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Abstract
The role of the cantilever in quantitative Kelvin probe force microscopy (KPFM) is rigorously analyzed. We use the boundary

element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the

cantilever has a very strong effect on the absolute value of the measured contact potential difference even under ultra-high vacuum

conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl

monolayers grown on Cu(111). The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been

calculated and found to be relatively small.
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Introduction
The effect of the measuring probe in electrostatic force based

microscopies, such as Kelvin probe force microscopy (KPFM)

[1], is very large because the measured forces are long range.

This effect has been studied and analyzed by several groups

[2-9], who invariably focused on the contribution of the tip

while neglecting the effect of the cantilever or took it into

account using various approximations. Hochwitz et al. [10] and

Belaidi et al. [11] estimated the entire cantilever contribution to

the overall electrostatic force as a function of the probe–sample

distance and cantilever–sample angle. They concluded that

the cantilever may impose a limitation on the maximal

probe–sample distance that can be used to obtain high lateral

resolution. Colchero et al. [12] calculated the influence of the

cantilever on the KPFM resolution, and several groups [13-15]

derived analytic expressions for the cantilever electrostatic

force. To the best of our knowledge, despite the above studies,

the accurate role of the cantilever in general, and in high resolu-

tion ultra-high vacuum (UHV) KPFM measurements in particu-
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lar, has not been reported. In this work we use the boundary

element method (BEM) [7] to calculate the point spread func-

tion (PSF) of the measuring probe: Tip and cantilever. The

probe PSF analysis shows that the cantilever has a very strong

effect on the absolute value of the measured contact potential

difference (CPD) even under UHV conditions, and we demon-

strate a good agreement between our model and KPFM

measurements.

Experimental
Electrostatic model
In order to calculate the full probe configuration, we extended

our previous model [7] to solve the entire probe–surface elec-

trostatic system, including the cantilever. The model assumes a

conducting probe and a sample that is represented by an infi-

nitely thin dipole layer on top of an earthed plane; variations in

the dipole density account for the inhomogeneous sample

surface potential. Both the probe and the sample were divided

into boundary elements in order to calculate their surface charge

density. Unlike our previous work [7], where the probe was

divided into conical and spherical elements, here we used

commercial software (MSC/Patran®) in order to perform fast

automatic meshing of an arbitrary probe geometry, including

the cantilever as required in this work.

The probe charge density was used as the unknown quantity to

be determined in order to calculate subsequently the PSF. We

use the following notations: (a) A matrix G which is a discrete

representation of the Green’s function between two probe

boundary elements; (b) a matrix D which represents the

discretized influence of the dipole layer (representing the

sample) on each probe mesh element; (c) a diagonal matrix B

with diagonal elements equal to the z components of the normal

area vectors of the probe boundary elements divided by 2εo, and

(d) the vector , which is a discrete representation of the

surface potential, corresponding to a probe centered at

r = (x,y,z). Matrices G, D, B and vector  were previ-

ously defined in [7] and are explained again in the Appendix

section.

The probe–sample system was solved by dividing the mutual

interactions into homogeneous and inhomogeneous parts. The

homogeneous part represents a system with a probe above an

infinite earthed plane, while the inhomogeneous part accounts

for the contribution of the sample surface potential to the

electrostatic force acting on the probe; the total potential is a

sum of the two parts. In addition, we define , and

Cinh = G−1 D where G−1 is the inverse of G, and  is a vector

with all elements equal to 1. The vector  represents the ca-

pacitance density (capacitance per unit area) between two probe

elements and the matrix Cinh represents the mutual capacitance

density between every pair of surface and probe elements. By

inserting the charge density distribution into the Maxwell stress

tensor, replacing the probe potential with Vdc(r) + Vac sin(ωt),

and extracting the force, we obtained the following expression

for the electrostatic force acting on the entire probe in the z

direction at frequency ω:

(1)

where Hh is the coefficient of the homogeneous force compo-

nent, and  scales the relative contribution of each sample

element to the inhomogeneous force; the superscript t denotes

the transpose vector. The distinction between the homogeneous

and inhomogeneous parts of the force is not merely mathemat-

ical; while the homogeneous force depends on the applied

voltage, Vdc, the inhomogeneous force is proportional to a

weighted average of the sample potential. These weights

are due to the contributions from areas at different distances

from the probe, and therefore will determine the KPFM spatial

resolution.

