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Abstract
The electronic and optical properties of a composite created by introducing a magnetite cluster into NaA zeolite have been investi-
gated in this work using DFT calculations. The results obtained indicate that the electronic and optical properties of the composite
are enhanced because of the cluster. However, the properties exhibited by the cluster outside the zeolite differ from those it presents
when it is part of the composite. It is noteworthy that the composite exhibits magnetic properties of a half-semiconductor and a
strong optical response within the visible and ultraviolet regions of the spectrum.
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Introduction
Zeolites are crystalline materials made up of aluminosilicates
with a three-dimensional structure comprising pores and cavi-
ties of molecular dimensions. This unique structure enables

them to operate as molecular sieves, allowing molecules smaller
than the pore size to pass through while blocking the diffusion
of larger ones. Furthermore, the physicochemical characteris-
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tics of zeolites depend largely on the chemical composition of
the framework, specifically the Si/Al ratio [1,2]. These charac-
teristics make zeolites highly appealing for a wide range of ap-
plications, including the production of fine chemicals [3,4], gas
separation [5-7], ion exchange [8-10], heavy metal removal
[11,12], sensor technologies [13-16], and biomedical applica-
tions [17].

Nanoscale materials represent a thriving field of research with a
wide range of potential applications. Today, it is generally
recognized that properties like hardness, reactivity, toxicity, and
optical response are intricately linked to factors such as the
chemical composition, particle size, structure, and geometry of
these materials [18-20]. Hence, it is generally undesirable for
nanoscale materials to undergo structural alterations because of
environmental exposure or to change their properties because of
the migration and coalescence of nanoparticles on the carrier
material [21,22]. Such changes can significantly modify the
physicochemical properties of the original nanomaterial. Also,
the most interesting physicochemical properties are exhibited
by clusters with subnanometer dimensions. For example, the
active centers of the most efficient heterogeneous catalysts
commonly fall within this range [23-26]. The challenge lies in
the fact that, because of their pronounced tendency to aggre-
gate, these materials must be deposited with a high level of
dispersion to achieve the desired properties and performance.
Furthermore, apart from not preventing potential exposure to
unwanted molecules, the structural characteristics and, hence,
the physicochemical properties of the cluster could be altered as
a result of its interaction with the support material. Indeed, one
viable solution to tackle these challenges is to utilize zeolites,
which are frequently employed as inert support materials [27-
32]. Zeolites are well suited for the hosting and confinement of
molecular clusters with dimensions below 10 Å. This approach
has the potential to stabilize these clusters and prolong their
operational lifespan.

As zeolites are synthesized in powder form, they typically have
grain sizes ranging from hundreds of nanometers to tens of
micrometers. For applications where recovery at the end of a
process is desirable, this can be a limitation. A very interesting
alternative is the introduction of magnetic nanoparticles into
zeolite crystals so that the resulting composite can respond to an
external magnetic field [33]. By imparting magnetic properties
to such composites, they can be efficiently recovered after
capturing contaminants such as heavy metals [34-37] and dyes
[38-40] in bodies of water, addressing a pressing environmental
concern. Also, iron-modified zeolites have shown variations in
both electric and magnetic properties that allow one to generate
catalysts based on zeolites [41]. Among these types of compos-
ites consisting of zeolites modified with magnetic nanoparticles,

sodium Linde A Type (LTA) zeolite, also known as NaA
zeolite, stands out for its remarkable capacity and selectivity to
capture various types of metals commonly found as contami-
nants in drinking water. These metals include Ca, K, Mg, Mn,
Co, Zn, Cu, Pb, Cd, Cs, and Sr [42-46]. Because of the remark-
able ion-exchange capacity of zeolites, their large surface area,
and the well-organized porous systems with molecular sieve
functionality, zeolites have long been fruitfully used in impor-
tant industrial applications, mainly related to catalysis and
wastewater treatment.

