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Abstract
Deep eutectic solvents (DESs) have recently emerged as an alternative solvent for nanoparticle synthesis. There have been numer-
ous advancements in the fabrication of silver nanoparticles (Ag NPs), but the potential of DESs in Ag NP synthesis was neither
considered nor studied carefully. In this study, we present a novel strategy to fabricate Ag NPs in a DES (Ag NPs-DES). The DES
composed of ᴅ-glucose, urea, and glycerol does not contain any anions to precipitate with Ag+ cations. Our Ag NPs-DES sample is
used in a surface-enhanced Raman scattering (SERS) sensor. The two analytes for SERS quantitation are nitrofurantoin (NFT) and
sulfadiazine (SDZ) whose residues can be traced down to 10−8 M. The highest enhancement factors (EFs) are competitive at
6.29 × 107 and 1.69 × 107 for NFT and SDZ, respectively. Besides, the linearity coefficients are extremely close to 1 in the range of
10−8 to 10−3 M of concentration, and the SERS substrate shows remarkable uniformity along with great selectivity. This powerful
SERS performance indicates that DESs have tremendous potential in the synthesis of nanomaterials for biosensor substrate con-
struction.
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Introduction
Surface-enhanced Raman scattering (SERS) is a ubiquitous
technology for detecting and tracing substances, applied in
various kinds of sensors. The spectra of SERS-based biosen-
sors are simple but powerful results, in which every single com-
ponent of the analytes can be recognized via characteristic
vibrations of identical groups [1]. In particular, SERS is an ad-

vantageous and practical choice for biosensors in clinical
settings thanks to fast response [2], the ability of real-time mea-
surements [3], extremely high sensitivity [4], remarkable selec-
tivity [5], and tremendous versatility [4,6,7]. Many scholars
have taken advantage of these properties in cancer diagnosis
[8], detection of hazardous chemicals [9], tracing of microor-

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:ttnhoa@hcmus.edu.vn
https://doi.org/10.3762/bjnano.15.38


Beilstein J. Nanotechnol. 2024, 15, 426–434.

427

Figure 1: Schematic of the Ag NPs-DES synthesis.

ganisms [7,10,11], and other analytical measurements regarding
food, medical, and environmental issues [12-14]. Undeniably,
SERS is the future for sensor design.

So far, most achievements regarding SERS rely on the develop-
ment of plasmonic materials. Noble metals (e.g., Au, Ag, and
Cu) are the most important group of plasmonic materials, which
extensively respond to electromagnetic waves with proper
wavelengths in terms of free electrons resonating to the inci-
dent waves [9,15]. This is the fundamental principle of surface
plasmon resonance (SPR). Moreover, plasmons are easily con-
trolled at the nanoscale through different sizes, shapes, and sur-
face morphologies of nanoparticles [16]. At the contacts among
adjacent nanoparticles, so-called “hot spots” form; here, electro-
magnetic fields are effectively enlarged, leading to localized
surface plasmon resonance (LSPR) [1,17]. Crucial parts of
SERS-based biosensors are commonly made of LSPR materials
[17]. With the development of synthesis techniques, numerous
nanostructures of noble metals have been extensively studied to
improve the intrinsic parameters of sensors.

Silver nanoparticles (Ag NPs) exhibit great performance in
sensing applications owing to the best LSPR properties among
the noble metals [18]. One of the decisive factors regarding the
SERS performance of Ag NP-based platforms is the agglomera-
tion state of the nanoparticles [19], which directly affects the
“hot spots”. There have been many studies in which agglomera-
tion of Ag NPs was adjusted by different kinds of surfactants
such as cetyltrimethylammonium bromide [20,21], polyvinyl-
pyrrolidone [18], and sodium dodecyl sulfate [21,22]. However,
these chemicals have many negative effects on the environment
including microbial, plant, soil, and marine ecosystems as re-
ported by Rebello and co-workers [23]. This restricts the appli-
cability of Ag NPs in the biomedical field and leads to the
requirement for more eco-friendly products.

Recently, deep eutectic solvents (DESs) have been introduced
to the chemical synthesis of nanomaterials. DESs show superi-

or properties including high thermal stability, high polarity, low
vapor pressure, and low toxicity, which makes DESs promising
candidates for the replacement of thousands of industrial sol-
vents [24,25]. DESs are so versatile that they have been used
for nanomaterials synthesis [26,27]. Regarding plasmonic mate-
rials, gold nanoparticles (Au NPs) were the first to be fabri-
cated in DESs [28,29]. SERS platforms based on Au NPs-DES
whose sensitivity and durability are competitive to the other
materials were successfully constructed [29,30]. However, no
attention has been paid to the potential of DESs in the fabrica-
tion of Ag NPs. The similarities between Ag NPs and Au NPs,
with the higher LSPR and SERS performance of Ag NPs
[18,31], led to the innovative idea of Ag NPs synthesis in DESs.

