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Abstract
The ferromagnetic resonance (FMR) spectra of oriented and non-oriented assemblies of linear magnetosome chains are calculated
by solving the stochastic Landau–Lifshitz equation. The dependence of the shape of the FMR spectrum of a dilute assembly of
chains on the particle diameter, the number of particles in a chain, the distance between the centers of neighboring particles, the
mutual orientation of the cubic axes of particle anisotropy, and the value of the magnetic damping constant is studied. It is shown
that FMR spectra of non-oriented chain assemblies depend on the average particle diameter at a fixed thickness of the lipid magne-
tosome membrane, as well as on the value of the magnetic damping constant. At the same time, they are practically independent of
the number Np of particles in the chain under the condition Np ≥ 10. The FMR spectra of non-oriented assemblies of magnetosome
chains are compared with that of random clusters of interacting spherical magnetite nanoparticles. The shape of FMR spectra of
both assemblies is shown to differ appreciably even at sufficiently large values of filling density of random clusters.
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Introduction
Magnetotactic bacteria are living organisms that grow within
themselves magnetite nanoparticles called magnetosomes [1-4].
In contrast to chemically synthesized magnetite nanoparticles
[5,6], magnetosomes have a perfect crystal structure, a narrow
size distribution, and a high saturation magnetization close to
that of bulk magnetite. In particular, magnetotactic bacteria
M. gryphiswaldense produce linear chains of quasi-spherical
magnetite nanoparticles with sizes ranging from 30 to 50 nm

[1,2,7-9]. However, there are also magnetotactic bacteria that
produce elongated magnetite nanoparticles [1,2,10,11].

A linear chain of uniformly magnetized magnetosomes grown
inside a magnetotactic bacterium is a kind of magnetic needle
that helps the bacterium navigate in the weak Earth's magnetic
field in search of the best habitat [1-4]. Chains of magneto-
somes are frequently found in weakly magnetized fossil rocks
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and bottom sediments, the study of which provides valuable
information about the geological and biological past of the
Earth [3,4,12,13]. Magnetosome assemblies are very promising
also for application in biomedicine [3,5]. The properties of
magnetic nanoparticle assemblies are often characterized by
measuring ferromagnetic resonance (FMR) spectra [14,15]. The
analysis of FMR spectra makes it possible to determine the
effective magnetic field in the sample under study, which
depends on the particle saturation magnetization, the type of
magnetic anisotropy, the direction of the particle easy
anisotropy axes, and other parameters. In addition, the FMR
spectrum is sensitive to the presence of magnetostatic interac-
tions in dense assemblies of magnetic nanoparticles. Thus,
ferromagnetic resonance spectroscopy is a promising technique
to study magnetic properties of magnetosome assemblies
[7-9,16-23]. However, the FMR spectra depend on many mag-
netic and geometric parameters of the nanoparticles. Therefore,
the interpretation of FMR spectra is a non-trivial problem
[16,17,20-25]. For correct interpretation of the FMR spectra, it
is highly desirable to use the results of detailed micromagnetic
modeling, which takes into account the main physical factors
affecting the FMR spectra, including the effect of strong mag-
netic dipole interactions in magnetosome chains.

Both magnetosomes grown in the laboratory by various types of
magnetotactic bacteria [7-9,16-19] and particles found in
natural samples of silt and lake sediments [16,17,20-23] have
been experimentally studied. It is important that the experimen-
tal FMR spectra of magnetosome chains have characteristic
differences from those of assemblies with a random arrange-
ment of nanoparticles in the sample [7,16-23]. This helps to
detect the presence of magnetosome chains in a natural sample,
which is important for paleomagnetic studies. Nevertheless, the
problem of comparing the FMR spectra of magnetosome chains
and random assemblies of magnetite nanoparticles is far from a
complete solution and requires further investigation.

Note that the theoretical description of FMR spectra of assem-
blies of magnetosome chains is carried out, as a rule, on the
basis of simplified models [22-25], in which the behavior of a
magnetosome chain in an alternating (ac) high-frequency mag-
netic field is replaced by the behavior of a uniformly magne-
tized ellipsoid with an appropriately selected demagnetizing
factor. As a result, important information about the internal ge-
ometry of the chain, that is, about the particle diameters, the
number of particles in the chain, the characteristic distance be-
tween the particle centers, and the mutual orientation of the par-
ticle cubic anisotropy axes, is completely lost. In addition, in
the approach [22-25], only the position of the resonance peak is
actually calculated, whereas the shape of the resonance curve is
assumed to be Lorentzian or Gaussian, the width of the curve

being an adjustable parameter. Obviously, based on such a
simplified model, it is practically impossible to obtain informa-
tion about the internal geometry of the chain and a number of
particle magnetic parameters.