Equation 1 calculates the force for a specific probe–sample dis-

tance. In practice, almost all UHV KPFM measurements use the

single pass method. In this method, the cantilever oscillates at

its first resonance frequency in order to measure the surface

topography, while the oscillations due to the electrostatic force

(in amplitude modulated AM-KPFM at the second resonance or

in frequency modulated FM-KPFM at several hundred Hz [16])

are nullified by adjusting Vdc(r). The first resonance

oscillations have a strong effect on the measured CPD,

especially at probe–sample distances smaller than 10 nm, where

the electrostatic force varies strongly with the distance [17].

Since in most cases the KPFM feedback circuit time constant

is much larger than the period of the first resonance

oscillations, the force minimization condition must be applied

to the average force. This leads to the following relation

between the measured potential and the sample potential:

, where  is the averaged

force. In addition,  and  represent, respectively, the time

averaged of  and Hh, which are defined in Equation 1 for a

certain time, i.e., for a given probe height; the product 

is the PSF of the system. The time averaged force was calcu-

lated by sampling the sinusoidal movement at K time points

uniformly covering an oscillation period T0 ,  so that

tk = (T0/K)·k (where k is an integer between zero and K) and the

probe–sample distance is d(tk) = A sin(2πtk/T0)+A0, where A is

the oscillation amplitude and A0 is the average height. The
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charge density on the probe was calculated for each

probe–sample distance independently.

The magnitude of the cantilever effect on the measured poten-

tial can be explained as follows. Since the cantilever is located

more than 10 μm above the sample surface, and its total lateral

displacement during a high resolution scan is about 0.2 μm, its

maximal angular movement relative to an axis perpendicular to

the surface is on the order of 1°. Due to their large separation,

the potential due to the surface dipole layer at the cantilever

location can be expanded using the spherical harmonics series

[18] (multipole expansion). As the angular span of the

cantilever is very small during the scan, only terms with high

multipole orders, (tens and higher), produce discernable angular

variations. However, each multipole term decays as 1/rn where

r is the cantilever distance from the multipole origin, and n is

the multipole order. Thus, these higher order terms in the multi-

pole series are negligible at the cantilever location, since they

decay as the reciprocal of the corresponding high power of the

cantilever–sample distance. Therefore, we assumed, to a very

good approximation, that the cantilever senses a constant poten-

tial during the entire scan.

To emphasize the cantilever role, we calculated separately the

cantilever and tip contributions to the total vertical electrostatic

force. The average force of a given geometrical model x (tip or

cantilever) can be expressed using the calculated expected

potential: ; where

 is the averaged homogeneous force coefficient and

 is the nullifying force potential of the specific

model x. Neglecting the mutual electrostatic interaction

between the cantilever and the tip, the total force on the probe is

. Based on the conclusion from the

previous paragraph, we approximated , which

is the potential after nullifying only the cantilever force, by a

constant. Then, by minimizing the total force we obtained:

(2)

Equation 2 shows that the constant force of the cantilever intro-

duces a factor of  relative to a model that

takes into account only the tip. In addition, since only a scaling

factor is introduced in Equation 2, the cantilever does not affect

the lateral resolution, but may strongly affect the CPD absolute

value, even in high resolution UHV KPFM measurements, as

we demonstrate below. It should be noted that our model does

not include signal-to-noise considerations, which may reduce

the lateral resolution due to the above scaling.