In this work, we present a novel strategy to fabricate Ag NPs
and demonstrate our hypothesis about the application of DESs
in stabilizing Ag NPs. The resulting Ag NPs-DES is used for
SERS detection of toxic antibiotics such as nitrofurantoin
(NFT) and sulfadiazine (SDZ). These substances have been
widely used since the 1970s because of rapid and absolute
results against microbes [32], but they are also responsible for
hormonal disruptions, methemoglobinemia, allergy, damaged
liver, nausea, and cancer [33-36]. Despite these side effects,
they are illegally overused in the food industry and medicine,
which threatens the human food chain and negatively affects
public health [37]. By evaluating the SERS parameters of the
Ag NPs-DES substrate regarding the detection of NFT and
SDZ, we demonstrate application aspects of our product,
showing the great potential of DESs in sensing and biomedical
applications.

Results and Discussion
Formation of Ag NPs-DES
We have developed new and simple strategy to fabricate Ag
NPs-DES in which ascorbic acid was used as reducing agent.
The synthesis protocol is summarily presented in Figure 1.
Also, to characterize our material, UV–vis and XRD measure-
ments were carried out. Figure 2A shows the broad adsorption



Beilstein J. Nanotechnol. 2024, 15, 426–434.

428

Figure 2: (A) UV–vis spectrum of the Ag NPs-DES solution. (B) XRD pattern of the Ag NPs-DES thin film.

Figure 3: (A) SEM images of Ag NPs-DES. (B) XRF mapping of the Ag NPs-DES thin film with pink dots representing silver.

band indicating the high number of excitons [38] on the surface
of Ag NPs due to SPR. The SPR peak is located at 390 nm,
which is suitable for SERS applications with 532 nm laser exci-
tation. Besides, the shape of the UV–vis spectrum is in accor-
dance with Mie scattering theory calculations, as reported in
[39], proving the existence of Ag NPs in the solution. More-
over, the XRD pattern of the thin film (Figure 2B) shows four
characteristic peaks at 38.2°, 44.3°, 64.4°, and 77.6°, corre-
sponding to the (111), (200), (220), and (311) planes of face-
centered cubic (fcc) Ag, respectively. The crystallite size is
30.61 nm, calculated from the most characteristic (111) peak of
the Ag NPs [40]. From the presence of the fcc Ag lattice planes,
we claim that Ag NPs-DES have been successfully synthesized
[41].

The development of clusters into nanoparticles following our
strategy is supported by the DES. DESs have been reported to
be potential shape-controlling agents, and highly branched

nanostructures were the most common [30]. In our procedure,
AgNO3 was added right after ʟ-ascorbic acid was dissolved in
the DES at room temperature. The color of the mixture gradu-
ally turned from yellow-orange to dark brown, indicating the
crystallization of Ag NPs. The synthesized Ag NPs-DES exhib-
its rod-like shapes of the NPs as well as a high aggregation state
(Figure 3A). This is because of the high viscosity of the DES,
which directly affected the stirring and yielded nonspherical NP
shapes. The aggregated Ag NPs are supported by pure DES in
which oxygen and hydrogen atoms of ᴅ-glucose, urea, and glyc-
erol tend to form hydrogen bonds. The DES acts as a surfactant
helping to stabilize Ag NPs. The rod-like appearance with
122.6 nm average length and small crystals on the surface of Ag
NPs crucially contribute to strengthening the LSPR phenome-
non thanks to the lightning rod effect [42]. As reported by other
scholars, the rod-like morphology is better than a spherical
one at increasing the extinction coefficient, about 109 to
1011 M−1·cm−1 higher [43,44], which proves the applicability of
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Figure 4: (A) SERS performance of the Ag NPs-DES substrate in detecting different concentrations of NFT. (B) Linear fit of −log C and peak intensi-
ties at 1580 and 1321 cm−1 (C stands for the concentration of NFT).

Ag NPs-DES in SERS biosensors. Furthermore, X-ray fluores-
cence mapping was used to evaluate the presence of silver in
the thin film (Figure 3B). The uniform distribution of silver
shows the uniformity of Ag NPs-DES thin film on the glass
substrate, which is crucial for the applicability of this material.

