin
with the limit of full rotational invariance, when V = 0 (section
“Rotational invariance”), because conservation laws allow for a
straightforward integration of the EOM. Next, we treat analyti-
cally the case V ≠ 0 in the limit of fast projectiles in the
so-called sudden approximation (SA) in section “Broken rota-
tional invariance: analytic considerations in the sudden approxi-
mation”. We use the analytical considerations as guiding princi-
ples for the analysis of the numerical results in section “Numer-
ical results for single-projectile dynamics”. After that, we
consider paths which allow for a finite angular momentum
transfer in section “Directed motion of a helix with an open
end”.

Rotational invariance
When V = 0, the dynamics of a single shot (collision) is entirely
captured by angular momentum conservation. Let us assume the
path at rest before the collision. Equation 7 with J = 0 binds the
change of the angle of the particle with the change of the angle
of the path (analogous to Keppler’s law)

(9)

Integrating from s = −∞ to s = ∞, we obtain

(10)

where, on the left-hand side,  denotes the area de-
scribed by the “clock” with a variable radius ρ(s) during the
passage of the particle. For the N-helix, A ≈ πR2N. On the right-
hand side, we obtain the change of the angle of the path.

Although the path can experience a turn, no angular velocity is
generated after the collision, as a consequence of Equation 2.
The traversing particle does exert a torque. However, when the
torque is integrated over time, it produces no net angular
velocity. The path experiences a turn in a preferred direction.
For a general path, the turn is finite, if the “clock” area is finite.
This situation can not be realized in paths with a spatial reflec-
tion plane or an inversion point located on the path. For paths
with handedness (chirality), the sign of the turn is determined
by the sign of A, which, in turn, has the chirality sign.

Next, while still assuming V = 0, we ponder three specific
sectors centered around ϑ = 0, ±2π/3 and investigate the condi-
tions for a single particle to switch the N-helix from one sector
to another. The condition is that Δϑ exceeds ±2π/6. Combining
with Equation 10, we arrive at

(11)

(or more precisely, ). In the above formula, M is
proportional to N, so that the required threshold particle mass m
is independent on the length of the helix.

Broken rotational invariance: analytic
considerations in the sudden approximation
We will be concerned with a situation in which the rotation of
the path is hindered, as in the experimental realizations of axial
molecular switches. In such situations, the hindering potential
V(ϑ) should have at least three minima in order to discretize a
directed circular motion. Therefore, we choose
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(12)

with three minima (preferred directions), separated by obsta-
cles of the height ΔV. Experiments on three-state rotors have
been reported recently [6,10]. Rotational invariance is broken
and although there is energy conservation, the equations of
motion are difficult to treat analytically. However, there is a
limit in which approximations are feasible.

Single particle dynamics
If the passage time of the particle δt is much smaller than the
oscillation period , we may safely neglect the
potential in the collision problem. The formulas in Equation 10
and Equation 11 remain valid in this limit and will serve us as a
useful guide. The abovementioned condition for the applicabili-
ty of the formulas of the sudden approximation can be formu-
lated as

(13)

where the passage time on the right-hand side has been approxi-
mated from a uniform motion of the projectile over the path
length LN (where ρ > 0). For an N-helix parameterized in the
Appendix section,

(14)

An important feature in the broken rotational invariance is that
the restoring torque gives the path an acceleration once the par-
ticle disappears. The resulting motion can be, in general, bound
to the potential minimum or unbound, depending on the param-
eters. In the SA, the condition that separates the two regimes is
expressed by Equation 11.

Helix under a current
A single particle may not cause a turn that is sufficient for an
unbound motion if the mass ratio μ = m/M is too low, for exam-
ple. But the required critical turn can be effected if particles
arrive sequentially, that is, under a current I. According to the
Equation 11, each particle induces an angular boost as it passes.

If the current runs for a time t (to be specified later),
Equation 11 becomes

(15)

It determines the minimum threshold mass current Im = mI re-
quired to perform a switch. The last formula is applicable under
the following specific conditions: (1) Equation 16 comes from
the SA, demanding that the impact velocity is large enough (see
Equation 13). (2) The time between collisions should be much
smaller than T in order to silence the restoring torque: I−1 ≪ T.
(3) The time required to overcome the potential barrier must
also be much shorter than T, else the path likely performs an
oscillatory motion against a displaced minimum.

Our objective will be to determine the threshold mass current
Im. Therefore, the condition in Equation 15 from the SA can be
written as

(16)

where  is the mass of a single helix turn. (A more
general version replaces N by A/πR2.) It should be added that T
is a function of length because it depends on the mass. The
criterion in Equation 16 along its range of validity will be
demonstrated numerically in the following section.

