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Abstract
This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid

enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the

amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii) the momentary excitation

of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases

where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also

applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.
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Introduction
Multifrequency atomic force microscopy (AFM) refers to a

family of techniques that involve simultaneous excitation of the

microcantilever probe at more than one frequency [1]. The first

of these methods was proposed by García and coworkers in

2004 to carry out simultaneous non-contact amplitude-modula-

tion imaging and open-loop (phase contrast) compositional

mapping of surfaces in air by exciting and controlling the first

two eigenmodes of the cantilever [2]. This approach has since

been extended to intermittent contact characterization using

open loop and frequency modulation [3,4], imaging in liquid

and vacuum environments [5-8], and to trimodal operation

[9-11]. There also exist a number of other multifrequency and

multiharmonic AFM techniques which have been developed for

different purposes [1,12-18].

Previous researchers have shown that the dynamics of the AFM

cantilever become extremely complex for low-Q environments,

such as liquids [19-28] (see Figure 1), and have identified

phenomena such as the momentary excitation of higher eigen-

modes and multiple-impact regimes [21,26], mass loading and
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fluid-borne cantilever excitation [19,23,24], discrepancies

between the photodetector signal and the actual tip position for

base-excited cantilever systems [24,28] and non-ideal spec-

troscopy curves (for example, curved amplitude–distance

curves where multiple regimes are observed as kinks [19]).

Although the focus of these studies has not been on techniques

designed for driving the cantilever at different frequencies

simultaneously, it is not surprising that all of the above

phenomena are also present in multifrequency operations and

that the various issues compound with the added complexity of

multifrequency AFM [9,29-32], such that more and more expe-

rience and knowledge is required from the user to carry out

meaningful measurements. With multifrequency methods it can

be more difficult to achieve suitable imaging conditions and to

properly interpret the results, and no single recipe works in all

cases. This paper explores through simulation the implications

of the low-Q cantilever dynamics within the specific context of

bimodal AFM imaging. The primary focus is on (i) the ampli-

tude and phase “relaxation” (equilibration) for driven higher

eigenmodes between successive taps of the fundamental eigen-

mode regardless of the point of application of the excitation

(base or tip), (ii) momentary excitation of non-driven eigen-

modes, and (iii) additional artifacts introduced by the use of

base excitation. The discussion is most directly applicable to

bimodal techniques where the higher eigenmode is driven in

open loop [5,8] or frequency modulation [4], but the principles

are general enough that they are also relevant to other multifre-

quency methods and in some cases also to single-mode

frequency and amplitude modulation techniques. Finally, it is

noted that some of the challenges discussed here, namely those

caused by sharp variations in the tip–sample forces can be miti-

gated through the use of small-amplitude operation [7,8],

although this may not always be feasible, depending on the type

of sample and the type of instrument that is available.

Results and Discussion
Amplitude and phase relaxation of driven
eigenmodes
Previous work by Raman and coworkers [22] demonstrated that

in high-damping environments the phase contrast derives

primarily from an “energy flow channel” that opens up when

higher modes of the cantilever are momentarily excited through

the tip–sample impact (see Figure 1c), which is more prevalent

for softer cantilevers than for harder ones. When this happens,

the phase contrast does not map dissipation, but instead short-

range conservative interaction variations. The phenomenon is

called momentary excitation because the oscillation of the

higher eigenmodes begins with the tip–sample impact, governed

by the frequency and amplitude of the fundamental eigenmode,

and decays in between successive taps of the cantilever. This

fast decay occurs because the quality factor of the higher eigen-

Figure 1: Example of measurement artifacts previously observed in
single-mode AFM operation in liquids: distortion of the frequency
response (a) and phase response (b) curves with base excitation (the
“Tip Exc” traces provide the true response); momentary excitation of
higher eigenmodes and multiple tip–sample impacts for every cycle of
the fundamental eigenmode (c). The simulation parameters are ν1 =
14.5 kHz, k1 = 0.03 N/m, Q1 = 2, Q2 = 6, Afree = 75 nm, Asetpoint = 55%
and sample modulus of elasticity of 2 GPa (Hertzian contact).