Results and Discussion
Cantilever influence on the system PSF and
force analysis
The influence of the cantilever was calculated for two different

geometries: One comprising only a tip normal to the sample

surface composed of a sphere under a cone enclosed with a

spherical cap, and the other containing the entire cantilever

tilted relative to the surface. The first shape does not include a

tilt since it is a reference model describing a widely used geo-

metry [3,4]. Figure 1a and Figure 1b illustrate the used vari-

ables as well as the connection between cantilever and tip cone

which has a rounded shape to avoid an infinite charge density

distribution on sharp edges. Figure 1c shows the calculated

cantilever contribution to the total homogeneous force on the

probe as a function of the probe–sample distance for two

different tilt angles: β = 20° (solid line) and β = 10° (dashed

line). For a probe–sample distance of 30 nm, which is

frequently used in ambient KPFM, and β = 10°, the cantilever

contributes around 60% of the total homogeneous force. It was

observed that the cantilever influence increases with the

probe–sample distance, or for smaller tilt angles, as expected.

Figure 1: (a) Geometrical model of a tip, with cone length l, half-aper-
ture angle θ0, spherical apex radius R, and cantilever width, length and
thickness W, L and t, respectively. (b) Probe–sample cross section for
a probe distance d from the surface, tilted at an angle β. (c) Cantilever
homogeneous force contribution relative to the total homogeneous
force, as a function of the probe–sample distance for two tilt angles:
β = 20° (solid line) and β = 10° (dashed line), with cantilever width of
W = 40 μm. These and all the following results were calculated for the
parameter values: R = 30 nm, θ0 = 17.5°, l = 14 µm, L = 225 µm and
t = 7 μm.

The effect of the cantilever on the PSF is demonstrated in

Figure 2 for two different probe–sample distances with and

without the cantilever, represented by the dashed and solid

lines, respectively. For a probe–sample distance of 1.2 nm

(Figure 2a), the maximum value of the cantilever PSF decreased
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by about 85% compared to the tip PSF. At a probe–sample dis-

tance of 17.8 nm, the presence of the cantilever reduced the PSF

peak by almost a factor of 3 compared to the PSF computed

without the cantilever. The horizontal lines represent the full

width at half maximum (FWHM) for the two cases and demon-

strate the conclusion that the cantilever hardly affects the

measurement resolution. It should be emphasized that the

difference between the two cases stems not only from the

cantilever, but also from the tilt of the probe relative to the

surface.

Figure 2: One dimensional PSF calculated for two different
probe–sample distances with and without the cantilever, represented
by the dashed and solid lines respectively. The model with the tip only
uses β = 0° (normal to the surface) while the other one uses β = 10°.
(a) Tip–sample distance of 1.2 nm, (b) tip–sample distance of 17.8 nm.
The horizontal lines in (b) represent the FWHM for a probe–sample
distance of 17.8 nm. The simulations were performed using
W = 40 μm.

Figure 3 displays the relative homogeneous force contribution

of the various parts of the probe normalized to the total homo-

geneous force (left axis), for a probe located 17.8 nm above the

surface. Each bar corresponds to a different part of the probe

defined as follows (from left to right): The bottom sphere of the

tip, the bottom and top parts of the cone (each having a vertical

length of 5 μm), and seven segments of the cantilever each with

an equal length of 26.7 μm, with the first segment located

closest to the tip. The spherical tip apex and the bottom part of

the cone contribute 25% and 30% to the overall homogeneous

force, respectively. The rest of the force stems mostly from the

cantilever, especially from the two segments which are nearest

to the tip which contribute 25.8% and 6.5% each. The effect of

the cantilever segments decreases the further away each

segment is from the tip. This is due to the tilt of the cantilever

which increases the distance of each segment from the sample

surface as we move along the cantilever away from the tip.