Numerical results for single-projectile
dynamics
After the analytic considerations, we resort to the numerical
solution of the EOM in order to investigate the situation in
which the rotational invariance is broken by the potential, Equa-
tion 12, which sets three preferred directions. First, we inspect
the applicability of the SA and, then, we investigate the
hindered helix subject to the current.

Limits of the sudden approximation
Figure 2 shows the time evolution of ϑ during and after a colli-
sion with a particle for three different impact velocities. The
initial condition for the helix was  and the particle was
put at the entrance of the helix with impact velocity .

At the beginning of the collision, for very short times, the three
curves lie on top of each other. This is because at these times
the restoring torque −V′(ϑ) is not very effective. The condition
that the passage time is much smaller than T is fulfilled at
the beginning for all traces. For T/R = 1000, the helix
turns with an almost constant velocity when the particle is
present, and the total angle reaches the value from the SA. For

T/R = 500, the restoring torque markedly bends the curve
towards the potential minimum. The slowest projectile (green
curve) gives the helix only a small initial velocity. When the
projectile is in the body of the helix, the helix oscillates. Here,
SA is not applicable, except for very short times. The collapse
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Figure 2: Impact of the passage of a single particle on the angle of a
50-helix. The shaded region denotes the time interval when ρ is
nonzero, that is, the particle is in the helix. The traces are parameter-
ized by the impact velocity. The time is rescaled by the velocity in
order to make the traces match. The angle is rescaled by factors from
the Equation 10, whence −1 indicates the angle in the sudden limit.
Other parameters are μ = m/M = 0.004, δN = 1, and the potential of
Equation 12.

of the SA predicted by Equation 13 and Equation 14 is T/
R ≈ 314, consistent with Figure 2.

After the collision, the helix performs either a bound oscilla-
tory motion around the potential minimum or its motion is
unbound. In Figure 9 in the Appendix section, we have plotted
the critical parameters m/M, , and N.

Helix under a current
The threshold ratio m/M1 = 1/6 is too high to be achieved in
molecules in a STM. However, we can make it more favorable
if we consider the helix under a particle current I, as
Equation 16 suggests.

Figure 3 shows the evolution of the angle when the 1.5-helix is
under a current. The traces contain tiny sequential steps,
which are more pronounced for large μ. These are the angular
boosts produced by the collisions. The plot also shows a com-
parison with a straight line obtained from the SA, that is,
ϑSA(t) = −tIm2A/Θ (smoothed over time). The deviation is
caused by the restoring torque −V′(ϑ), which counteracts the
boosts. This countereffect can result in a bound (oscillatory)
motion or an unbound directed motion with a constant average
angular velocity  and a small oscillatory component.

How does  depend on the current? Equation 16 suggest a
critical behavior as Im increases. For large currents, the kinetic
energy of the rotor is large compared to ΔV; the angular
velocity is entirely determined by regular angular boosts of the
form of Equation 10, namely,

Figure 3: Time evolution of the angle of the path ϑ under a current
IT = 40, for different mass ratios μ = m/M and T/R = 1000. The
path is an N-helix with N = 1.5, δN = 1 (depicted in the inset). Numeri-
cal results (solid lines) are complemented by linear evolution from the
SA (dotted lines). The steep parts of the saw-tooth profile, visible in the
top panel, are in the intervals when the particle moves through the
helix. The bottom panel presents ϑ/t for long times, showing directed
motion for sufficiently large μ.

(17)

Figure 4 shows the dependence of the velocity on the mass cur-
rent for different mass ratios in the fast impact limit. The data
points collapse on a single universal curve.

This plot fully encapsulates the mass dependence. It also has a
length dependence. As a function of the length, only T is ex-
pected to change via the linear increase of M = M1N. Provided
the impact velocity is fast enough, the universal curve has a
negligible velocity dependence. Figure 8 in the Appendix
section shows that for smaller velocities, the threshold Im shifts
to higher values. The limit ΔV → 0+ is also of interest: It
implies T → ∞, and, thus, a vanishing threshold Im.
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Figure 4: Dependence of the average angular velocity of the helix
under a mass current Im = mI for different mass ratios μ = m/M. M1 is
the mass of a single helix turn; the impact velocity is T/R = 1000.
The inset shows that upon entering of the particle, the helix starts
revolving counterclockwise when seen from the opposite helix end.
Therefore, the helix turns clockwise to compensate the angular
momentum. The current therefore causes a constant negative .