The rapid development of nanotechnology and the emergence
of composite zeolite materials have opened up unprecedented
opportunities for their application in nanomedicine [47]. The
unique properties of magnetic nanoparticles allow them to be
used for targeted drug delivery and visualization of internal
organs [48]. Magnetic nanoparticles have unique magnetic
properties and the ability to function at the cellular and molecu-
lar level of biological interactions. Of course, the evaluation of
cytotoxicity and bioapplicability of each substance is a crucial
issue before its use in clinical practice. Although there are fewer
studies on the cytotoxicity of nanoparticles on zeolite carriers
than other mesoporous matrices, most articles report low cyto-
toxicity of zeolites. Zeolites are classified as “Safe Substances
for Food and Feed Additives” by the European Food Safety
Authorities [49] and are “Generally Recognized as Safe” [50]
by the United States Food and Drug Administration [51]. Also,
iron-based magnetic compounds have the advantage of being a
widely available and relatively cheap material, as well as being
biocompatible and environmentally friendly [52,53].

While the potential of magnetic clusters to impart magnetic
properties to zeolite composites is evident, a comprehensive
understanding of these properties remains elusive because of the
challenges in experimentally characterizing the structural prop-
erties of zeolite-hosted clusters. This field is relatively new, and
experimental data on the precise structure and properties of
these systems is very limited. Besides, to the best of our know-
ledge, there is a dearth of theoretical literature specifically
addressing the study of magnetic clusters within zeolites. With
this motivation, the present study evaluates the electronic prop-
erties of the magnetite cluster using DFT calculations and
compares them to those in the case where the cluster is embed-
ded within the NaA zeolite. Our work aims to provide insights
into the structural and electronic properties of these systems,
paving the way for future experimental investigations and the
development of novel magnetic materials.

Computational Details
In the current study, the dehydrated sodium LTA zeolite, com-
monly denoted as NaA in the literature, with a ratio of Si/Al = 1
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Figure 2: The optimized NaA-M composite is represented by two different types of cells: (a) a trigonal cell and (b) a cubic cell. The trigonal cell has
two α-cages and one β-cage, whereas the cubic cell has eight α-cages and four β-cages. In both cell representations, magnetite clusters are hosted
in only half of the α-cages. The red and brown spheres in both clusters represent oxygen and iron atoms, respectively.

was considered. For this purpose, we adopted the trigonal cell
proposed by Antúnez-García et al. [54], for which the lattice pa-
rameters are a = b = c = 17.179 Å and α = β = γ = 60°, de-
scribed by the chemical formula 12Na+[Al12Si12O48]12−. As an
additional consideration, we will assume that the distribution of
aluminum atoms in the framework satisfies Löwenstein’s rule
[55]. Also, we considered the highly stable Fe3O4 magnetite
minimal cluster (see Figure 1), as proposed by Ermakov et al.
[56], for the purposes of this study. After separately obtaining
the optical and electronic properties of both the NaA zeolite and
the cluster, our next step involved locating the position of
minimum energy for the cluster within the zeolite framework.
In essence, we compared the energy difference (after optimiza-
tion) between housing the cluster in the α-cage and the β-cage
(see [54,57] for cage identification). The results demonstrated
that housing the cluster in the α-cage is energetically more
favorable (Figure 2). This choice defined the composite under
investigation (labeled as NaA-M) and served as the basis from
which we computed its optical and electronic properties in this
study.

The electronic and optical properties of zeolite NaA, the magne-
tite cluster, and the NaA-M composite were computed using
the Wien2k computer code [58]. This code employs the
APW+lo method in conjunction with density functional theory
(DFT) to calculate electronic structures. To determine the
exchange–correlation interaction, we utilized the Tran–Blaha-
modified Becke–Johnson (TB-mBJ) approximation. This ap-
proach provides calculated bandgap values that exhibit excel-
lent agreement with experimental data [59]. In detail, TB-mBJ
combines the modified Becke–Johnson exchange potential with
the local density approximation (LDA) for the correlation

Figure 1: Geometry and Fe–O bond lengths for a magnetite cluster
under two different conditions: (a) outside the NaA zeolite and
(b) inside the NaA zeolite. Bond lengths are in angstroms.