modes is generally smaller than the ratio of eigenfrequencies

[21,26]. In the case of bimodal AFM, a similar phenonmenon

takes place, where the driven higher eigenmode is perturbed

every tip–sample impact and the perturbation relaxes in

between successive taps. However, the situation is slightly

different since the eigenmode is also being actively driven with

a sinusoidal excitation. Here the perturbation appears to the user

as a momentary variation in the phase and amplitude of the

higher mode (see Figure 2a and 2b), which relaxes until the

phase and amplitude reach the values they would have in the

absence of the sample, just before the next impact occurs. This

rich behavior is not captured in the phase and amplitude signals

(see Figure 2c), which are obtained through averaging over
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Figure 2: Bimodal AFM simulation illustrating the phase and amplitude relaxation of the second eigenmode: (a) different response of the first and
second eigenmode over successive tip–sample impacts (successive tip–sample impacts are different because the ν2/ν1 ratio is generally not an
integer); (b) phase relaxation of the second eigenmode (the dotted line shows the fully relaxed response – notice how this eigenmode’s response gets
ahead with respect to the dotted line and undergoes a change in amplitude after the impact but then recovers before the next tap); (c) seemingly
normal amplitude and phase spectroscopy curves. The cantilever parameters are ν1 = 20 kHz, k1 = 0.25 N/m, Q1 = 3, Q2 = 6, Afree = 15 nm, and
Asetpoint = 70% (a and b only). The sample was modeled as a standard linear solid (see methods section) with Ko = 3.5 N/m, Kinf = 3.5 N/m and
Cd = 1 × 10−5 Ns/m.

multiple oscillation cycles. However, such behavior can

preclude the application of the phase spectroscopy theories that

have been developed for operation in air environments, which

assume a nearly-equilibrated eigenmode oscillation where all

cycles are sinusoidal and similar in phase and amplitude

[33,34].

Due to the short equilibration times in liquids, in bimodal oper-

ation the response of the cantilever eigenmodes exhibits a

distinct transient and a relaxed contribution. The relaxed contri-

bution is equal to the eigenmode’s response in the absence of

the sample. The transient contribution is a result of the forces

that take place during each impact. The ability of these forces to

modify the response of each individual eigenmode is strongly

dependent on the imaging conditions. This is illustrated in

Figure 3 for two cases involving different quality factor and

higher mode amplitudes. In general, higher modes are more

likely to be perturbed when their free amplitude is small

(discussions on this topic can be found in references [8,11]).

However, the oscillation of the fundamental eigenmode is more

likely to be perturbed with larger amplitudes of the higher

eigenmode due to a more irregular impact. This is also illus-

trated in Figure 3, which includes real-time trajectories and

frequency space representations of the first two eigenmode

responses. The two cases analyzed correspond to slightly

different values of the quality factors, but their effect was not

significant in the range considered. Figure 4 shows a more

direct comparison of the second eigenmode response under

similar conditions for different free amplitudes, providing also

an example for a ‘harder’ sample. As it is well known, stiffer

samples are more likely to perturb the oscillation of a given

cantilever. This is extremely important, as samples with inho-

mogeneous stiffness can give rise to different types of perturba-

tions across the surface, such that quantitative interpretations of

the contrast across the entire sample may become meaningless.

Furthermore, the level of cantilever perturbation is also highly

sensitive to the amplitude setpoint, as illustrated in Figure 5 for

three different cantilever positions above the sample. Clearly,

the oscillation changes significantly as the cantilever is lowered

towards the sample (Figure 5a), even though the average phase

and amplitude response do not exhibit drastic variations

(Figure 5b). This is highly relevant when carrying out quantitat-

ive comparisons for different types of samples, which may

require individual optimization of the imaging conditions.
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Figure 3: Illustration of eigenmode perturbation for two different cases. The results are color coded for the two cases considered, Q1 = 2, Q2 = 4,
A1 = 15 nm and A2 = 3 nm for case 1 (black traces), and Q1 = 3, Q2 = 6, A1 = 15 nm and A2 = 1 nm for case 2 (blue traces). (a) mode 1 responses in
time space; (b) mode 2 responses in time space; (c) and (d) mode 1 and mode 2 spectra, respectively, for case 1; (e) and (f) mode 1 and mode 2
spectra, respectively, for case 2. The amplitude setpoint is approximately 70% and the sample parameters are the same as for Figure 2. Notice how
the use of a smaller value of A2 results in a sharper spectrum for the first mode but a less sharp spectrum for the second mode, and vice-versa.

Figure 4: Second eigenmode response for different second mode free
amplitude values for the same conditions as the simulations in
Figure 3, and for a stiffer sample with Ko = 7 N/m and Kinf = 7 N/m
(green trace), which causes greater perturbation for a given amplitude.

