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Abstract

Nanotechnology is revolutionizing different sectors such as medicine, energy, defence, and environmental science by enabling the
development of materials and technologies with exceptional precision and efficiency. From advanced drug delivery systems to
clean energy solutions, the applications of nanotechnology are diverse and transformative. However, these innovations are accom-
panied by complex challenges regarding safety and sustainability for both the nanoscale materials themselves and for the products
containing them. The growing complexity of engineered nanomaterials calls for proactive strategies to mitigate potential risks while
maintaining their functional benefits. The "Safe and Sustainable by Design" (SSbD) concept addresses these challenges by embed-
ding safety measures and sustainability considerations into the earliest stages of material development. Advances in machine
learning (ML) and artificial intelligence (AI) have further enhanced the effectiveness of SSbD by providing predictive modelling,
risk assessment, decision-making tools, and the ability to computationally screen candidate materials before producing them. This
perspective article highlights how ML and Al are driving the evolution of SSbD in nanotechnology, focussing on predictive toxi-
cology, materials informatics, lifecycle analysis, and the pivotal role of digital twins. It also explores current challenges, emerging
opportunities, and the path forward for integrating ML/AI-driven SSbD frameworks into regulatory and industrial practices.

Introduction

Nanotechnology has fundamentally changed the landscape of diation, and defence. For instance, nanoparticle-based drug
materials science, offering unprecedented opportunities to  delivery systems have enabled targeted therapies for cancer,
design and develop nanomaterials with unique, tailored proper- minimizing side effects while enhancing therapeutic efficacy
ties. These advances have significantly impacted diverse indus-  [1,2]. In the energy sector, nanostructured materials have en-

trial sectors, including healthcare, energy, environmental reme- hanced the performance and energy density of batteries and
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solar cells, providing more sustainable and efficient solutions
[3]. Additionally, engineered nanomaterials (ENMs) have been
employed for environmental applications, such as water purifi-
cation and pollutant removal, addressing some of the most
pressing ecological challenges [4,5]. Nanotechnology has sig-
nificant applications in defence [6], particularly in the develop-
ment of lightweight, high-strength materials for advanced
armour systems and protective gear. For example, nanostruc-
tured ceramics and nanocomposites enhance ballistic protection
while reducing weight, improving mobility for soldiers [7]. Ad-
ditionally, nanosensors can detect chemical and biological
threats in real time, providing critical situational awareness on
the battlefield [8]. These innovations improve operational capa-

bilities and safety in defence environments.

However, the rapid development of ENMs and their wide-scale
application across sectors has introduced significant concerns
regarding their environmental, health, and safety (EHS) risks.
The unique physicochemical properties of ENMs, including
their high surface-to-volume ratio and reactivity, often result in
unpredictable interactions with, and transformations by, biologi-
cal and ecological systems [9,10]. Traditional risk assessment
approaches, while valuable, are resource intensive and inade-
quate to fully address the dynamic risks associated with ENMs
and their myriad nanoscale forms (i.e., different sizes, geome-
tries, coatings) [11]. The need for more proactive and efficient
methodologies has led to the emergence of the Safe and Sus-
tainable by Design (SSbD) framework, which integrates safety
considerations throughout the nanomaterial lifecycle, from
design to disposal [12-14].

The SSbD concept is closely aligned with the EC Joint
Research Centre SSbD framework , the European Chemical
Industry Council (Cefic) “Safe and Sustainable by Design”
initiative [15-18], the broader agenda of the European Commis-
sion on safe and sustainable design for chemicals and advanced
materials as part of the EU Green Deal [19] and the EU Chemi-
cals Strategy for Sustainability [20], as well as the work of the
OECD Working Party on Manufactured Nanomaterials
(WPMN) Steering Group [21].