It has been shown recently [26-28] that the true geometry of the
magnetosome chains has a great influence on the magnetostatic
properties of the chain assembly. In this regard, it should be
noted that the correct calculation of the FMR spectra of magnet-
ic nanoparticle assemblies can be carried out by solving the
stochastic Landau–Lifshitz equation [29-35]. This approach
makes it possible, when calculating the FMR spectra, to take
into account all the details of the geometric structure of magne-
tosome chains, the influence of strong magnetic dipole interac-
tions between the particles of the chain, as well as the effect of
thermal fluctuations of magnetic moments of nanoparticles at a
finite temperature.

Using this approach, in this paper the FMR spectra of oriented
assemblies of linear chains of quasi-spherical magnetosomes
are calculated depending on the direction of the external magne-
tizing field with respect to the common axis of the chains; the
FMR spectra of randomly oriented assemblies were obtained by
the corresponding angle averaging. Various types of mutual ori-
entation of cubic easy anisotropy axes of the chain particles are
considered. The FMR spectra of randomly oriented assemblies
of magnetosome chains are compared with that of random clus-
ters of interacting spherical magnetite nanoparticles. The theo-
retical results obtained seem to be helpful for correct interpreta-
tion of the large amount of experimental data [1-4,7-9,16-23]
accumulated to date for assemblies of magnetosome chains.

Numerical Simulation
Consider a dilute assembly of linear chains of magnetosomes
consisting of Np spherical nanoparticles of average diameter D.
Dynamics of the unit magnetization vector  of the i-th single-
domain nanoparticle of the chain is governed by the stochastic
Landau–Lifshitz equation [29-32],

(1)

where γ is the gyromagnetic ratio, γ1 = γ/(1 + κ2), κ is the mag-
netic damping constant,  is the effective magnetic field,
and  is the thermal field. The effective magnetic field
acting on a separate nanoparticle can be calculated as a deriva-
tive of the total chain energy W = Wmc + Wmd + WZ:

(2)
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The cubic magneto-crystalline anisotropy energy of Fe3O4
nanoparticles is

(3)

where V = πD2/6 is the volume of spherical particle, Kc is the
cubic anisotropy constant, and (e1i, e2i, e3i) is the set of orthog-
onal unit vectors that determine the spatial orientations of the
cubic easy anisotropy axes of the i-th nanoparticle of the chain.

For nearly spherical uniformly magnetized nanoparticles, the
magnetostatic energy of the chain can be represented as the
energy of the point interacting dipoles located at the particle
centers ri

(4)

where nij is the unit vector along the line connecting the centers
of the i-th and j-th particles.

The Zeeman energy of the assembly in a applied magnetic field
H and a weak perpendicular ac magnetic field H1sin(ωt) is
given by

(5)

where ω = 2πf is the angular frequency of the ac magnetic field.

The thermal fields  acting on various nanoparticles of the
chain are statistically independent, with the following statistical
properties [29] of their components

(6)

Here kB is the Boltzmann constant, δαβ is the Kroneker symbol,
and δ(t) is the delta function.

It is well known [14,15,33-35] that the power absorbed by the
assembly per unit time and per unit volume is proportional to
the area of the assembly hysteresis loop

(7)

where m is the reduced magnetic moment of the assembly. To
numerically calculate the power absorbed by an assembly of
superparamagnetic nanoparticles in ac magnetic field H1(t), it is
convenient to rewrite Equation 7 in the form of the time-aver-
aged integral

(8)

where Δt is a certain time interval significantly exceeding the
period of oscillations of the ac magnetic field, τ = 2π/ω. Using
the small amplitude of the ac magnetic field, the same quantity
can be expressed in terms of the imaginary part of the magnetic
susceptibility of the assembly [15,36],

(9)

Comparison of Equation 8 and Equation 9 makes it possible to
obtain the imaginary part of the magnetic susceptibility χ″(H,f)
of the assembly as a function of the magnetizing field H.