NFT detection
The most fundamental component of a SERS-based biosensor is
its SERS substrate. It directly affects the SERS performance of
the biosensor [6]. Herein, the Ag NPs-DES thin film with the
superiorly uniform Ag NPs-DES coating can be used as a SERS
substrate for the analysis of antibiotics. First, residue tracing of
nitrofurantoin (NFT) has been conducted in the range from
10−3 M down to 10−8 M (Figure 4A). At the limit of detection
(LOD) of 10−8 M, the SERS spectrum clearly shows emerging
peaks, the highest enhancement factor (EF) of which reaches
6.29 × 107, proving the NFT residue tracing capability of the
Ag NPs-DES substrate. These peaks correspond to vibrations of
characteristic groups of NFT as reported in Table 1 with the
most intense ones at 1580 and 1321 cm−1. Consequently, these
two peaks were used to construct the calibration curves as
shown in Figure 4B. The R2 values for 1580 and 1321 cm−1 are
0.9956 and 0.9993, respectively, which is close to the ideal
value of 1. This indicates that the Ag NPs-DES substrate is
sensitive and can be used for quantitative analysis of NFT
following the two linear fitting equations:

(1)

(2)

Table 1: Vibrational modes assigned to specific peaks in Raman spec-
tra of selected antibiotics.

Chemicals Frequency
(cm−1)

Assignmenta Ref.

NFT

1580 ν N–N=C, ν –NO2

[45,46]
1321 ω N–H
1162 ρ (furan ring)
998 ρ (hydantoin ring)
787 ν C–H

SDZ

1567 ω N–H, ν (benzene ring)

[47]
1356 ν C–N
1055 ν S=O
856 τ (pyrimidine ring)
610 ω (benzene ring)

aν: streching; ω: bending; τ: torsion; ρ: deformation.

For further investigations on the SERS performance of the Ag
NPs-DES thin film, NFT was again selected to test the stability.
In practice, a stable SERS substrate is not only able to with-
stand the conditions of storage but also exhibits consistent
Raman signals over the surface of the coating. Drops of 10−6 M
NFT were placed on six different spots of the Ag NPs-DES sub-
strate (Figure 5A). Then, the SERS spectra were analyzed by
considering the variation of peak intensity of the two Raman
peaks at 1580 and 1321 cm−1. In the diagram shown in
Figure 5B, the yellow lines indicate the average intensity, while
the areas covering all points represent the deviation. The peaks
show a comparatively low relative standard deviation (RSD),
namely 11.95% for 1580 cm−1 and 4.69% for 1321 cm−1. In ad-
dition, SERS mapping of 10−6 M NFT investigated on the sub-
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Figure 5: (A) SERS spectra at different points of the Ag NPs-DES substrate. (B) Variation of peak intensity at the two chosen wavenumbers.
(C) SERS mapping of NFT (10−6 M) detected on the Ag NPs-DES substrate.

Figure 6: (A) SERS spectra of SDZ in the concentration range from 10−3 to 10−8 M. (B) Linear fit of SDZ concentrations and intensity of the peaks at
1055 and 1567 cm−1. (C) SERS mapping of 10−5 M SDZ on the Ag NPs-DES substrate.

strate also helps to provide a larger scope on the uniformity of
SERS signals. As shown in Figure 5C, there are plenty of high-
intensity dots corresponding to signal enhancement by the Ag
NPs-DES substrate, and the very even distribution indicates
good uniformity, that is, satisfactory stability. These results can
be explained by the LSPR of the rod-like Ag NPs synthesized in
DES, which plays an important role in the high intensity [48]
and the uniformity of the Ag NPs-DES coating proven in
Figure 3B.

SDZ detection and selectivity of Ag NPs-DES
substrate
Another antibiotic commonly used in infectious disease treat-
ment is sulfadiazine (SDZ). Both NFT and SDZ are effective
antimicrobial substances, but their overuse statuses were re-
ported to be hazardous as mentioned above. Since their molecu-
lar structures are partially different [36,49], SERS analysis is
meaningful for the selectivity test of the Ag NPs-DES substrate.
In our study, different concentrations of SDZ were measured on
the substrate to find out the LOD (Figure 6A). Collected peak
intensity data were also used to construct the calibration curves

shown in Figure 6B. The substrate shows a linear range from
10−3 to 10−8 M, in which the LOD value is 10−8 M, and the
highest EF reaches 1.69 × 107. The vibrational modes of the
assigned peaks are listed in Table 1. There are two clearly en-
hanced peaks at 1567 and 1055 cm−1, whose correlation factors
R2 are equal to 0.9984 and 0.9904, respectively. Along with the
parameters of NFT SERS analysis obtained previously, these
high R2 values help to provide undeniable proof of the remark-
able quantity ability of our Ag NPs-DES substrate in antibiotic
residue tracing. The linear regressions of the two chosen analyt-
ical peaks of SDZ are as follows:

(3)

(4)

Although the consistency in SERS signals recorded on the Ag
NPs-DES substrate has been investigated with 10−6 M NFT, we
need to evaluate the SERS mapping image of SDZ to ensure the



Beilstein J. Nanotechnol. 2024, 15, 426–434.

431

Figure 7: (A) SERS spectrum of NFT (10−5 M) and SDZ (10−5 M) solution. (B) Specific peak intensity identification corresponding to NFT and SDZ.

stability of our substrate when analytes are changed. Hence,
10−5 M of SDZ was added dropwise and let dry naturally before
the laser excitation. The SERS mapping shown in Figure 6C
shows an even distribution of high intensity over the entire
considered surface. This shows that the Ag NPs-DES coating
has good consistency despite the different analytes. DES is
supposed to play a crucial role in dispersing the Ag NP suspen-
sion via its hydrogen bonding networks [30], which increases
the possibility of linkage formation between –NH2 groups of
3-aminopropyl)triethoxysilane (APTES) and Ag NPs. This
eventually explains the evenness of the Ag NPs-DES thin film.

Another type of selectivity test was carried out with a solution
containing 10−5 M NFT and 10−5 M SDZ. The SERS spectrum
in Figure 7A verifies the difference in Raman shifts among the
characteristic peaks of the two analytes. Here, the blue
diamonds represent SDZ’s key peaks, whereas the red arrows
stand for the ones of NFT. With the presence of all character-
istic peaks, NFT is effortless to detect in the solution thanks to
the high intensity. In contrast, the SERS spectrum of SDZ
shows solely three peaks instead of the common five. Addition-
ally, the two most intense peaks of NFT at 1580 cm−1 and SDZ
at 1567 cm−1 overlap, which makes it difficult to ascertain the
intensity for quantitative determination (Figure 7B). Therefore,
we propose the peaks at 1321 cm−1 of NFT and 1055 cm−1 of
SDZ as alternatives. Their intensity is comparable to the base of
the SERS spectrum, and they are separated from each other as
well as from the others. Based on the data experimentally
collected and the correlation between −log C and peak intensity
as given in Equation 2 and Equation 4, the concentrations of
NFT and SDZ can be determined. This surely can be applied to

other solutions of various substances, indicating that the Ag
NPs-DES substrate has a good selectivity. Moreover, compared
to other studies on NFT and SDZ detection (Table 2), the Ag
NPs-DES material shows competitive LOD values and a linear
range. Thus, Ag NPs-DES is a promising candidate in SERS ap-
plications along with the tremendous potential of DES in Ag
NPs fabrication.

Conclusion
In this study, we have proposed a novel strategy for Ag NP syn-
thesis in a DES composed of ᴅ-glucose, glycerol, and urea. The
Ag NPs-DES sample was prepared successfully through chemi-
cal reduction, in which DES acts as solvent and shape-control-
ling agent. Using NFT and SDZ as probe molecules, the SERS
performance of Ag NPs-DES was discussed. The LOD value is
10−8 M for the detection of NFT and SDZ. The EF values are
relatively high, 6.29 × 107 for NFT and 1.69 × 107 for SDZ, and
the linearity coefficients are very close to 1, proving the quanti-
tative residue tracing capabilities of the synthesized Ag NPs-
DES substrate. Besides the high sensitivity, the sensor exhibits
also uniformity of the coating, consistency in SERS signals, and
good selectivity. Overall, Ag NPs-DES is a promising candi-
date for SERS-based biosensor applications. This work hope-
fully provides useful information about the potential of DES in
nanomaterials fabrication and a possible guidance for low-cost
and effective SERS substrate construction in biosensors.

Experimental
Chemicals
ʟ-Ascorbic acid (AA, C6H8O6, 99%), silver nitrate (AgNO3,
99%), (3-aminopropyl)triethoxysilane (APTES, 99%), NFT
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Table 2: An overview of reported studies on NFT and SDZ detection.

Analyte Material Year LOD Linear range Ref.