The phenomena introduced by the higher eigenmode phase and

amplitude relaxation within an oscillation cycle of the funda-

mental eigenmode bring about obvious challenges in the inter-

pretation of phase contrast images. However, the difficulties

become even more significant if one wishes to implement

bimodal operations involving frequency modulation (FM)

control of the higher eigenmode [4]. While the phase contrast

results may become less and less meaningful as momentary

perturbations become more and more severe, one is still gener-

ally able to obtain an image with open loop drive of the higher

mode. However, the implementation of FM requires either a

phase-locked loop (PLL) or time delay (phase shifting), both of

which are more complex and highly sensitive to perturbations.

The time delay version of FM is even more susceptible to insta-

bilities because the excitation of the cantilever is created from

the real-time response of the cantilever, one cycle at a time.
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Figure 5: (a) Illustration of the drastically varying response of the
higher eigenmode as the cantilever is brought closer to the sample
(Zc denotes the cantilever position above the sample); (b) second
phase response for the three responses shown in (a).

Figure 6 shows frequency and time domain second eigenmode

responses obtained by sweeping the excitation frequency from

low to high using chirp functions [35] while keeping the

cantilever at a fixed height above the sample within bimodal

operation. The trace for a cantilever height Zc = 20 nm is the

free (unperturbed) response away from the sample. As the

cantilever is lowered (Zc = 16 nm and Zc = 12 nm), the response

becomes noisier, although it still retains its general Lorentzian

behavior, suggesting that FM control may still be possible if

sufficient signal averaging is performed. While the time delay

version of FM may be impractical due to the cycle-to-cycle

variations in the phase and amplitude, PLL operation may still

be feasible, since the latter is based on the calculation of the

average instantaneous phase which the system attempts to grad-

ually lock to a specific value according to user-defined gains.

However, even in this case the results may or may not be mean-

ingful and characterization may be undesirably slow, depending

on the severity of the perturbations induced by the tip–sample

forces. The situation becomes more favorable as the higher

mode quality factor increases such that the phase and amplitude

relaxation becomes slower and intermixing of transients from

different cycles occurs, similar to what happens in air environ-

ments. Specifically, for the i-th higher eigenmode it would be

necessary that its quality factor be significantly greater than the

ratio νi/ν1 such that the transients extend appreciably beyond

one cycle of the fundamental frequency (here ν1 is the funda-

mental eigenfrequency and νi is the higher mode eigenfre-

quency). For some applications, there may exist cantilevers that

meet these requirements and in other cases it may be possible to

utilize high-Q techniques designed for characterization in

liquids, such as the recently proposed trolling mode method

[36]. For comparison purposes Figure 7 shows typical second

eigenmode responses for bimodal and trimodal operation in air.

Even for the trimodal case, which corresponds to a very drastic

situation in which the second eigenmode amplitude is very

small compared to the fundamental amplitude and four times

smaller than the third mode amplitude, the response is much

more regular than for the results discussed above for liquid

imaging.

Figure 6: Frequency space (a) and time space (b) responses of the
system of Figure 5 for three different cantilever positions above the
sample, obtained by sweeping the frequency from low to high using a
chirp function while keeping the cantilever at the fixed height indicated.
Zc = 20 nm corresponds to the free response. The results shown in (a)
were obtained through application of the fast Fourier transform to the
results shown in (b).

Momentary excitation of non-driven eigen-
modes
While the previous section focuses on the momentary perturba-

tion of the driven higher eigenmodes, one must still be mindful

of the momentary excitation of non-driven eigenmodes, since

both phenomena have the same underlying cause. As exten-
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Figure 7: Typical eigenmode responses for bimodal and trimodal
AFM operation in air with Q1 = 150, Q2 = 450, Q3 = 750, ν1 = 70 kHz,
ν2 = 437.5 kHz, ν3 = 1.25 MHz and k1 = 2 N/m: (a) bimodal operation
with A1 = 100 nm and A2 = 10 nm (A1/A2 = 10); (b) bimodal operation
with A1 = 100 nm and A2 = 5 nm (A1/A2 = 20); (c) trimodal operation
with A1 = 100 nm and A2 = 2.5 nm (A1/A2 = 40 and A3/A2 = 4). The
sample parameters were Ko = 10 N/m, Kinf = 10 N/m and
Cd = 1 × 10−5 Ns/m.