Nevertheless, since the cantilever area is very large even the

remaining five outermost segments contribute about 9.2% of the

total force. The right axis in Figure 3 presents the relative area

of each part of the probe out of the total probe surface area. The

area of the first two parts is significantly smaller than that of the

cantilever. In addition, though the upper part of the cone has a

much larger surface area than the lower one, it has a very small

effect on the overall force, since its surface area is not large

enough to compensate for the decay in the force – which is a

result of the increasing distance from the sample.

Figure 3: Left axis: Relative magnitude of the homogeneous force
distribution on different fractions of the probe; right axis: The relative
area percentage of each of the segments. The graph was calculated
for β = 20° with a probe–sample distance of d = 17.8 nm. The probe
was divided into ten segments (presented from left to right) – the
bottom sphere, the bottom part of the cone (vertical length of 5 µm),
the top part of the cone (vertical length of 5 µm) and seven segments
of the cantilever each with an horizontal length of 26.7 µm (the outer
most segment of the cantilever does not include any part of the cone).
The inset figure represents the relative inhomogeneous force for each
segment as a percentage of the total inhomogeneous force on the
probe.

The inset of Figure 3 shows the relative inhomogeneous force

magnitude distribution along the probe using the same

segments. The force was calculated for a square sample

(192 nm by 192 nm) having a potential difference of 1V rela-

tive to an infinite earthed substrate around it. It was observed

that the spherical apex of the tip and the bottom part of the cone

contribute 82.7% and 17.2%, respectively, of the inhomoge-

neous force, while the contribution of the rest of the probe was

negligible. This demonstrates the profound effect of the tip apex

on the KPFM resolution and, consequently, the minor influence

of the cantilever.

Further calculations showed that at smaller probe sample

distances the homogenous force contribution of the tip apex is

higher. At a probe–sample distance of 1.2 nm (a typical dis-

tance in ultra-high vacuum measurements) the tip apex

contributes 83% to the homogenous force, the cone lower

segment contributes 7.3%, and the entire cantilever contributes

only 8.4%.
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Comparison with experimental results
The above analysis was applied to high resolution UHV KPFM

measurements of NaCl thin films grown on Cu(111) [19]. The

simulation was performed by convolving the two-dimensional

PSF with the theoretical surface potential difference between

Cu and NaCl, where we assumed that the actual CPD landscape

is approximately identical to the measured topography. There-

fore, we used the measured topography as a rough estimate for

the theoretical surface potential. Figure 4 shows a comparison

between the measured CPD curve (i) and the simulated poten-

tial along a single line section (dashed line in the inset image).

Curves (ii) and (iii) were calculated for a probe that includes a

cantilever with two different tilt angles, and curve (iv) corre-

sponds to a vertical tip. The calculation that included the

cantilever shows a good agreement with the measurements both

in terms of the resolution and the absolute CPD value. Compari-

son of curve (ii) to curve (iii), which represent tilt angles of 10°

and 20°, respectively, shows that the exact angle has a weak

effect. The model that includes only the tip shows a good agree-

ment in terms of spatial resolution, but is about a factor of 2

larger than the absolute CPD value. Additional simulations

show that changing the cantilever width may have a large effect

on the results.

Figure 4: Line section (vertical line at inset figure) for KPFM simula-
tion with different cantilever geometries. (i) Original measurements, (ii)
W = 40 µm, β = 10° (iii) W = 40 µm, β = 20°, (iv) probe without
cantilever with β = 0° (normal to the surface). Inset figure: Single pass
AM-KPFM measurements of NaCl thin films grown on Cu(111) [19]
with a cantilever first resonance amplitude of 20 nm and with a
minimum distance of 1 nm. The dashed line represents the line section
of the simulations.

