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Atomic force microscopy using Si cantilevers provides an effective means for investigating both conservative and dissipative inter-

actions in the vertical and lateral directions between the tip and the sample. An accurate evaluation of the dynamic stiffness of the

cantilever is indispensable in the quantitative analyses of the interactions. We calculated the dynamic stiffness of cantilevers under

torsional oscillation based on the strain energy. Without tips, the torsional dynamic stiffness is approximately 23% larger than the

static stiffness. The modification decreases to 21-23% with tips. Applying the present correction is essential for achieving quantita-

tively accurate stiffness values in dynamic measurements.

Introduction

Friction serves as a fundamental mechanism of energy dissipa-
tion [1]. While friction typically arises from direct mechanical
contact between surfaces, energy dissipation can also occur
even in the absence of physical contact, and this dissipation is
called non-contact friction [2]. Its origins have been investigat-
ed down to the nanometer scale [3-5]. In particular, the origin of
non-contact friction is attributed to electromagnetic interactions
between the two bodies, although its detailed mechanisms

remain not fully understood [5].

Non-contact atomic force microscopy (nc-AFM) is widely em-
ployed to investigate non-contact friction through its dissipa-
tion channel. Common techniques include pendulum AFM,
bimodal AFM, and quartz tuning fork AFM [6-8]. Pendulum
AFM uses cantilevers with small stiffness and provides excep-
tional sensitivity to conservative and dissipative forces owing to
the small stiffness [2,9-11]. Non-contact friction measurements
with pendulum AFM on a Nb film across the superconducting

transition indicate that friction is electronic in the metallic state,
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whereas phononic dissipation dominates in the supercon-
ducting state [10]. The cantilever in bimodal AFM oscillates in
two modes, typically, the first flexural and first torsional modes
[2]. The flexural mode is used for vertical tip-position control
via its frequency shift, and the torsional mode detects the lateral
interactions [7,12-14]. The torsional oscillation modes of AFM
cantilevers are sensitive to in-plane interaction [15-17]. This
method enabled highly accurate imaging of the in-plane crys-
talline orientation by utilizing friction information [14]. Quartz
tuning fork AFM is useful as it can electrically detect energy
dissipations [8]. Lateral force microscopy with quartz tuning
fork AFM, using a CO-terminated tip, enabled the detection of
energy dissipation over the chemical bonds of a PTCDA
(3,4,9,10-perylenetetracarboxylic dianhydride) molecule, with a
vertical decay length of 4 pm [18].

Quantitative interpretation of the conservative interaction
energy and the energy dissipation requires the stiffness of the
oscillators [19-21]. The oscillator exhibits different stiffnesses
in dynamic and static cases [22-24]. While the static stiffness is
easily obtained from the geometrical structure [2], an accurate
evaluation of dynamic stiffness requires detailed analyses of the
oscillator dynamics. The modification from static to dynamic
stiffness depends on the oscillation mode because each mode is
governed by a different equation of motion reflecting the under-

lying deformation mechanism.

Here, we calculated the dynamic stiffness of cantilevers with
tips in torsional oscillation using the equivalent spring-moment
of inertia model. Then we found that the dynamic stiffness
should be modified by 21-23% when the tip is considered.
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Dissipated energy is derived from the excitation amplitude
through a proportionality coefficient that depends on the
dynamic stiffness [21]. Thus, the present correction for the
dynamic stiffness should be adopted for friction analyses with
torsional oscillations in nc-AFM.

Model

We consider a cantilever with the dimensions length L, width b,
and thickness ¢ with L, b > t as shown in Figure 1a. The corre-
sponding moment of inertia along the x axis is I = pb3tL/12,
where p is the mass density and is uniform in the cantilever.
The angle of the torsional displacement is denoted by 0(x, #) at
the position x and the time 7, and the angle for the oscillation
amplitude is represented by 04. The cantilever is fixed atx =0
and is free atx = L. A tip is attached at x = /, and the moment of
inertia of the tip along the x axis is u/ with p < 1, as illustrated
in Figure 1b. Note that the geometric contribution of the tip is
included in the deduced moment of inertia.