These frameworks strive to ensure that ENMs and chemicals
undergo rigorous evaluation and transparent reporting of
hazards, exposures, and life cycle impacts from the earliest
stages of product conception. Recent advances in machine
learning (ML) and artificial intelligence (AI) have significantly
expanded the capabilities of SSbD by enabling high-throughput
and automated approaches that can quickly evaluate the safety
profile of candidate materials [22] as well as multi-criteria deci-
sion analysis in which several parameters (e.g., functionality,

safety, sustainability, and cost) are optimised in parallel,
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thereby accelerating the design of both safe and sustainable
nanomaterials [23]. Good data management approaches are of
paramount importance to maximise and verify the applicability

of novel approaches involving Al and ML.

On a practical level, ML/AI offers several complementary bene-
fits within SSbD. First, predictive modelling tools, such as
quantitative structure—activity relationship (QSAR) models, can
forecast toxicological and physicochemical properties of
emerging substances, reducing the reliance on time-consuming
and costly experimental assays [24,25]. The effectiveness of
ML/AI models for nanomaterials is often hindered by inconsis-
tent and non-harmonized physicochemical data. Thus, improv-
ing data quality through standardization, metadata annotation,
and curated databases is crucial to enhance the reliability and
regulatory acceptance of predictions. Second, Al-driven plat-
forms utilizing deep learning techniques enable real-time pro-
cessing of dynamic sensor data within Internet-of-Things (IoT)
environments, facilitating enhanced monitoring and analysis
across various applications, including industrial processes [26].
These insights help identify and mitigate potential EHS risks as
they evolve, ensuring proactive rather than reactive risk
management. Third, dynamic simulations — including digital
twin technologies — provide a virtual environment for
researchers to run “what if” scenarios, allowing them to explore
the impact of variable parameters (e.g., pH, temperature, sur-
face coating) on nanomaterial behaviour in complex biological
or ecological systems [27]. Examples of Al implications within
the NM life cycle are depicted in Figure 1.

Crucially, these Al-driven methods harmonize with the SSbD
frameworks by embedding safety and sustainability considera-
tions within computational workflows, ensuring that industries
are better positioned to meet evolving regulatory requirements,
fulfil societal expectations for sustainable innovation, and
streamline product development cycles [28]. Such integration
also paves the way for collaborative, transparent data-sharing
networks, where standardized information on nanomaterial
properties and toxicity profiles can be used to train increasingly
robust ML models. Overall, the synergy between the SSbD
concept, advanced ML/AI algorithms, and comprehensive regu-
latory directives fosters a future-oriented model of nanotechnol-
ogy development — one that secures both innovation and safety.

Perspective

Safe and sustainable by design

Safe and sustainable by design can be defined as “a pre-market
approach to chemicals and materials design that focuses on pro-
viding a function (or service), while avoiding volumes and
chemical and material properties that may be harmful to human

health or the environment in particular groups of chemicals
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Figure 1: Nanomaterial life cycle underpinned by Al.

likely to be (eco)toxic, persistent, bio-accumulative, or mobile.
Overall sustainability should be ensured by minimizing the
environmental footprint of chemicals and materials in particu-
lar in relation to climate change, resource use, and protecting
ecosystems and biodiversity, adopting a lifecycle perspective”
(adapted from [12]). Emphasis on early-stage risk assessment
contrasts with more reactive approaches [29], which often iden-
tify and attempt to address safety issues only after a material or
product has already been designed and introduced to the market.
By integrating toxicological, ecological, and exposure consider-
ations upfront, SSbD endeavours to minimize hazards while
preserving — or even enhancing — functional performance.

In addition to aligning with global regulatory frameworks such
as the European Union’s chemical safety regulations and inter-
national guidelines for nanomaterials, efforts to operationalize
the SSbD framework continue to evolve across research,
industry, and regulatory domains. Several key areas require
further attention to ensure the effective integration of safety and

sustainability considerations into nanomaterial development.

Need for harmonized testing protocols

Establishing standardized and reproducible methodologies for
characterizing nanomaterial properties — such as size distribu-
tion, surface chemistry, and toxicity profiles — is essential. A
unified approach to testing under controlled laboratory condi-

tions would enable more reliable cross-comparison of data and

Nanoproduct
manufacturing:
ML can help with QC
and optimising process
conditions

enhance confidence among researchers, industry stakeholders,
and regulatory bodies [21,30,31].