potential. The parameters used for the calculations were the
following: The muffin-tin radii rmt are 1.70, 1.38, 1.60, 1.90,
and 1.70 for aluminum, oxygen, silicon, sodium, and sulfur, re-
spectively; the convergence number, that is, the smallest
muffin-tin radii times the plane wave cutoff parameter, is set at
RmtKmax = 6.0; the maximum l value for partial waves used
inside atomic spheres is lmax = 10; and the magnitude of the
largest vector in charge density Fourier expansion is Gmax =
12.0. The energy to separate the valence states of the core states
was set at a value of −7.5 Ry; thus, the Al [1s2 2s2], O [1s2], Si
[1s2 2s2], Na [1s2], and Fe [1s2 2s2 2p6] electronic states are
considered as core states, and the rest of electronic states as
valence states. For integration in the reciprocal space, a
3 × 3 × 3 mesh (14 k-points in the irreducible Brillouin Zone
(IBZ)) is used during the self-consistent cycle, and a
6 × 6 × 6 mesh (112 k-points in IBZ) for the calculation of den-
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Figure 3: Band structure for (a) NaA zeolite, (b) NaA-M composite, and (c) isolated magnetite cluster. The blue and red bands distinguish the spin up
and spin down states, respectively. Fermi level is located at 0 eV.

sity of states and optical properties. For the energy conver-
gence criterion, we consider a value of 1 × 10−4 Ry. For a valid
comparison, the same values were used to calculate the elec-
tronic and optical properties of the isolated magnetite cluster.
Finally, spin polarization was considered for both calculations
(zeolite-cluster and isolated cluster).

Results and Discussion
In Figure 1a, the minimum energy configuration for the NaA-M
composite is depicted, corresponding to the placement of the
magnetite cluster within an α-cage of the NaA, rather than
within a β-cage. In this figure, it can be observed that one of the
Fe atoms from the magnetite cluster interacts with an oxygen
atom from the pore surface, resulting in a Fe–O bond length of
2.00 Å. Figure 1b corresponds to the same composite but is de-
scribed in a cubic cell, which shows clearly the location of the
magnetite cluster in the α-cage. The representation of a compos-

ite in two different unit cells is possible because there exists a
linear operator and its inverse that allow us to go from a trig-
onal to a cubic cell representation and vice versa. Figure 2a and
Figure 2b display the structures and Fe–O bond distances of a
magnetite cluster in both the isolated form and when it is intro-
duced into the NaA zeolite to form the NaA-M composite.
Comparing these structures directly and examining their respec-
tive Fe–O bond lengths reveal that the magnetite cluster under-
goes structural changes when confined within the zeolite.

Figure 3a presents the band structure of the NaA zeolite, which
exhibits no magnetic behavior. Notably, a pair of bands at 4.5
and 5.2 eV emerge within the forbidden zone. Previous research
[60] has shown that these bands arise from the Na–O interac-
tion and make a relatively low contribution to the total density
of states (TDOS). In Figure 3b, when the magnetite cluster is
introduced into the zeolite, new bands appear within the



Beilstein J. Nanotechnol. 2025, 16, 44–53.

48

forbidden zone, and a decoupling of bands with spin up and
spin down occurs, giving rise to magnetic behavior in the NaA-
M composite. A comparison between Figure 3a and Figure 3b
reveals that the introduction of the magnetite cluster reduces the
bandgap and induces a shift in the band structure of the NaA
zeolite toward negative energies, approximately by 1 eV. This
observation is consistent with the results of prior research
studies [61-63]. Figure 3c illustrates the band structure corre-
sponding to the isolated magnetite cluster, focusing on the
trajectory defined by the special points Y, Γ, and Z. A direct
comparison between Figure 3b and Figure 3c highlights that the
magnetite cluster introduces specific bands within the forbidden
zone of the NaA zeolite. As it was expected, these bands do not
entirely align with those of the isolated cluster. Given the ob-
served structural modifications of the cluster when integrated
into the zeolite (Figure 2), it is expected that its electronic prop-
erties would also undergo changes.