sively studied through simulation and experiment by Raman

and coworkers, momentary excitation occurs when the spec-

trum of the tip–sample forces overlaps with the frequency

response (transfer) function of the higher eigenmodes, which is

more likely to occur in low-Q environments for which the

eigenmode bandwidth is greater [21,26]. This phenomenon also

occurs in multifrequency AFM with the added complexity that

the tip–sample forces depend strongly on the parameters chosen

to drive the higher eigenmodes, as well as on their nonlinear

interaction with the fundamental eigenmode oscillation. As a

result, the observed momentary excitation of non-driven eigen-

modes will also depend strongly on the driven higher eigen-

mode parameters. Figure 8a shows five successive force trajec-

tories for bimodal operation using similar conditions and for a

similar sample as for Figure 2, for three different second mode

amplitudes. As expected, there is a significant change in

tip–sample penetration as the second mode amplitude increases

[11,37], leading to different force spectra (Figure 8b). Since all

three spectra overlap at least with the third eigenmode

frequency response, they all lead to its momentary excitation to

different degrees, as shown in Figure 8c. Furthermore, in

contrast to single-mode operation, the momentary excitation can

differ significantly for successive fundamental eigenmode oscil-

lations (not shown). This is because the ratio of the second to

the first eigenfrequency is not an integer, which leads to

different successive impacts. Since the third eigenmode is an

“energy channel” separate from the two driven eigenmodes

[22], its momentary excitation leads to changes in the response

of the other two modes in a manner which is not easily

predictable a priori. Some generalization is possible, but since

there is no single interpretation that applies in all cases, moni-

toring of the higher mode responses, as well as user experience

and discretion are critical for studies that go beyond simple

qualitative observations.

Base excitation and cantilever tuning artifacts
The differences between base- and tip-excited systems have

also been previously discussed for single-mode operation

[19,24,28], but as for the issues discussed in the two previous

sections, they are worth revisiting here in the specific context of

multifrequency AFM. These differences are not extremely rele-

vant for simple imaging applications, but they are critical when

a higher eigenmode is used to carry out compositional mapping

while imaging. While most of the AFM systems in use only

have base excitation capability, it is important to keep in mind

the fact that unless the cantilever base motion is known with

high accuracy (unfortunately this is not practical and only

possible within highly controlled experiments) and the

cantilever behaves in an ideal manner, it is not possible to deter-

mine the true tip trajectory from the photodetector reading. This

is because the photodetector measures cantilever deflection (this

can be approximated as tip position minus base position), not

tip position. Figure 9 illustrates the photodetector readings that

would be obtained for different values of the quality factor for a

given second eigenmode tip oscillation (labeled as “Real”).

Clearly spectroscopic measurements are not meaningful unless

the true probe trajectory is known. This is a challenge that

remains unsolved even in the most sophisticated base-excita-

tion experiments, which is further compounded by the non-ideal

behavior of piezo shaker systems, cantilevers and the

surrounding fluid [19,23,24]. One obvious consequence of this

difficulty is that tip–sample dissipative and conservative forces

cannot be measured accurately with base-excited systems when
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Figure 8: Illustration of the force trajectory of five successive tip–sample impacts for bimodal AFM conditions similar to those used to construct
Figure 2, for three different second mode amplitudes ranging from 1 nm to 5 nm (a) along with the corresponding force spectra (b) and typical third
eigenmode momentary excitation responses (c).

the effective quality factor of the cantilever changes throughout

the measurement. In such cases, the phase of the oscillation

would artificially change as tip–sample dissipation changes,

leading to inaccurate readings. In frequency modulation opera-

tion this would cause the system to lock to a varying (non-

constant) phase, which would render the results meaningless.

Accurate measurements of this type with base-excited systems

would only be possible if one carries out volume scanning

above the surface, running a full frequency sweep curve at each

grid point and fitting it to the appropriate base excitation

response curve [28]. This practice is not the norm and would be

time consuming, but is not necessarily out of reach since the

transient times in liquid are short and the measurements can be

carried out much more rapidly than in air or vacuum.

In the cases where frequency modulation operation can still be

stably implemented with tip excitation whether for single- or

multimode operation, it is important to note that the phase of the

oscillation must be locked to 90 degrees during tuning even if

this does not correspond to the amplitude peak (this is true for

tip-driven systems and compounds itself with the previously

discussed complexities of base excitation). This is because the

peak frequency in low-Q environments shifts significantly to

lower frequencies (see Figure 10), while the frequency at which

Figure 9: Illustration of the photodetector (PD) reading that would be
obtained for a given second eigenmode trajectory (taken from a tip-
excited bimodal simulation) for different values of the quality factor
when the cantilever is driven using base excitation. There is a clear
discrepancy between the photodetector reading and the real trajectory
as Q drops.

the phase is 90 degrees remains at the natural frequency. The

natural frequency is the only frequency at which all the phase

curves intersect for a given (ideal) cantilever driven in environ-

ments with different levels of damping (see Figure 10). The

type of errors introduced when locking the phase to that of the
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peak frequency can also be understood using Figure 10.