Development of standardized data-sharing
frameworks

A major challenge in SSbD implementation is the ability to
integrate and share vast amounts of experimental and computa-
tional data for diverse ENMs. There is a growing need for inter-
operable databases and digital platforms that adhere to the
FAIR (findable, accessible, interoperable, and reusable) princi-
ples, ensuring seamless access to information for researchers
and policymakers and ensuring transparency and thereby trust
in the assessment outcomes [32-34].

Strengthening interdisciplinary collaboration

Greater coordination between academia, industry, and regula-
tory agencies is needed to comprehensively address environ-
mental, health, and safety concerns. Bringing together toxicolo-
gists, materials scientists, engineers, and policymakers would
support the alignment of SSbD strategies with evolving legisla-
tive requirements, including classification and labelling regula-
tions for chemical substances, including facilitating the devel-
opment of a common understanding of SSbD with clear defini-
tions, terminology, and criteria [35].

Advancing these areas would contribute to the safe and sustain-

able development of nanomaterials, ensuring that innovation
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progresses in a way that meets regulatory expectations and
public health priorities.

Role of ML/AI for scalability and complexity
The increasing complexity of ENMs calls for advanced, data-
driven computational tools to enhance analysis and decision-
making. ML and Al play a crucial role in this effort, offering
powerful capabilities for: (1) Predictive toxicology: Al-driven
quantitative structure—activity relationship (QSAR) models can
identify potentially hazardous properties of new ENMs before
they are synthesized, reducing the need for extensive animal
testing and accelerating the design cycle [36,37]. Similarly, Al
can support the development of sustainable ENMs through inte-
gration of environmental and climate data with information on
the production, release, exposure, and toxicity of materials with
many complex descriptors [38]. (2) Big data analytics: Ad-
vanced algorithms can carefully analyse high-dimensional
datasets, identifying patterns between physicochemical charac-
teristics of ENMs, their interactions with biomolecules and tox-
icity endpoints that may be overlooked by traditional methods
[39-41]. (3) Lifecycle modelling: Al-assisted simulations and
probabilistic methods support comprehensive lifecycle analyses
including prospective approaches, evaluating environmental
fate and transport of ENMs, as well as potential occupational
and consumer exposures across production, use, and disposal
stages [42-44].

Predictive toxicology

Predictive toxicology is pivotal to SSbD strategies because it
enables early-stage assessments of potential nanomaterial
hazards, thereby minimizing reliance on time-consuming and
ethically challenging animal studies. ML and Al methods form
the backbone of these predictive capabilities, allowing
researchers to exploit large datasets encompassing everything
from physicochemical descriptors to biomolecule interactions to
transcriptomic and proteomic information.

QSAR models, for instance, rely on known correlations be-
tween specific nanomaterial properties — such as size, shape,
and surface chemistry — and various toxicity endpoints. By
identifying hazardous materials well before synthesis, QSAR-
based screening saves resources, decreases late-stage failures,
and aligns with the 3Rs principle (Replacement, Reduction and
Refinement), favouring in silico and in vitro approaches over
animal testing. The emergence of deep learning techniques, in-
cluding convolutional neural networks (CNNs) and recurrent
neural networks (RNNSs), has further heightened the power of
predictive toxicology. These advanced algorithms excel in
handling high-dimensional data, often integrating transcrip-
tomic and proteomic information to pinpoint molecular path-

ways responsible for adverse biological outcomes, and linking
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these molecular changes as a sequence of key events into an
adverse outcome pathway [45]. This mechanistic insight, in
turn, guides the design of safer nanomaterials by helping
researchers engineer specific surface modifications or tailor
release profiles to mitigate toxicity. A particularly notable
impact of ML/AI models in this arena is their capacity to reduce
the extent of in vivo testing while enhancing both the speed and
reliability of risk assessments. This capability not only acceler-
ates the innovation cycle but also aligns with regulatory and
ethical pressures to identify alternatives to animal experimenta-
tion. These tools seamlessly integrate into the SSbD framework,
offering proactive detection of potentially hazardous materials
or formulations at the earliest stages of research and develop-
ment. By providing rapid, data-driven feedback on the probable
safety profile of a material, predictive toxicology ensures that
corrective measures — such as surface functionalization, doping
strategies, or substituting alternative compounds — are imple-
mented prior to commercialization. Overall, the synergy be-
tween predictive toxicology and SSbD underscores a forward-
looking commitment to responsible, sustainable nanotechnolo-
gy, as these computational methods help deliver materials that
meet performance demands without compromising human

health or the environment.