In this paper the calculation of the specific absorbed power is
carried out using Equation 8 for dilute assemblies of linear
chains of magnetosomes with saturation magnetization
Ms = 460 emu/cm3 and cubic magnetic anisotropy constant
Kc = −1.1 × 105 erg/cm3 [37]. The average diameter of parti-
cles in a chain varies in the range D = 20–45 nm, the number of
nanoparticles in a chain is Np = 5–30, and the magnetic
damping constant is taken as κ = 0.05–0.5. The frequency of ac
magnetic field exciting the resonance is f = 4.9 GHz (S band) or
f = 9.8 GHz (X band), the amplitude of a weak ac magnetic
field is H1 = 10 Oe.

For completeness of the study, we considered several character-
istic types of mutual orientation of the cubic anisotropy axes of
the nanoparticles in a chain. For the case of a completely
random orientation of the cubic axes (index R), the set of or-
thogonal unit vectors (e1i, e2i, e3i), i = 1,2, …, Np is randomly
oriented in each nanoparticle. The case when one of the cubic
easy anisotropy axes of each particle is parallel to the chain axis
is denoted below by the index E. In this case, the directions of
the other cubic anisotropy axes of the particles are randomly
oriented. Similarly, the case when one of the hard axes of cubic
anisotropy is parallel to the chain axis, while the other axes are
randomly oriented, is denoted below by the index H.
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To obtain statistically significant results, the FMR spectra of a
chain assembly are averaged over a sufficiently large number of
independent numerical experiments, Nexp = 20–30. In each ex-
periment, a new linear chain of Np interacting spherical magne-
tite nanoparticles was created, the directions of the cubic
anisotropy axes of particles being oriented according to the
accepted chain anisotropy.

When solving the stochastic Landau–Lifshitz equation, the
numerical time step is kept to be 1/30 of the characteristic
precession period of the unit magnetization vectors of the parti-
cles, τH ~ 1/γ1Hef. Such a small time step is necessary to accu-
rately describe the precession of unit magnetization vectors
in the chain. In addition, the total time interval of the calcula-
tion covered at least 200 periods of the ac magnetic field, while
the time averaging of the integral in Equation 8 occurred only
over the last quarter of the total number of periods, when the
dynamics of the unit magnetization vectors of the particles be-
came stationary. Thus, the time interval Δt in Equation 8
exceeds 50 periods of the ac magnetic field. Averaging the
numerical results for the absorbed power of the assembly over
a sufficiently long time interval Δt and over a fairly representa-
tive set Nexp of independent realizations of chains with a fixed
number of nanoparticles and type of chain anisotropy accepted
makes it possible to obtain statistically significant results
for the magnetic susceptibility of a dilute assembly of linear
chains.

Results and Discussion
An analysis of transmission electron microscope (TEM) images
[1,2,8,38,39] shows a fairly large variability in the geometry of
magnetosome chains created by bacteria of various strains.
Namely, the average diameter of particles, the characteristic dis-
tance between their centers, and the average number of parti-
cles in a chain change depending on the bacteria strains. There-
fore, it is important to study the dependence of the FMR spec-
tra on the specified chain geometric parameters. In this paper,
we restrict ourselves to detailed modeling of the FMR spectra of
chains of quasi-spherical magnetosomes with diameters in the
range D = 20–45 nm. An important geometrical parameter of
the chain is also the average distance a between the centers of
particles in the chain, since this distance determines the ampli-
tude of the dipole field Hdip, acting between the particles of the
chain. Based on the TEM data [1,2,7,8,38,39], it can be con-
cluded that the nearest distance between the surfaces of neigh-
boring spherical particles is the sum of the thicknesses of the
magnetosome shells 2Ten, where Ten = 4–6 nm is the character-
istic thickness of the lipid magnetosome shell. The latter, appar-
ently, weakly depends on the nanoparticle diameter. If this
hypothesis is correct, then the average distance between the par-
ticle centers in a chain is a = D + 2Ten.

When modeling the FMR spectra of magnetosome chains, it is
important to choose the adequate magnetic damping constant κ
of the magnetic nanoparticles. Unfortunately, experimental data
for this quantity for assemblies of magnetic nanoparticles are
scarce [40]. Because of the well-known perfection of the crystal
structure and shape of magnetosomes, in this paper most of the
calculations are carried out for the case of moderate damping,
κ = 0.05–0.1; however, the case of high damping, κ = 0.3, 0.5,
is also briefly considered. Note that it is experimentally possible
[9,41] to create dilute assemblies of magnetosome chains
oriented in one direction in a strong external magnetic field.
This makes it possible to obtain FMR spectra for oriented
assemblies of magnetosome chains depending on the angle of
an external magnetic field with respect to the common orienta-
tion axis of the chains [9]. As will be shown below, the FMR
spectra of oriented chain assemblies strongly depend on the spe-
cific geometric structure and magnetic characteristics of the
magnetosomes.