Directed motion of a helix with an open end
Angular momentum transfer
In a scanning tunneling setup, the condition in Equation 2 is not
always fulfilled, for example, when the tip of the microscope
does not bind to the molecule. In our theoretical framework, this
situation is represented by a path parameterized by s ∈ (−∞, sF).
At the initial point ρ(s = −∞) = 0, but at the final point
ρ(sF) := sF > 0. Thus, as the particle leaves the path at sF, it
transfers angular momentum to the path, see Equation 7. Conse-
quently, the collision causes a boost both in ϑ and .

As long as the restoring torque can be neglected, in the SA we
can obtain the angular momentum boost by combining energy
and angular momentum conservation laws,

(18)

The first term assumes that the velocity of the outgoing particle
equals the impact velocity. This velocity must be corrected due
to energy transfer, which yields a term of the second order in μ.

Switching in the SA
The condition for switching is that the energy gain of the path,
Equation 6, must overcome the potential barrier. In the limit of
large velocities, the kinetic term (due to angular momentum
boosts) dominates over the potential gain via angular boosts,

and the condition becomes . For a single parti-
cle, the switching condition reads .

Under a current, the velocity boosts can be added sequentially,
and the condition becomes

(19)

where we introduced the incident momentum current
. The nominator of the fraction on the right-hand

side can be interpreted approximately as the outgoing angular
momentum current, in view of the expansion in Equation 18.

Numerical simulations confirm the threshold behavior, see
Figure 5. Below the threshold, the path is bound to the potential
minimum. Above the transition, the path is accelerated, possibly
non-uniformly.

Figure 5: Time evolution of the angular velocity for a path with ρF = R,
where the angular momentum boosts dominate. As a function of μ,
there is a transition from a bound motion to an unbound motion, with a
non-constant velocity.

In the next step, we investigate the dependence of the threshold
current. For a fixed mass ratio, Figure 6 shows the threshold
mass current. There are two regimes covered in that plot:
(1) ρF = 0: the helix is not accelerated. The threshold Im
depends on the impact velocity very weakly in the given range.
Actually, it increases with decreasing impact velocity (see
Figure 8. This is the mechanism of angular boosts studied in the
previous section. (2) For nonzero ρF, the collision causes a net
torque, the helix always accelerates. In the limit of large impact
velocities the switching due to angular momentum boosts over-
takes and the threshold Im drops inversely proportional to

. This regime is the familiar garden hose effect.
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Figure 6: Threshold mass current as a function of the impact velocity
for different values of the exit radius ρF. μ = 0.05.

To take a closer look at the mechanism of angular momentum
boosts, we have plotted the threshold momentum current Ip for
different values of ρF and μ in Figure 7. The data collapses on a
single curve, which saturates in the large impact velocity limit.

Figure 7: Velocity dependence of the threshold momentum current
. The large-velocity limit is dominated by the garden hose

effect, that is, angular momentum boosts.

Discussion
First, we discuss some straightforward extensions of our model
that account for (1) friction and (2) temperature effects. Then,
we discuss the prospective applications as a switch and for
information storage. The role of quantum effects is discussed at
the end.

Our model can be straightforwardly extended to include a fric-
tion term acting on the coordinate ϑ. Such friction can originate
at the bearings of the rotor (at the entrance and exit of the path
in our case). The projectile also experiences friction. Due to
conservation laws, the loss of the angular momentum of the
projectile is compensated by an increase of . Therefore, this
friction is included in our formulation.

Our results are valid when thermal fluctuations are small, that
is, kBT ≪ ΔV. To account for fluctuations, it is customary to
apply the Langevin equation for ϑ equipped with stochastic
torques and a deterministic torque, the latter driving the directed
rotation [11]. Our approach predicts the detailed form of the
deterministic torque as it follows from the passage of the parti-
cle through a chiral path with ρF ∼ R. When ρF = 0, the effect of
the passage (collision) is to boost the angle. In the stochastic
equation, such a single-particle process can be accounted for by
the torque of the form

in the limit of short collision times. The derivative of a delta
function expresses a torque pulse that is immediately cancelled
by a pulse of opposite sign, thus generating no net  but a boost
in ϑ. The function  follows from our methodology
straightforwardly.

We have focused largely on the conditions of a directed rota-
tion. To implement an efficient switch, more conditions need to
be fulfilled. First, the rotor’s velocity must be attenuated for the
rotor to settle in the nearest potential minimum. Second, the
current must flow in controlled short pulses. The optimal pa-
rameter regime can be sought using the EOM (Equation 22 and
Equation 23), which is beyond the scope of the present work.
We expect that the threshold current will vanish in a strongly
overdamped limit and a linear response of  is expected.