Materials informatics

To date, materials informatics has been predominantly focussed
on optimizing functionality, largely through materials accelera-
tion platforms (MAPs) that combine automation, high-through-
put experimentation, and ML to accelerate materials discovery
[46]. In addition, materials informatics applies advanced data-
driven techniques to systematically search the vast chemical and
structural design space of engineered nanomaterials, allowing
researchers to pinpoint formulations that offer both optimal per-
formance and a reduced risk profile [47,48]. By combining
high-throughput computational screening with experimental
data, this approach enables rapid candidate selection for diverse
applications, from catalysis to targeted drug delivery [49,50].
One of the most powerful aspects of materials informatics lies
in its ability to integrate machine learning with multiscale simu-
lation tools — ranging from molecular dynamics to density func-
tional theory — which helps researchers correlate nanoscale fea-
tures such as particle size, shape, and surface functionalization
with macroscopic properties such as catalytic efficiency, bio-
compatibility, or environmental persistence. This synergy not
only speeds up the discovery process but also allows for contin-
uous refinement of computational models as new data emerge
from iterative experimental validation. Moreover, inverse
design techniques push this paradigm further by autonomously
generating candidate compositions that meet predefined targets
for both functionality and safety, thereby reducing the trial-and-

error components of materials development [51]. In practice,
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these Al-driven methods can flag potentially hazardous attri-
butes early in the design cycle, enabling prompt adjustments to
chemical composition or synthesis protocols that mitigate toxic-
ity without compromising performance. Through such feed-
back loops, materials informatics cultivates a forward-looking
approach to nanomaterial innovation, where safety considera-
tions are integrated at the outset, streamlining the path from

virtual screening to commercial deployment.

Lifecycle analysis

Lifecycle analysis (LCA) offers a holistic framework for
assessing environmental, health, and safety implications of
engineered nanomaterials at every stage of their existence,
beginning with raw material synthesis and continuing through
usage, recycling, and eventual disposal. ENMs may undergo
transformations such as agglomeration, chemical reactions, or
changes in surface properties. These transformations may
happen in different environmental and biological contexts, in-
cluding in air and water under high temperature and pressures
and following release and uptake by biota [9]. Therefore, LCA
must account for the entire lifecycle of these materials, from
production and usage for which industrial materials can often be
under extreme conditions (high temperatures, pressures and/or
cycling of these) to disposal or recycling, while also capturing
the associated uncertainties.

The use of ex-ante and prospective LCA represents a signifi-
cant advance in sustainability analysis, particularly for
emerging technologies such as engineered nanomaterials.
Unlike conventional retrospective LCAs, these forward-looking
approaches allow researchers and policymakers to anticipate
environmental and health impacts before full-scale production
or commercialization, enabling more informed design and
investment decisions. They are especially relevant in the
context of SSbD, where early-stage assessments help minimize
environmental burdens and align innovation with long-term
sustainability goals. Integrating scenario development, uncer-
tainty analysis, and dynamic system modelling, prospective
LCAs support strategic planning and risk mitigation throughout
the innovation lifecycle [52].