NFT Au NPs/GO 2021 5 ng/mL 5–500 ng/mL [46]
BT/CNF/GCE 2021 5 × 10−9 M 4.5 × 10−4 to 6 × 10−8 M [50]
N-CQD@Co3O4/MWCNT 2020 4.4 × 10−8 M 1.22 × 10−3 to 5 × 10−8 M [51]
NiO/BCN 2019 10−8 M 2.3 × 10−4 to 5 × 10−8 M [52]
Ag NPs-DES 2023 10−8 M 10−3 to 10−8 M this work

SDZ SrWO4 2021 9 × 10−9 M 2.35 × 10−4 to 5 × 10−8 M [53]
Au NPs 2021 1 µg/L 1–100 µg/L [49]
RGO/Ag - coated alloy fiber 2019 1.9 ng/cm3 0.01–100 µg/cm3 [54]
MIP - QDs 2019 6.7 × 10−7 M 4 × 10−6 to 2 × 10−5 M [55]
Ag NPs-DES 2023 10−8 M 10−3 to 10−8 M this work

(C8H6N4O5, 98%), and SDZ (C10H10N4O2S, 99%) were pur-
chased from Sigma-Aldrich Co., MO, USA. Urea (CH4N2O,
99%) was obtained from ACS, Reag. Ph Eur, Merck Co.,
Germany, whereas glycerol (C3H8O3, 99%) was supplied by
Daejung Ltd., Korea. ᴅ-glucose (C6H12O6, 99%) was pur-
chased from Fisher Ltd., UK. The microscope glass slides
(SiO2, Na2O, CaO, and MgO) were manufactured by ISOLAB
Laborgeräte GmbH, Eschau, Germany.

Fabrication of DES and Ag NPs-DES
The most ubiquitous DES studied vastly in recent years is
reline, composed of urea and choline chloride in a 2:1 molar
ratio [24]. However, this substance is not appropriate for Ag
NPs synthesis because of the Cl− anions in choline chloride,
which may unintentionally cause AgCl precipitation. Here, we
chose an alternative DES [56] without any anions precipitating
with Ag+ cations. ᴅ-glucose, urea, and glycerol (molar ratio
1:1:2) were mixed and magnetically stirred at relatively high
temperature until a homogenous liquid formed. Then, the mix-
ture was cooled down gradually to room temperature while
keeping the vigorous stirring. 0.025 g of AA was dissolved in
10.195 g of fabricated DES, and 0.006 g of AgNO3 was added
later, which helped the reaction to occur. After 30 min of con-
stant stirring, the obtained Ag NPs-DES were washed with DI
water several times, and the pellets were re-dispersed in DI
water for further use.

The Ag NPs-DES thin film was prepared following the proce-
dure for self-assembly monolayer construction. A clean glass
substrate was treated with oxygen plasma to form reactive –OH
groups on the surface. The substrate was then soaked in a 3%
ethanolic solution of APTES for 2 h, which helped to stabilize
the –NH2 groups. A total of 2 mL of Ag NPs-DES solution
was used to deposit Ag NPs on the glass substrate via

Ag–NH2 linkage by fully immersing the treated glass for 2 h.
At last, the product was dried naturally at room temperature,
resulting in the successful fabrication of the Ag NPs-DES sub-
strate.

NFT and SDZ detection on the Ag NPs-DES
substrate
Various concentrations from 10−3 to 10−8 M of NFT and SDZ
were added dropwise on the Ag NPs-DES substrate (20 µL for
each measurement). The analyte was then dried at room temper-
ature, and the Raman spectra were recorded via laser excitation
at 532 nm. Other investigations on the SERS performance of
our sample were also carried out, including Raman mapping,
signal consistency, uniformity, and selectivity.

Instrument characterization and apparatus
The absorbance properties of the sample were recorded using a
V-730 UV–vis–NIR spectrophotometer supplied by JASCO,
Japan. The crystallinity of the Ag NPs-DES thin film was deter-
mined using a D8 Advance diffractometer, Bruker, UK, with a
Ni-filtered Cu Kα X-ray source. To evaluate the nanostructure
and surface morphology of the nanoparticles, as well as the
elemental distribution of silver on the substrate, a S4800 field-
emission scanning electron microscope purchased from Hitachi,
Japan, and an M4 TORNADOPlus Micro X-ray fluorescence
spectrometer with a Rh tube at 30 W micro-focus light element
from Bruker, UK, were used. Raman spectra were collected
with a XploRA ONE spectroscope (HORIBA, Japan), with a
laser wavelength of 532 nm, 1 mW power, and an accumula-
tion number of 60.
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