Figure 4a displays the total density of states (TDOS) for the
NaA zeolite, featuring a primary bandgap of 6.5 eV, along with
additional bandgaps originating from states associated with the
bands at 4.5 and 5.2 eV. In Figure 4b, the TDOS for the NaA-M
composite is presented, clearly revealing the decoupling of the
spin-up and spin-down states, resulting in a “half-semiconduc-
tor”-type magnetic behavior. In this figure, the enlarged region
around the Fermi level highlights a distinct bandgap of 1.26 eV,
which is solely attributable to the interaction between the Fe
and O atoms within the magnetite cluster. Moreover, Figure 4b
shows that overcoming this potential energy barrier enables a
transition from spin up to spin down. Figure 4c displays the
TDOS for the magnetite cluster. Notably, it reveals the pres-
ence of both spin polarizations at the Fermi level, with the spin-
down polarization being the dominant one. This observation is
indicative of a ferromagnetic behavior, aligning with the find-
ings of Ermakov and colleagues [56]. Furthermore, an initial
bandgap of ≈0.68 eV is observed, leading to a spin-down state,
and an additional energy of ≈0.2 eV is needed for the transition
to a spin-up state. Figure 5 illustrates the spin density differ-
ence (up–down) isosurface, with a value set at 0.01 e/Bohr3.
This calculation considers only the valence states. The com-
puted values of the difference fall within the range of −0.009 to
1.794 e/Bohr3, indicating that the effective component corre-
sponds solely to spin up, consistent with observations in
Figure 4b. Furthermore, the figure demonstrates that the spin
density difference is practically associated with the cluster. The
studies also revealed that the total magnetic moment of the
cluster alone has a magnitude of 10 μB; when it is part of the
composite, it reaches a value of 12 μB. These results show that
the confinement effect of the NaA zeolite offers the possibility
of altering not only the electronic and magnetic properties, but
also the spin channels of the cluster.

Figure 4: DOS for (a) NaA zeolite, (b) NaA-M composite, and (c) iso-
lated magnetite cluster. Fermi level is located at 0 eV.

Figure 5: Spin density difference (up–down) isosurface of the NaA-M
composite. For simplicity, the explicit depiction of the atoms consti-
tuting the zeolite framework has been omitted; instead, a wireframe
representation has been employed.
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Figure 6: Real and imaginary parts of ε and ELF for (a) NaA zeolite and (b) NaA-M composite. The energy range is given in both energy (eV) and
wavelength (nm). The curves labeled xx, yy, and zz correspond to the diagonal components of the tensors for both the relative permittivity and the
ELF.

Figure 6 provides a comparison of the behavior of the real and
imaginary components of relative permittivity ε(=ε1 + iε2) and
energy loss function (ELF) for the zeolite NaA (Figure 6a) and
the NaA-M composite (Figure 6b). Although both the relative
permittivity and the ELF are described by a 3 × 3 tensor, for
simplicity, we will focus solely on the dominant components lo-
cated on its main diagonal, labeled as xx, yy, and zz, respective-
ly. In Figure 6a, it is evident that for energies below 6.8 eV (the
value that corresponds to the zeolite bandgap), the value of ε2 is
practically zero. Under such circumstances, the velocity (v) of
electromagnetic wave propagation in a dielectric medium can
be described as , where c is the speed of light
in a vacuum. Within this range ε1xx = ε1yy = ε1zz then
ε1 = 1.5; consequently, the speed with which an electro-
magnetic wave propagates through this zeolite is v = 0.81c.
Of course, the speed of propagation of electromagnetic
waves outside this range may not be the same. Given that
ε2 quantifies energy dissipation within the medium [64],
Figure 6a shows that ideally the zeolite exhibits null dissipation
within this energy range. Figure 6a indicates that the zeolite
exhibits negligible dissipation in this specific energy range.
Particularly within the visible spectrum (ranging from
1.63 to 3.26 eV or from 380 to 700 nm), this absence of
dissipation shows that the material is transparent, a character-
istic commonly associated with distinct aluminosilicates [65-

73]. Given that the ELF is connected to the relative permittivity
as follows [74]:

it is anticipated that its behavior below the bandgap value will
be consistent with that observed in Figure 6a.