The oscillator is modelled as an equivalent spring-moment of
inertia model [22,24], and the static stiffness and the dynamic
stiffness under torsional oscillation are calculated. The equa-
tion of motion of the oscillator under the torsional oscillation is
given by

2%0 o%0
ply—=C—

ot ot W

where Ip = b34/12 is the polar moment of inertia, and C; is the
torsional rigidity [25,26].
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Figure 1: (a) Schematic image of a model cantilever. (b) Side view of the cantilever. A tip with a moment of inertia p/ is at x = /. (c) Displacement in
the torsional direction for the static deformation (blue) and the dynamic deformation in fundamental mode (orange) fory=0and/=L.
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Results

First, we consider a static torsion. The solution to Equation 1 is

60 (x, t

X
)=047 @)

under the boundary conditions of 6(0, #) = 0 and 0(/, ) = 04.
Next, we consider dynamic oscillations with a specific tip con-
figuration, where the tip has a negligible moment of inertia
(u=0) and is at x = L. The boundary conditions are 6(0, #) = 0
(no torsion) and C0'(L, t) = 0 (no torque) [27]. With these
conditions, we obtain

0, (x.1)=6, sin(zzL

rcxj cos(®,1), 3)

where o, =,/C;/pl,(2n—1)n/2L is the resonance angular
frequency for the n-th eigenmode [28,29]. Figure 1c shows the
deformation of the cantilever for the fundamental oscillation
mode 0;(x, 0) and for the static displacement 0g(x, 0). In the
dynamic case, the local torsion is concentrated to the range near
the fixed end of the cantilever compared with the static case.

We then treat the torsional oscillations using the spring-
moment of inertia model and derive the formula for the
dynamic stiffness by assuming that the kinetic energy and
the strain energy of the cantilever are equivalent to those
of the model [22,30]. Specifically, for the kinetic energy

plpj‘(f ézdx/Z 10 6, 1)2 /2, and for the strain energy
v=cjso 'de/z kdynam‘“e (L)% 12, where kMM jg the
dynamic stiffness for the n-th oscillation mode, and I is the
effective moment of inertia. The dynamic stiffness and the
effective moment of inertia are then given by

) kstatic 2n _1 2
kdynamw AT it 4
" 2 2 @

L==, 5)

where kSt is the static stiffness defined by kStt¢ = C/L. The
resonance angular frequencies obtained as o, = \/ks ynamic ; 7 :
are equal to those defined for Equation 3. Dynamic stiffness
differs from static stiffness for all modes. For the fundamental
kldym"nic =n2k8¢ /8 and thus the dynamic stiffness is

approximately 23% larger than the static stiffness. The effec-

mode,

tive moment of inertia is equal to half the moment of inertia of

the cantilever for any oscillation modes.
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Now, more general configurations are considered, where the tip
is at an arbitrary position and has a finite moment of inertia.
The boundary conditions should be modified as both the posi-
tion and the moment of inertia of the tip affect the conditions.
The cantilever is divided into two parts; the deformation is de-
scribed as Ojef(x, 1) for 0 <x <7 and Byigne(x, ) for [ <x < L. The
boundary conditions [25] are

Olet (l, 0) =0, (amplitude at the tip),
O]eft (O, t) = O
Otefy (£ ) = Origne (1. 1)

(the same torsion),  (6)

Ce[ Bigh (1,1) = Ofere (1,1) | = wiB(1,7)

(torque equilibrium),

(no torsion),

right (L,t)=0  (no torque).

The equation of motion yields

0, (x,1)=6,cos(w,?)

n

sm( x s
s1n( l) (O_ - Z) 7
cosl o, (L)) (1 <xSL)’

2 (2=1)]
where the parameters a,(/, p) are the positive solutions of

pot, Lsin (o, /) cos| o, (L—1)]—cos(a,L)=0 (3

in ascending order, and o, (/,n)=,/C,/pl,a, is the reso-
nance angular frequency for the n-th eigenmode. The resonance
angular frequency becomes lower when a tip with larger
moment of inertia is attached, consistent with previous research

[31].