In parallel, Bayesian models and probabilistic methods have
become essential for handling incomplete or fluctuating
datasets, allowing analysts to quantify the uncertainty around
key factors such as release rates, exposure scenarios, and degra-
dation kinetics [53]. These advanced statistical techniques yield
more reliable and transparent LCA outcomes, which in turn
enable regulators, industries, and other stakeholders to make
informed decisions about the safety and sustainability of nano-
material applications. Complementing the probabilistic ap-

proaches, dynamic modelling tools enable researchers and poli-
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cymakers to simulate how ENMs behave over time, guiding
strategies for safe disposal and recycling [54]. Such tools
consider factors such as nanomaterial persistence, potential
bioaccumulation in ecosystems, and the efficacy of waste treat-
ment processes, helping to pinpoint when and where SSbD
interventions may be most critical. By integrating real-time data
on ENM fate and transport, these models provide the flexibility
to adapt to new evidence or change regulatory thresholds.
Taken together, LCA methodologies — particularly those en-
hanced by Bayesian and dynamic modelling — support a preven-
tative, SSbD mindset. By illuminating the hidden risks that can
arise across the lifespan of a material, they help ensure that
nanotechnological innovations do not inadvertently compro-

mise human health or ecological balance.

Digital twins in safe by design

Digital twins represent a significant leap in SSbD methodolo-
gies because they function as high-fidelity, dynamic replicas of
physical systems, allowing researchers to explore the behaviour
of nanomaterials across a spectrum of virtual scenarios [55]. By
pairing experimental inputs (e.g., physicochemical data, toxici-
ty endpoints) with computational models (ranging from
physics-based to data-driven models), these digital counterparts
evolve in real time as new data and conditions are introduced.
This continuous feedback loop not only reduces the need for ex-
tensive lab testing, but also accelerates design iterations by
highlighting, early on, the potential interactions and risks asso-
ciated with specific ENMs [56]. One illustrative application
involves modelling nanoparticle—protein interactions, a critical
factor in drug delivery systems, where digital twins can accu-
rately predict protein adsorption patterns on nanoparticle sur-
faces through read-across and interpolation from limited experi-
mental datasets [57]. Given that protein corona formation [58]
can drastically alter the biodistribution and immunological
profile of a nanoparticle, digital twins help pinpoint safer design
parameters — such as surface coatings or particle size modifica-
tions — which improve biocompatibility. Similarly, in the field
of environmental risk assessment, digital twins simulate how
ENMs disperse under varying climatic and ecological condi-
tions and advanced environmental fate models can be utilised to
explore the impact of changing conditions or application of
mitigation or environmental remediation measures on the parti-
cle concentrations in specific environmental compartments
(e.g., [59] and made accessible via a web application at https://

sb4n.cloud.nanosolveit.eu/). These models integrate geospatial

data, fluid dynamics, and chemical reactivity, offering a
geographically and temporally detailed picture of how ENMs
move through — and possibly accumulate in — soil, water, and
air. By enabling stakeholders to test “what-if” scenarios, such as
accidental spills or long-term usage in consumer products,

digital twins enhance predictive accuracy and decision-making
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regarding waste management, recycling, and potential remedia-
tion strategies. Collectively, digital twin technologies embody
the core principles of SSbD: prevention, iteration, and informa-
tion. They provide a living laboratory in silico, where scientists,
industry representatives, and policymakers can validate and
refine nanomaterial safety profiles long before real-world
deployment, fostering a more responsible and sustainable inno-
vation landscape. A number of web applications for construc-
tion of digital nanomaterials have also been made available
recently to support the implementation of digital twins and
enable users with limited programming or informatics skills to
apply these technologies, including NanoConstruct [36],
ASCOT [60], and NanoTubeConstruct [61]. Beyond material
design, digital twins can also be applied to simulate and predict
occupational exposure scenarios, helping ensure that manufac-
turing processes are not only efficient but also protective of
worker health and safety. This makes them a valuable asset
across the full SSbD framework, addressing both environ-
mental and human health dimensions [62].

Challenges and opportunities

The integration of ML/AI and digital twin technologies within
SSbD paradigms presents both significant challenges and op-
portunities, particularly as the field moves from conceptual
demonstrations to large-scale industrial implementation and
regulatory adoption. One of the most pressing issues is the
availability and quality of data, as many current nanomaterial
datasets are fragmented, inconsistently formatted, and insuffi-
ciently annotated for robust ML/AI model training [63,64].
Moreover, these datasets often arise from disparate sources —
academic research labs, industrial R&D facilities, and public
databases — each with its own protocols and measurement stan-
dards. Such heterogeneity complicates efforts to systematically
integrate and compare results, thereby limiting the accuracy and
generalizability of predictive models. Addressing this challenge
necessitates concerted efforts to create FAIR-compliant nanoin-
formatics databases [63]. By adopting standardized metadata
schemas, controlled vocabularies, and transparent data-sharing
agreements, stakeholders can facilitate more seamless collabo-
ration and unlock the full potential of Al-driven risk assess-
ment. Progress is being made in this direction through applica-
tion of big data curation and development of modelling friendly
nanostructure annotations [65] and modelling-ready nanomate-
rials EHS and SSbD relevant databases including VINAS [66]
and NanoPharos [67].