Consider the case when the phase is locked to the maximum

response amplitude for a cantilever driven in an environment

such that Q = 3 (blue traces). The frequency of the peak is indi-

cated by a thick red arrow on the graph (notice that this

frequency is to the left of the natural frequency), and the corres-

ponding phase can be found by following the vertical green line

downwards until it intersects the phase response for this value

of the quality factor. Now, if the level of tip–sample dissipation

changes due to tip–sample interactions, such that the effective

quality factor drops to 1.5, the phase will remain locked at the

same value, but now the phase response of the system will

follow a different curve (red dotted line). If one now follows the

horizontal green line towards the left until it intersects the new

phase response and then draws a vertical line downwards to find

the corresponding frequency (thick green arrow), it is clear that

the eigenmode will now be driven at a different frequency,

leading to the incorrect conclusion that there has been a change

in the nature of the conservative forces (since only the dissipa-

tive forces have changed). The user will conclude that there has

been a frequency shift, when this is clearly not the case. These

issues also occur in amplitude modulation AFM and can lead to

phase shift measurements that are not quantitatively mean-

ingful.

Figure 10: Cantilever amplitude and phase response for various levels
of damping in low-Q environments. The thick red and green arrows
and the green line illustrate the nature of the errors made in deter-
mining the resonance frequency when a frequency modulation opera-
tion is locked to the peak frequency instead of the natural frequency
(see discussion in the text).

One final issue to consider for base excited AFM systems is the

well-known “forest of peaks” observed during tuning of the

cantilever, which makes the selection of the imaging eigen-

mode difficult. This is even more problematic in multifre-

quency operation, where one needs to select more than one

eigenmode and where the ratio of their eigenfrequencies has

important implications with regards to sensitivity. Furthermore,

the observed peaks do not generally exhibit a “clean”

Lorentzian response, which can render the assumption of

harmonic oscillator dynamics questionable. Finally, this non-

Lorentzian behavior may also complicate the calibration of the

photodetector sensitivity (in V/nm), since there is no guarantee

that the selected eigenmodes have the assumed shape. As with

various other issues discussed in this document, there is no

single answer that fits all situations. Instead, the operator must

rely on careful observation and experience in assessing the

appropriateness of the eigenmode selection, and must also care-

fully calibrate the system.

Conclusion
The key non-idealities observed in low-Q AFM have been

discussed in the context of multifrequency operation, where

additional complexities emerge due to the interaction of the

driven and non-driven eigenmodes with one another. A number

of challenges have been identified, which are mostly related to

open loop and frequency modulation control of the higher

eigenmode, and which users should be mindful of when

carrying out characterization, especially in the cases where

quantitative interpretation of the results is desired. While the

focus has been on identifying nonidealities without providing

simple or complete solutions, the objective is not to paint a

bleak picture of the technique, but rather to raise awareness of

open research questions that require further attention within

multifrequency AFM.

Methods
For the numerical simulations three eigenmodes of the AFM

cantilever were modeled using individual equations of motion

for each, coupled through the tip–sample interaction forces as in

previous studies [9,38]. Driven eigenmodes were excited

through a sinusoidal tip force or base displacement of constant

amplitude and frequency equal to the natural frequency. Chirp

excitation functions [35,39] were used to construct the ampli-

tude vs frequency curves, where applicable. Most of the simula-

tions for liquid environment used quality factor values in the

range Q1 = 1–7, Q2 = 2Q1–3Q1; Q3 = 3Q1–5Q1. The equations

of motion were integrated numerically and the amplitude and

phase of each eigenmode were calculated using the customary

in-phase (I) and quadrature (Q) terms:

(1)

(2)

where z(t) is the eigenmode response in the time domain, N is

the number of periods over which the phase and amplitude were
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averaged, ω is the excitation frequency, and τ is the nominal

period of one oscillation. The amplitude and phase can be

calculated, respectively, as:

(3)

(4)

The repulsive tip–sample forces were accounted in most simula-

tions through a standard linear solid (SLS) model (Figure 11)

[11,40], but Hertzian contacts [41] were also used in some

cases. Long-range attractive interactions were included but for

liquid environment simulations were assumed to be screened

down to ≈10% of their typical value in air for a tip radius of

curvature of 10 nm and a Hamaker constant of 2 × 10−19 J (no

screening was considered for the simulations in air). Unless

otherwise indicated, the trajectories shown indicate the true

eigenmode or tip response, as opposed to the photodetector

reading, which does not necessarily correspond to the true

trajectory (as discussed in the text).

Figure 11: (a) Standard linear solid model; (b) illustration of
tip–sample impact force trajectory and surface recovery for a bimodal
imaging case.
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