In this work, we first calculate the FMR spectra of oriented
assemblies of chains as a function of the angle θ of the external
magnetic field with respect to the orientation axis of the chains.
The spectra of randomly oriented assemblies of chains were
then calculated by the angle averaging of partial FMR spectra
calculated with a fairly small step Δθ ~ 5–7.5°. Further, we
discuss the effect of geometric and magnetic parameters on the
FMR spectra of oriented and non-oriented dilute assemblies of
chains of quasi-spherical magnetosomes. The numerical results
obtained are presented as dependences of the magnetic suscepti-
bility of a chain assembly on its geometric and magnetic param-
eters, since the magnetic susceptibility is a fundamental physi-
cal quantity that characterizes the magnetic properties of the
assembly. However, the derivatives of the magnetic suscepti-
bility are also given in some cases for comparison.

Figure 1a–c shows the dependence of the FMR spectra of an
oriented assembly of chains on the particle diameter D at a
fixed thickness of the lipid shell Ten = 4 nm and at different
directions of the magnetizing field with respect to the orienta-
tion axis of the assembly, θ = 5°, 45° and 75°, respectively. As
shown in Figure 1a,b, the dependence of the position of the
resonance peak on the particle diameter is most pronounced at
angles θ ≤ 45°, but it becomes insignificant at θ > 75°. For ex-
ample, according to Figure 1a, at θ = 5° the resonance peak for
chains with diameter D = 25 nm occurs at H = 760 Oe, while
for chains with D = 40 nm the resonance field is much lower,
H = 530 Oe. To explain this effect, it is worth noting that the
dipole field in the middle part of a long chain magnetized along
its axis can be estimated as Hdip = (2π/3)Ms ζ(3)/(1 + 2Ten/D)3,
where ζ(3) ≈ 1.2 is the value of the Riemann zeta function [42].
With a shell thickness Ten = 4 nm, from this formula one
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Figure 1: (a–c) Comparison of FMR spectra of oriented chains of magnetosomes with different particle diameters D for angles θ = 5°, 45° and 75°,
respectively. The number of particles in the chain is Np = 20, the magnetic damping constant is κ = 0.1. (d) The influence of the FMR spectrum on the
number of particles in the chain Np. (e) Dependence of the FMR spectra on the value of the magnetic damping constant κ. The thickness of the lipid
membrane of magnetosomes is Ten = 4 nm, the frequency of the ac magnetic field is f = 4.9 GHz (S band). (f, g) Derivatives of the magnetic suscepti-
bility for panels (d) and (e), respectively. The chain anisotropy is of type E for Figure 1a–c and type R for Figure 1d–g, consequently.

obtains Hdip = 503 Oe at D = 25 nm, and Hdip = 670 Oe for
D = 40 nm, respectively. Thus, for small angles θ the dipole
field acting along the chain axis decreases as a function of parti-
cle diameter. Accordingly, the FMR peak for a chain of parti-
cles of smaller diameter should be observed at a larger magne-
tizing field.

As Figure 1d shows, with an increase in the number of particles
in the chain from 5 to 20, the position of the FMR resonance
peak shifts to lower fields; however, for Np > 20 the position
and shape of the FMR resonance peak remain practically un-

changed. Calculations show that the characteristic value of the
dipole field Hdip stabilizes already on the first two or three
periods of the chain and does not depend on its length. Accord-
ing to the experimental data [1,7,19], in the chains of
M. gryphiswaldense bacteria the characteristic number of
magnetosomes is Np = 20–25. Therefore, in this work most of
the calculations were carried out for magnetosome chains with
Np = 20.