We also demonstrate the effect of the cantilever on UHV KPFM

measurements of a cleaved InP(100) p+nn+ junction [20]. As

observed in Figure 5, the measured potential difference across

the p+n part of the junction (i) is ~0.9 V, which is smaller than

the theoretical difference of around 1.35 V (iii) (calculated

assuming an absence of surface states). Curve (ii) is the poten-

tial profile obtained by convoluting the theoretical junction

potential (iii) with the PSF of the specific probe used in the

experiments. It was observed that even far from the junction,

i.e., deep inside the p+ InP, the cantilever induced a potential

offset of about 22% relative to the theoretical profile. This is in

agreement with our analysis that the cantilever has a large influ-

ence on the absolute CPD value even above a relatively large

equipotential area. The difference of ~0.15 V between the

measurement and the convoluted profile may be attributed

either to surface states or to a slightly different cantilever

geometry.

Figure 5: Line section of UHV KPFM (i) measurements [20], (ii) simu-
lated, and (iii) theoretical potential distribution of InP(100) p+nn+ junc-
tion. The measurements were performed at single pass with cantilever
first resonance amplitude of 3 nm with a minimum distance of 0.5 nm.
The simulation was performed using the following probe geometry:
R = 30 nm, β = 10°.

The role of the cantilever oscillations
The analysis in the previous sections assumed that the

cantilever shape is rigid during the measurement. In practice,

the cantilever bends according to its mechanical properties. This

has two implications on the force analysis presented above: The

first is related to a different probe–sample distance profile

which stems from the cantilever first resonance shape, while the

second is a result of the change in the cantilever shape in its

second resonance mode; this leads to a differentially weighted

effect of the electrostatic forces along the cantilever. These two

effects were analyzed and are discussed below.

The effect of the first resonance
In either the single or dual pass KPFM methods the cantilever

oscillates at the frequency of its first resonance in order to

measure the surface topography in the non-contact mode. In the

previous sections the cantilever was considered rigid, meaning

that during the calculation of  and Hh of Equation 1 along

the vertical tip movement, only the minimal probe–sample dis-

tance changed while the cantilever geometry was considered
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constant. In practice the cantilever beam oscillates according to

the boundary conditions of a clamp-free beam. The cantilever

was modeled as a rectangular prismatic beam with one end

restrained and the other one free. We used the beam funda-

mental mode formula, while neglecting deformations that may

be introduced by the presence of the tip load at the end of the

cantilever or by additional forces between the sample and the

tip. This was done in order to evaluate the main influence of the

oscillation without adding unnecessary complexity. Assuming

that the cantilever is clamped at y' = 0, the vertical deformation

along the y axis, and as a function of time, is given by [21]:

(3)

where for the first mode (n = 1) B1 = 1.975, α1 = −0.731, L is

the cantilever length and, as before, T0 is the oscillation period

and A is the oscillation amplitude. The y' and z' axes are rotated

by β degrees relative to the main coordinates (y, z) (see also

Figure 7).

As before, the oscillatory movement was uniformly sampled;

for each discrete time sample an entirely new geometry was

established according to the deformation of Equation 3 and the

average probe–sample height, A0. For each configuration, the

tip was positioned perpendicular to the free edge of the

cantilever and the clamped edge of the cantilever was always at

the same position. All these geometries were created using

Patran's® command language (PCL) used to create automati-

cally the entire geometry and mesh at any given time.

The influence of the beam deflection is shown in Figure 6. In all

the three plots, the cantilever PSF (dashed lines) is compared to

the rigid cantilever (solid lines); both were calculated for a

cantilever oscillating with an amplitude of 20 nm and a

minimum probe–sample distance of 1 nm. Figure 6b and

Figure 6c present a comparison for a probe positioned at

distances of 1.2 nm and 11.9 nm, respectively, above the

surface. The inset figures illustrate the shape and position of

rigid (solid line) and deformed (dashed line) cantilevers,

emphasizing that the comparison is performed while main-

taining the same minimum probe–sample distance in both cases.

Figure 6b shows that at the lowest point of the oscillation there

is a weak influence of the cantilever deformation on the PSF.