Figure 6b shows that when the cluster is introduced into the
zeolite, the relative permittivity of the NaA-M composite exhib-
its a certain degree of anisotropy. In particular, for the range
from 0 to 8 eV, the component ε1yy, both real and complex, has
some intervals where it is the highest. Note that within this
interval is the visible range; therefore, unlike pure zeolite, the
composite exhibits a response within the visible and ultraviolet
regions of the spectrum (i.e., non-zero dissipation). For ener-
gies less than 1.26 eV, all imaginary parts of the relative permit-
tivity are zero. In this small range, for an average value of the
relative permittivity, ε1 = 1.6, we obtain that v = 0.79c, which
means that within this energy range, electromagnetic waves
slow down by about ≈2.5% compared with pure zeolite.

In Figure 7, we compare the behavior of the real and imaginary
components of the relative permittivity, as well as the ELF, in
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Figure 7: Real and imaginary parts of ε and ELF for (a) NaA-M composite and (b) isolated magnetite cluster. The energy range is given in both
energy (eV) and wavelength (nm). The curves labeled xx, yy, and zz correspond to the diagonal components of the tensors for both the relative
permittivity and the ELF.

the energy range from 0 to 8 eV when the cluster is part of the
NaA-M composite and when it is isolated. A direct comparison
of the optical properties between these two scenarios reveals
significant differences. For instance, in Figure 7a, it is evident
that the primary peak of ε1 occurs at 3.54 eV, while for ε2 and
the ELF, the peak energies are very close to each other (3.63
and 3.67 eV, respectively). In contrast, for the isolated cluster
(Figure 7b), the positions of the main peaks in ε1, ε2, and the
ELF exhibit notable differences. Additionally, it is noteworthy
that the ELF exhibited by the composite closely mirrors the be-
havior of ε2, whereas, for the cluster alone, ε2 and the ELF
demonstrate substantial discrepancies within the 4.5 eV to
6.0 eV range.

These results indicate that, for the composite, it is possible to
deduce ε2 from the ELF, which is not valid for an isolated
cluster. Thus, it becomes evident that the optical response of the
magnetite cluster within the zeolite differs from its behavior
when existing in isolation. An additional observation worth
noting is the behavior of both ε2 and the ELF of the composite
(as shown in Figure 7a), which indicates that, unfortunately, the
primary peak occurs outside the visible range. However, consid-
ering that the current results highlight the modification of the
cluster’s optical properties when introduced into the zeolite,

there is potential to stimulate a peak response within the
visible spectrum. This could be achieved by either adjusting
the Si/Al ratio of the zeolite framework or by exploring the pos-
sibility of introducing the cluster into a different zeolite struc-
ture. These approaches offer avenues for tailoring the optical
characteristics for specific applications within the visible spec-
trum.

Conclusion
In this work, the influence of the inclusion of a magnetite
cluster into NaA zeolite is studied through DFT calculations.
The findings reveal that the cluster not only introduces states
into the forbidden energy gap of the zeolite, but it also affects
the band structure of the zeolite framework. Additionally, the
geometry of the cluster stabilized in the zeolite cavity under-
goes structural changes, which leads to modifications of its
electronic and magnetic properties. Specifically, the investiga-
tion shows that the cluster within the zeolite exhibits character-
istics of a half-semiconductor in contrast to the free cluster in
the vacuum, which presents ferromagnetic behavior. Moreover,
the results suggest that introducing the cluster into zeolite
enhances the control over the transition between spin polariza-
tions, making it a promising avenue for further exploration in
spin-related applications.



Beilstein J. Nanotechnol. 2025, 16, 44–53.

51

The examination of optical properties reveals that including a
magnetite cluster in the zeolite gives it an optical response
within the visible and ultraviolet range of the spectrum. It
should be noted that the optical properties exhibited by the
cluster within the zeolite differ from the optical properties of the
cluster outside the zeolite. This suggests that zeolites, when
combined with certain clusters, can be effectively utilized to
achieve an optically desirable response, particularly within the
visible region of the spectrum.
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