The results presented here demonstrate a directed current-in-
duced rotation without any angular momentum transfer in a mo-
lecular rotor. We remark that each electron boosts the angle of
the rotor, but not its frequency. Hence, there is no net torque.
Such devices can rotate under a particle current, but they cannot
do work. Although they cannot operate as motors, these rotors
can serve in nanoscale information storage and processing. The
information readout can be performed in linear response (under
the threshold current). A small symmetry breaking is needed in
order to discriminate between the three states.

Quantum effects are responsible for a rich transport phenome-
nology of molecular junctions [20]. Here, we pause to discuss
quantum effects related to the electronic degrees of freedom,
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assuming that the quantization levels of the rotational motion
fall below the working temperature. Rotation only happens via
inelastic electron tunneling. Importantly, each single electron
scattering event must obey fundamental conservation laws.
Therefore, the principles outlined in this manuscript will remain
valid in the quantum limit. Two quantum aspects are signifi-
cant in this context: (1) The electron transport process is
stochastic, allowing for both transmission and reflection. Parti-
cle reflection off the helix can not induce any rotation, unless
the following effect is considered. (2) Electrons carry spin
angular momentum, which couples with the orbital momentum
by spin–orbit interaction. Thus, reflection accompanied by a
spin flip can induce angular momentum transfer.

Conclusion
We have investigated the classical dynamics of a molecular
rotor under a particle current. The molecule was modeled by a
massive path that has a rotational degree of freedom. Our ap-
proach expresses the impact of a single collision on the rotor in
a way that stems explicitly from the (chiral) geometry of the
rotor.

When the particles do not carry (or take) any angular
momentum, rotation is possible via angular boosts. If the rota-
tion is hindered by a potential barrier ΔV, the requirement that
the incident particles carry enough energy is not sufficient for
switching. Instead, the stricter requirement that the boosts are
sufficiently fast and dense in time applies (Equation 16).

When the particles are allowed to transfer angular momentum,
we predict a crossover from the regime of angular boosts to the
regime of angular momentum boosts.

Appendix: Coordinates of an N-Helix
We introduce a path definition

(20)

describing a helix with N turns, whose radius smoothly ap-
proaches zero at its both ends within a distance proportional to
δN, see Figure 1b. The smooth onset is achieved by employing
the complementary error function, erfc. In the above definition,
we adopt as a unit of length the maximum radius R.

This path will be employed for s ∈ (−∞, sF). When sF = ∞, the
condition in Equation 2 is fulfilled. Setting a finite sF provides a
path with an open end, when the particle exits the path at a
finite ρ.

Appendix: Equations of Motion
EOM from the Lagrangian
The equations of motion (EOM) derived from a Lagrangian

 by the principle of least action [21] read

(21)

Inserting Equation 5, the EOM take the form

(22)

(23)

The first EOM delivers the equation for a rotor in the limit
m = 0. We have added a phenomenological damping term

 to the EOM (which does not follow from the conserva-
tive Lagrangian formalism). The damping term is zero in all nu-
merical results of this work unless stated explicitly. When
V = γ = 0, the equation expresses angular momentum conserva-
tion. The second equation describes the constrained particle
dynamics if ϑ = const. Notice that the mass m vanishes, because
the particle experiences inertial forces only.

Transformation to dimension-less variables
EOM of the rotor
Substituting  in Equation 22 renders the first EOM
dimensionless,

(24)

where now the dots indicate differentiation with respect to 
and we defined , which is a quantity of the order of
unity, and  is a dimensionless damping rate. Notice the
appearance of the small parameter , which, however, is here
often multiplied by the large velocity .
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EOM for the particle
The substitution of  leaves the second EOM in the form

(25)

where we introduced  and the dot indicates differentia-
tion with respect to . At the entry point, s = 0, the velocity of
the particle equals dz(0)/dt. The expression  describes
the inverse dwell time δτ. We shall assume that δτ = 10−2T and,
hence, .

Appendix: Peripheral numerical results

Figure 8: Velocity dependence of average angular velocity of the path
exposed to a mass current Im. For lower velocities the threshold cur-
rent increases, marking a departure from the SA.

Figure 9: Threshold mass ratio m/M for an unbound directed motion
as a function of the helix length N (δN = 1) and the impact velocity. The
dotted line is the threshold according to the SA, Equation 11, which
coincides with the numerics if the time a particle spends in the helix is
short.
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