Close to the equilibrium point, shown in Figure 6c, the signifi-

cant difference between the two PSFs is that they are shifted,

which clearly visible by comparing the peak positions. This

offset of about 5 nm results from the change in the cantilever

shape which changes the tip angle. The averaged PSF, which is

the average over the entire oscillation cycle, is presented for

both cases in Figure 6a. It can be seen that the overall impact of

the cantilever deformation, both on the average PSF and at any

given probe–sample distance, is negligible. Therefore, we

conclude that a simple model of a rigid cantilever is an adequate

approximation.

Figure 6: Beam deflection influence on PSF. The dashed line repre-
sents the PSF of a deflected beam while the solid one is for a stiff
cantilever. Simulation was performed with cantilever first resonance
amplitude of 20 nm with a minimum distance of 1 nm. (a) PSF com-
parison after averaging; (b) comparison for a probe located at a dis-
tance of 1.2 nm above the surface; (c) comparison for a probe located
at a distance of 11.9 nm above the surface. Inset figures at (b) and (c)
illustrate the deflected and stiff beams that were used for the calcula-
tions.

The effect of the second resonance
In most AM-KPFM single pass measurements an external AC

bias, at a frequency ω of the second resonance of the beam, is

applied to the entire probe. This oscillation, shown in Figure 7,

is minimized by applying an additional DC bias to give the

CPD. In the previous sections this was modeled by nullifying

the entire electrostatic force acting on the probe. However, this

analysis is not accurate since the electrostatic forces at different

points along the cantilever have a different effect on the beam

edge amplitude. As an example, consider a point along the

cantilever which has zero amplitude (e.g., the end point which

is held mechanically fixed). The forces acting at this point

do not affect the amplitude measured by the detector, and

therefore should not be considered in the electrostatic force

minimization.

We first assumed that at a frequency ω (the second mechanical

resonance) the beam is always deformed according to its second

harmonic movement. We can assume that this is the only rele-

vant mode, since it is the only frequency passed by the filter

before the KPFM feedback circuit. Assuming, once again, that

the beam deflection is purely harmonic, its deflection is given
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Figure 7: Second harmonic deflection relative to the cantilever at its
rest position. The free edge deflection of the cantilever is δz'. All the
other amplitude values along the cantilever are calculated relative to
this deflection.

by Equation 3 with the coefficients B2 = 4.69, α2 = −1.018,

corresponding to the second mode (n = 2). In order to analyze

the influence of the second resonance, we use the concept of

virtual displacement [22] which states that the system equilib-

rium is obtained when the total external (virtual) work acting on

the beam is zero. For a given time t = 0, assuming that the free

edge of the cantilever (y' = L) undergoes a small (virtual) dis-

placement δz', we can determine the relative displacements of

every point along the cantilever by using A = δz' in Equation 3.

In this situation, the entire virtual work Wz(r) done by the

external electrostatic forces in the z direction, for a probe posi-

tioned at r, is given by

(4)

where  and  are the local forces acting at

point r' on the cantilever and the tip, respectively, when the

probe is located at r. In addition, r' corresponds to the rotated

coordinate system (x', y', z'). Since the tip is located at the end of

the beam, it experiences a constant amplitude. Figure 7 illus-

trates the second harmonic bending described by the function

Z'2(y', 0) with an edge amplitude of A = δz' relative to a probe

tilted at an angle β and positioned at r in the main fixed

coordinate system.

The steady state is reached when Wz(r) is minimized instead of

the total electrostatic force. This is achieved by multiplying the

force over each boundary element by its relative virtual dis-

Figure 8: Second harmonic weighting influence on the PSF. Dashed
lines: PSF calculated with the second harmonic displacement, using
virtual work equilibrium. Solid lines: PSF calculated for a rigid
cantilever. (a) Probe–sample distance d = 11.4 nm; (b) averaged PSF
for amplitude of 20 nm with a minimum distance of 1 nm. For both
cases the cantilever parameters were W = 40 μm, β = 20°.

placement. We define a diagonal matrix Z whose diagonal

elements are equal to the relative displacement for each

cantilever element and equal to 1 for each tip element. The

overall virtual work function may then be written as

(5)

By nullifying the above expression we may achieve the new

PSF of the system, similar to the process described in the

Experimental section.