As noted above, the experimental data on the value of the mag-
netic damping constant in assemblies of magnetic nanoparticles
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Figure 2: Dependence of the FMR spectra of an oriented assembly of chains on the relative orientation of the cubic anisotropy axes in the particles of
the chain for different directions of the magnetizing field and various resonance frequencies. (a–c) S band and (d–f) X band. Indexes mark various
types of chain anisotropy: R corresponds to random chain anisotropy, E means that one of the cubic easy axes is parallel to the chain axis, and H in-
dicates that one of the hard axes is parallel to the chain axis.

are scarce. Since magnetosomes grow inside a bacterium under
strict genetic control, they turn out to be the perfect magnetic
particles in terms of their crystal structure and shape. Therefore,
it is reasonable to assume that the magnetic damping constant
for magnetosomes takes relatively small values, κ ≤ 0.1. These
values were mainly used in the calculations. However, the value
of the magnetic damping constant has a strong influence on the
shape of the FMR spectrum peak. As Figure 1e shows, as κ in-
creases, the position of the FMR peak does not change, but its
height decreases significantly, while the peak width increases.
Figure 1f and Figure 1g, which show the derivatives of magnet-
ic permeability with respect to the magnetic field, confirm the
above conclusions about the influence of the number of parti-
cles in linear chains and the value of the magnetic damping con-
stant on the FMR spectrum.

There are convincing arguments [41] that E-type anisotropy is
realized in magnetosome chains as a rule. This means that one
of the equivalent cubic easy anisotropy axes of every particle is
parallel to the chain axis. It is argued [41] that as the chain
grows, new magnetosomes sequentially appear at the ends of
the chain, and their formation occurs in a strong dipole field
directed along the chain axis. In contrast, it was shown [39] that
the formation of magnetosomes in a bacterium can occur simul-
taneously in many germ vesicles along its length. In this case, it
is not clear what reason can lead to the occurrence of E-type

anisotropy in the chain. Rather, one would expect a random ori-
entation of the cubic anisotropy axes of individual nanoparti-
cles, that is, the formation of R-type chain anisotropy. Note that
different types of chain anisotropy can be modeled by choosing
properly the orientation of the reference vectors (e1i, e2i, e3i) of
individual nanoparticles of the chain in Equation 2.

In Figure 2a–c we compare the S-band FMR spectra of dilute
oriented assemblies of magnetosome chains with different
mutual orientations of the cubic anisotropy axes of individual
particles within the chain for some directions of the magne-
tizing field. The number of particles in chains Np = 20, the parti-
cle diameter is D = 40 nm, the membrane shell thickness is
Ten = 4 nm, and the magnetic damping constant is κ = 0.1. As
Figure 2 shows, the greatest difference in the position of the
FMR peaks for chains with different types of anisotropy is ob-
served at angles θ ≤ 15°. In addition, the height of the FMR
peak for chains with random anisotropy turns out to be notice-
ably smaller than that for E- and H-type anisotropies. Thus, the
type of chain anisotropy can have an effect on the shape of the
FMR spectrum of an assembly of magnetosome chains.

For comparison, Figure 2d–f represents the X-band FMR spec-
tra of the same dilute assemblies of linear magnetosome chains.
It can be noted that for the X band the amplitude of the FMR
peaks is on average half of that for the S band. In addition, for
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Figure 3: (a) The resonance FMR field as a function of polar angle θ for oriented assemblies of linear magnetosome chains with various particle di-
ameters at a fixed value of magnetic damping constant κ = 0.1. (b) Magnetic susceptibility peak strength as a function of polar angle θ for oriented
assemblies of chains with different damping constants at a fixed particle diameter D = 35 nm. The chain anisotropy is of type E.

the X FMR band the peaks of assemblies with anisotropy types
R, E, and H are poorly resolved for angles θ ≥ 75°.

To summarize the numerical simulation data obtained for
oriented assemblies, in Figure 3a we show the angle depen-
dence of the resonance FMR field, Hres(θ), for linear chains
with various average particle diameters. It is interesting to note
the noticeable dependence of the position of the resonance peak
on the particle diameter D at small polar angles θ ≤ 20–25°. In
addition, Figure 3b shows that the average height of the reso-
nant FMR peaks of an oriented chain assembly depends signifi-
cantly on the magnetic damping constant. These findings make
it possible to estimate average particle diameter and damping
constant from comparison of experimental and theoretical data.

Let us now turn to the description of the FMR spectra of dilute
non-oriented assemblies of magnetosome chains. The latter
were obtained by averaging partial FMR spectra of oriented
assemblies over the polar angle θ. Note that the FMR spectra of
chains are averaged over the declination φ even at the stage of
calculating the FMR spectra of oriented assemblies, since for
any type of chain anisotropy, the orientation of the cubic
anisotropy axes in directions perpendicular to the chain axis is
random. The calculations presented in Figure 4 are carried out
for the chain anisotropy of type E, since this anisotropy type
prevails [41], apparently, for quasi-spherical magnetosomes of
M. gryphiswaldense.