Another major hurdle is model interpretability, particularly for
deep learning approaches that often function as “black boxes”.
Despite their high predictive power, complex architectures such
as convolutional neural networks or recurrent neural networks

can obscure how a model reaches specific toxicity or exposure
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predictions. This lack of transparency can undermine regula-
tory trust and slow adoption in safety-critical domains, as stake-
holders — including policymakers, industry representatives, and
the broader public — require a clear understanding of the origin
and quality of (in silico) results and how decisions are made.
The emerging field of explainable Al (XAI) offers promising
solutions by developing methods (e.g., SHAP values, LIME,
and gradient-based techniques) that highlight which input vari-
ables most strongly influence the output of a model. Adopting
XAI frameworks also presents an opportunity to refine model
architectures by ensuring they align more closely with known
mechanistic or toxicological pathways, thereby bridging the gap
between computational insights and domain expertise. Despite
these obstacles, the future holds considerable opportunities. As
the volume of high-quality, standardized data grows, ML algo-
rithms will become more capable of identifying complex struc-
ture—property—toxicity relationships, potentially accelerating the
safe commercialization of next-generation nanomaterials [68].
Similarly, advances in XAl approaches will strengthen regula-
tory acceptance by providing transparent, well-justified predic-
tions that can be validated against experimental data or well-
established mechanistic models. It has been suggested that the
current regulatory approach, relying on animal tests that
measure outcomes such as mortality without explaining the
underlying mechanisms, is effectively a “black box.” In
contrast, using Al and XAI can provide mechanistic insights,
leading to greater transparency for regulators and improved
protection for the public [69]. Increasing the standardisation of
approaches for documenting models is essential for regulatory
acceptance. Towards this goal, the Easy-MODA tool [70] used
to describe ML/AI models, serves a similar purpose to the
QSAR Model Reporting Forms used for QSAR models. At the
same time, ongoing progress in digital twin technologies — par-
ticularly those incorporating real-time sensor data — enables
adaptive feedback mechanisms that support proactive decision
making. This comprehensive integration of data standards,
explainable Al, and digital twins has the potential to not only
optimize product development cycles but also to enhance public
confidence, fostering an innovation ecosystem where safety and
sustainability are fundamental to technological progress. While
ML models are often referred to as being a black box, a recent
paper up-ended this conception, suggesting that the current
gold-standard of in vivo apical end-point tests are the black box
(see Figure 2). They provide no mechanistic insights to explain
the observed impacts. However, extending traditional animal
tests with approaches such as toxicogenomics analyses in-
creases the transparency of the box (system). Incorporating al-
ternative test methods (also called new-approach methodolo-
gies or NAMs), and which include in silico (computational)
assessment, can fully “open the box”, revealing mechanistic

drivers and enabling establishment of dose-response relation-
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Figure 2: A schematic representing how adding new endpoints or using alternative (non-animal) test methods, including in silico approaches, can help
reveal the underlying mode of action. These additional methods make it possible to “open the black box” of traditional apical endpoints, which only
show the effects but not their causes. Figure 2 reproduced from [69] (© 2021 S. I. L. Gomes et al., published by Elsevier Ltd., distributed under the
terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, https://creativecommons.org/licenses/by-

nc-nd/4.0/). This content is not subject to CC BY 4.0.".

ships, read-across, and other insights that allows regulators to
gain a deeper understanding in comparison to what is possible

with the standard approach alone.