Figure 2 illustrates the deformation of the cantilevers with tips
with various moments of inertia at /[/L = 0.95 in the funda-
mental oscillation mode. As the tip with larger moment of
inertia lowers the resonance angular frequency, the cantilever
torsion becomes similar to the situation in the static case. The
gradient of the deformation for / < x < L is smaller than that of
the displacement for 0 < x </ due to the effect of the tip as
shown in the boundary conditions in Equation 6. Figure 3

shows the displacement of the cantilever with a tip of a moment
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of inertia p = 0.05 at various positions under the fundamental
mode. When the tip is attached closer to the inner part of the
cantilever, the local torsion of the cantilever becomes larger for
0 <x </ to maintain the amplitude at x =/, and the gradients of
the deformation become smaller for / < x < L.
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Figure 2: The effect of the moment of inertia of the tip. The deforma-
tion of cantilevers under the fundamental mode are illustrated. The tip
is attached at //L = 0.95. (a) Overall curves and (b) zoomed-in view of

(a).

The dynamic stiffness and the effective moment of inertia with
a tip are also calculated. The kinetic energy is now modified to
be T = pIpJ-OL 93,dx/2+ u[én «, z‘)2 /2, while the strain energy
V:th(f 6;12dx/2 remains the same [22,30]. The dynamic
stiffness k,fy“amic(l, p) and the effective moment of inertia
I:(I, p) are derived as

. kstatic ) P(l, H)
kdynamlc Lu)= L ,
. (1) ==——(a o) ©)
. 1 P(Lp)
I(Lu)== i
a(L1) 200n) (10)
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Figure 3: The effect of the moment of inertia of the tip. The deforma-
tion of cantilevers under the fundamental mode are depicted. The
moment of inertia of the tip is y = 0.05. (a) Overall curves and

(b) zoomed-in view of (a).

where P(/, u) and Q(/, p) are

P(l, ;,L) = aanin2 (anl)

+0Lnlcos(otnL)cos[(xn (L—ZZ)} (11)
+cos (o, L)sin (o, /) cos[a, (L -],
O(l, 1) = o, Lsin? (o, /) cos? [, (L-1)]. (12)

The dynamic stiffness, the effective moment of inertia, and the
resonance angular frequency in the fundamental oscillation
mode are plotted in Figure 4. As p increases, the dynamic stiff-
ness decreases. In contrast, the dynamic stiffness increases as
the tip is positioned away from the cantilever end since this
configuration leads to larger local torsion of the cantilever. The
effective moment of inertia is influenced by the oscillation
mode when the tip is attached. It increases as the tip with larger
moment of inertia is positioned closer to the inner part of the

cantilever. The resonance angular frequencies calculated with
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B *
®, = k&M / 1 are consistent with the values defined for

Equation 7. For the fundamental mode, the resonance frequen-
cy is only minimally affected by attaching the tip with small
moment of inertia near the free end of the cantilever. It becomes
lower with the tip with larger moment of inertia, while it grows
higher when the tip is positioned away from the free end of the

cantilever.
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Figure 4: (a) The dynamic stiffness, (b) the effective moment of inertia,
and (c) the fundamental resonance angular frequency when a tip of a
moment of inertia p/ is attached to the cantilever at x = /.
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Discussion

To know the practical effect of the tip to the oscillating cantile-
ver, we consider two specific cantilever configurations, namely,
a long cantilever and a short cantilever. The cantilever geome-
tries are shown in Table 1. The tips in the configurations are
assumed to have the same cone shape with the height 2 =17 pm
and the base radius » = 8 um and to be positioned at //L = 0.97
and //L = 0.94 for the long cantilever and the short cantilever,
respectively. The ratio of the dynamic stiffness to the static
stiffness for the fundamental mode is also shown in Table 1.
The dynamic stiffness is larger by 23% for the long cantilever
and by 21% for the short cantilever. This implies that the non-
contact friction is underestimated by around 20% if the present

correction is not adopted.

Table 1: Dynamic stiffness for two cantilever configurations.

long cantilever short cantilever

L [pm] 225 125

b [pm] 38 30

t [um] 7 4

[/ 0.97 0.94

3] 0.008 0.043

kdynamic

a4 1.23 1.21
kstatlc

In conclusion, we derived formulae for the dynamic stiffness of
the cantilever in torsional oscillation through a comparison of
the oscillating cantilever and the equivalent spring-moment of
inertia model. The dynamic stiffness is 21% and 23% larger
than the static stiffness for specific configurations of cantile-
vers and tips, implying the importance of the present correc-
tions for accurate measurements of non-contact friction. The
present modification can be experimentally evaluated by
comparing the lateral force measured with the torsional oscilla-
tion mode and that from three-dimensional force maps obtained

using vertical oscillation.
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