Figure 4a explains the formation of the FMR spectrum of a non-
oriented assembly of magnetosome chains with E-type
anisotropy (black dots) upon averaging partial FMR spectra of
oriented assemblies over the angle θ. Partial FMR spectra at
certain angles θ are shown in Figure 4a as solid colored curves.

The number of particles in chains is Np = 20, the particle diame-
ter is D = 40 nm, the membrane shell thickness is Ten = 5 nm,
and the magnetic damping constant is κ = 0.1. To obtain FMR
spectra of randomly oriented chain assemblies, partial FMR
spectra were averaged with a step width of Δθ = 5°. As
Figure 4a shows, with an increase in the tilt angle of the magne-
tizing field θ from 0° to 75°, the peak of resonant absorption of
the oriented assembly of chains shifts towards higher field
values. Simultaneously, the peak height decreases.

The shift in the position of the resonant peak of the oriented
assembly is a consequence of the weakening of the component
of the dipole field Hdip, which acts in the direction of the
magnetizing field H, when the magnetic moments of the parti-
cles deviate from the axis of the chain. However, as the angle
increases, θ > 75°, when the magnetic moments of nanoparti-
cles in a sufficiently strong magnetizing field become almost
perpendicular to the chain axis, the position of the FMR peak
does not shift further, whereas the magnetic susceptibility of the
assembly increases. As Figure 4a shows, because of the angle
dependence of partial FMR peaks, the FMR peaks of non-
oriented assemblies of magnetosome chains are much wider
than the width of the peaks of the individual partial FMR spec-
tra. This is a characteristic property of the FMR spectra of non-
oriented assemblies of magnetosome chains, which distin-
guishes them from FMR spectra of random assemblies of mag-
netite nanoparticles.

To confirm this conclusion, in Figure 4b we compare the FMR
spectrum of the non-oriented assembly of chains shown in
Figure 4a with the FMR spectra of a random assembly of clus-
ters of interacting magnetite nanoparticles calculated for differ-
ent cluster filling densities η = NpV/Vcl. Here, Vcl is the volume
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Figure 4: (a) Formation of the FMR spectrum of a non-oriented assembly of magnetosome chains (black dots) as a result of angle averaging of partial
FMR spectra of oriented assemblies calculated for various θ angles (solid color curves). (b) Comparison of the FMR spectrum of a non-oriented
assembly of magnetosome chains with the FMR spectra of a random assembly of magnetite clusters with different filling density η. (c, d) Dependence
of the magnetic susceptibility of a non-oriented chain assembly on the damping constant κ at a fixed magnetosome diameter D = 35 nm, and on the
average magnetosome diameter at a fixed value of κ = 0.075, respectively. Figure 4a,b: S band, Figure 4c,d: X band.

of a random cluster containing Np = 60 spherical magnetite
nanoparticles of the same diameter D = 40 nm, randomly locat-
ed in the cluster volume and having a random orientation of the
cubic anisotropy axes. As Figure 4b shows, the width of the
FMR spectra of dilute assemblies of random clusters increases
with an increase in the filling density η because of an increase
in the intensity of the magnetic dipole interactions within the
clusters. For example, at η = 0.308, when the average distance
between particle centers in a dense random cluster is rather
small, L = (π/6η)1/3D ≈ 1.2D, the width of the FMR spectrum of
the assembly of random clusters at half maximum is approxi-
mately ΔH = 1000 Oe. Nevertheless, the width of FMR spectra
of non-oriented assemblies of chains at half maximum is much
wider than this. It is approximately given by ΔH = 1800 Oe. In
addition, the shape of FMR spectra of assemblies of non-
oriented chains differs from the spectra of assemblies of random
clusters by the presence of two local peaks at H = 750 Oe and
H = 2250 Oe.