The future of SSbD in nanotechnology will likely be driven by
hybrid modelling frameworks that unite ML/AI techniques with
physics-based simulations, creating a more precise and scalable
approach to nanomaterial risk assessment [71]. By coupling
data-driven algorithms — capable of rapidly processing high-
dimensional, heterogeneous datasets — with the fundamental
insights provided by mechanistic and thermodynamic models,
these hybrid systems will enable researchers to predict both per-
formance and toxicity under a broader range of conditions. This
exchange of knowledge between computational paradigms not
only improves predictive accuracy but also enhances generaliz-
ability, as models can be continuously updated with new empir-
ical data. In parallel, the development of interconnected digital
twin ecosystems has the potential to significantly streamline
SSbD workflows, from initial design concepts all the way to
industrial-scale manufacturing [1]. Rather than working in iso-
lated environments, researchers, engineers, and quality-control
teams will be able to share real-time, sensor-driven data within
dynamic virtual platforms, allowing for rapid adjustments to
nanomaterial formulations or processing parameters in response
to emerging safety or efficacy concerns. By simulating how
nanomaterials behave across varying operational scenarios — in-
corporating factors like temperature, pH, or mechanical stress —
digital twins will facilitate safer and more efficient scaling of
novel ENMs. Achieving these goals — namely, safer nanomate-
rial design, more efficient SSbD workflows, and scalable imple-
mentation — requires well-defined policy frameworks that incor-

porate Al-derived insights to ensure transparency, foster regula-

tory trust, and align technological innovation with public health

and environmental protection.

Policymakers must work closely with industry and academic
partners to implement adaptive regulations. Collaborative initia-
tives — in which stakeholders openly share data, best practices,
and methodologies — will be essential to fostering a transparent,
socially responsible nanotechnology landscape. Through the
convergence of hybrid modelling, digital twins, and informed
policy, SSbD can continue to evolve into a powerful catalyst for
safer, more sustainable innovation in the nanoscale area.

Conclusion

ML and Al in concert with digital twin technologies, are funda-
mentally reshaping the SSbD paradigm by elevating the speed,
depth, and precision of nanomaterial risk assessment. Through
predictive toxicology, these computational tools can rapidly
forecast hazardous characteristics of newly conceived materials,
reducing both resource expenditures and ethical concerns asso-
ciated with animal testing. Materials informatics extends this
impact by applying ML to analyse large chemical and struc-
tural datasets, enabling the efficient discovery of nanomaterials
that achieve an optimal balance between high performance,
green synthesis routes, and minimized toxicity. Moreover,
digital twins contribute a real-time, iterative layer of validation
and optimization, enabling researchers to virtually explore a
variety of scenarios — from nanoparticle—protein interactions to
environmental dispersion without ever having to synthesize the
candidate materials until the final optimised one — while contin-
uously refining design parameters in response to new data.
However, this technologically advanced ecosystem still faces

some critical hurdles to implementation. One major challenge is
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the complex and interdisciplinary nature of nanotechnology,
which demands not only advanced computational models but
also a deep mechanistic understanding of nano-bio interactions,
environmental fate, and lifecycle behaviour — areas where cur-
rent models often fall short. Additionally, implementation of the
SSbD framework requires a holistic integration and optimiza-
tion of functionality, safety, and sustainability across the entire
life cycle of a material, from design and production to use and
disposal. Realizing this vision requires more than FAIR data
principles alone; it necessitates harmonized data sheets for key
toxicological and ecotoxicological endpoints, standardized test
methods, and physicochemical characterization protocols, and
the development of nano-specific life cycle inventory data suit-
able for reliable LCAs. Without these foundational elements,
even the most sophisticated ML models may yield biased or
non-transferable results. Efforts to develop FAIR-compliant
data infrastructures and interpretable ML models will thus be
critical to accelerating the adoption of the SSbD principles at
industrial and policy levels. Interdisciplinary collaboration
among academia, government agencies, and private industry
can turn computational advances into real-world solutions that
protect both people and the environment. The future of safer,
sustainable nanotechnology depends on this collaboration —
using predictive tools, digital twins, and smart regulations to
create high-performing materials that are produced in ethical

and responsible ways.
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