Figure 8 shows the effect of the second harmonic oscillations on

the calculated PSF, for a probe–sample distance of 11.4 nm (a)

and for an average PSF calculated for a first resonance move-

ment with a minimal probe–sample distance of 1 nm and ampli-

tude of 20 nm (b). The figure shows that the introduction of the

second harmonic weighting has changed only the PSF height

and not its shape, since it influences only the cantilever. In add-

ition, it caused the PSF to increase by around 20% and 10% for

a probe–sample distance of 11.4 nm and for the averaged PSF,

respectively. The impact of the second harmonic oscillations is

limited, since as shown in Figure 3, the dominant contribution

of the cantilever to the homogeneous force stems from the areas

closest to the tip. These areas resonate with similar amplitudes

to that of the tip and therefore their relative displacement will be

close to one. This additional refinement of the model does not

have an entirely negligible influence on the PSF. However,

since most of the impact of the cantilever remains the same, as

in the model with a rigid cantilever, using such a model may
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provide a sufficiently accurate approximation. It should be

noted that the above analysis will be different in the dual pass

technique, since the applied bias frequency usually differs from

the second resonance of the beam.

Conclusion
We have used the BEM method to calculate the cantilever

contribution in KPFM measurements. By analyzing the force

expression, we showed that although the cantilever may have

little effect on the measurement resolution, it has a profound

influence on the absolute CPD value. The influence of the

cantilever has a direct relation to the probe–sample distance and

an inverse relation to the probe–surface angle. It was found that

even at probe–sample distances in the range of several nanome-

ters, the absolute CPD may change by as much as 50% if the

cantilever contribution is neglected. We have applied our

analysis to UHV KPFM measurements and obtained good

agreement both in the resolution and in the absolute value of the

measured potential. This suggests that the cantilever must be

taken into account in quantitative surface potential measure-

ments. Longer tips or FM-KPFM will reduce the cantilever

contribution and improve the measurement precision.

In the second part of this paper, we calculated the influence of

the cantilever deformations on the measured KPFM. It was

found that the exact cantilever shape in its first resonance has a

very small effect, while the second resonance deformation has a

larger effect on the PSF and thus should be considered where

high surface potential accuracy is required.

Appendix – full matrix definitions
In this appendix we explicitly define the matrices that are used

in the paper.

We define  as the unit vector pointing in the z direction and ri

as the location of the center of the ith boundary element of the

probe's surface. Each probe element is assumed to have a

constant surface charge density. The ijth element of matrix G is

given by

(6)

where  is the location of the image charge of the probe's

jth element relative to an infinite earthed plane, so that if

r' = (x', y', z') then  = (x', y', –z'). The integral is performed

over the jth surface element of the probe. The diagonal of

matrix B is defined as

(7)

where  is the outward normal unit vector to the ith surface

element. The integral is performed over the probe's ith surface

element.

The sample surface potential is discretized using uniform square

elements according to the resolution of the scan, denoted Δ. The

center of the kth surface element is located at rk = (kxΔ, kyΔ)

where both kx and ky are integers. The ikth element of matrix D

is described as

(8)

where the integral is performed over the kth element of the

sample surface.

The kth element of the vector  is obtained as

(9)

where VCPD(r) is the continuous CPD function of the sample

and r represents the lateral position of the probe.

The measured potential over the probe for each location r,

Vp(r), is a superposition of the potential induced by the charge

distribution over the probe and the potential induced by the

sample:

(10)

where  is a vector representing the charge distribution on each

boundary element of the probe and  is a vector whose

elements are equal to one. The probe's charge density is

extracted using this equation. By inserting the charge density

into the Maxwell stress tensor, we obtain Equation 1.
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