In Figure 4c we compare the FMR spectra of assemblies of non-
oriented magnetosome chains with fixed diameter D = 35 nm
for various values of the magnetic damping constant κ = 0.05,
0.075, and 0.1. Obviously, with decreasing κ, the height of the
magnetic susceptibility peak of the assembly increases, while
the peak width somewhat decreases. In contrast, as Figure 4d
shows that at a fixed value of κ the height of the magnetic
susceptibility peak decreases with increasing particle diameter.
Note that the absorption peaks in Figure 4c and Figure 4d are
shifted to the right, since in a non-oriented assembly of chains
the probability of finding a chain oriented at angle θ to the
magnetizing field direction is proportional to sinθ dθ. It is an in-
creasing function of θ in the range 0 < θ < 90°.

Based on the data given in Figure 4c and Figure 4d, one can
conclude that the FMR spectra of assemblies of non-oriented
chains of magnetosomes depend significantly on the value of
the magnetic damping constant κ; at a fixed thickness of the
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Figure 5: Derivatives of the magnetic susceptibility with respect to the magnetizing field for non-oriented assemblies of linear chains of quasi-spheri-
cal magnetosomes. (a) Dependence of the spectra on the magnetic damping constant at a fixed average nanoparticle diameter D = 35 nm and (b) de-
pendence of the spectra on the nanoparticle diameter at magnetic damping constant κ = 0.075.

lipid shell of magnetosomes, they depend on the average parti-
cle diameter D. At the same time, the calculations performed
show that the dependence of the FMR spectra of non-oriented
assemblies of chains is practically independent of the number of
particles in the chain under the condition Np ≥ 10.

Figure 5 shows the derivatives of the magnetic susceptibility
with respect to the magnetizing field for non-oriented assem-
blies of linear chains of quasi-spherical magnetosomes. Spectra
of this type are usually measured in ferromagnetic resonance
experiments on assemblies of magnetic nanoparticles [7-9,16-
23]. As Figure 5a shows, the depth of the sharp negative peak at
H ≈ 4000 Oe, which is typical for non-oriented assemblies of
linear chains of magnetosomes [7-9,16-18], depends significant-
ly on the value of the magnetic damping constant. At the same
time, according to Figure 5b, the position of this negative peak
depends on the average diameter of the nanoparticles in the
chain.

Conclusion
In this paper the FMR spectra of oriented and non-oriented
assemblies of magnetosome chains are calculated by solving the
stochastic Landau–Lifshitz equation. Calculations of the imagi-
nary component of the high-frequency magnetic susceptibility
of assemblies in a magnetizing field are carried out with a small
time step, which is 1/30 of the characteristic precession time of
the particle unit magnetization vectors. In addition, the power
absorbed by the assembly is averaged over a sufficiently large
number of periods of the ac magnetic field because of the
stochastic dynamics of the unit magnetization vectors. This
makes it possible to obtain statistically reliable results for the
high-frequency magnetic susceptibility of a dilute assembly of
linear chains of magnetosomes.

In this paper, in contrast to the simplified models [22-25], it is
shown that using the solution of the stochastic Landau–Lifshitz
equation one can take into account all the important details of
the geometric structure of magnetosome chains that significant-
ly affect the shape of the FMR spectrum of a chain assembly.
For a fixed thickness of the lipid membrane of magnetosomes
the FMR spectra of both oriented and non-oriented chain
assemblies are shown to depend on the average particle diame-
ter. However, the dependence of the FMR spectra on the num-
ber of particles in the chain appears only for short, dangling
chains, with the number of particles Np < 10. We also studied
the dependence of the FMR spectra of oriented chain assem-
blies on the mutual orientations of the cubic easy anisotropy
axes of particles along the chain. It is found that for chains with
a random orientation of the cubic easy axes the height of the
FMR peak is noticeably smaller than that for the other
anisotropy types considered. It is also found that the FMR spec-
trum of a chain assembly essentially depends on the value of the
phenomenological magnetic damping constant. Finally, the
FMR spectra of non-oriented assemblies of magnetosome
chains were compared with the FMR spectrum of a dilute
assembly of random clusters of spherical nanoparticles with dif-
ferent cluster filling density η. With an increase in η, that is,
with an increase in the intensity of the magnetic dipole interac-
tions in the clusters, the width of the FMR peak of an assembly
of random clusters increases significantly. Nevertheless, it
remains much smaller than the peak width of an assembly of
chains even for very dense clusters with η = 0.308, when the av-
erage distance between the particle centers in the cluster is only
L ≈ 1.2 D. The shape of the FMR spectra for the two types of
assemblies considered also differs. The information obtained in
this paper may help improve the interpretation of the FMR
spectra of various assemblies of magnetic nanoparticles.
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