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Abstract
In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

(AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the de-

formation rate, the tip–sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the

eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip veloci-

ties for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigen-

modes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant,

which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short

theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple

recipe for imaging soft viscoelastic matter with reduced indentation.
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Introduction
Since the invention of atomic force microscopy (AFM),

researchers have sought to increase the number of observables

that are recorded during a single-pass measurement, as well as

improve the sensitivity with which those observables are re-

corded [1-5]. In an effort to control the sensitivity and versa-

tility of the instrument, it has been proposed to use higher canti-

lever eigenmodes, either by themselves in single-eigenmode

imaging [6-9] or within multifrequency techniques [10]. For ex-

ample, in the original multifrequency AFM method, introduced

by Garcia and coworkers and known as bimodal AFM [4], the

first eigenmode of the cantilever is excited using the AM-AFM

method and used for measuring topography, while a higher

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:beslami@umd.edu
https://doi.org/10.3762%2Fbjnano.9.103


Beilstein J. Nanotechnol. 2018, 9, 1116–1122.

1117

eigenmode (generally the second eigenmode) is simultaneously

excited in “open loop” (with constant drive amplitude and fre-

quency) to map the surface properties of the material via the

phase channel of the eigenmode. An extension of this method,

known as trimodal AFM, adds a third eigenmode to modulate

tip indentation, thus enabling characterization of the subsurface

for certain types of soft samples [5]. As we discussed in that

introductory work, in general, the use of higher eigenmodes can

be helpful for the purpose of increasing tip–sample indentation

since the sensitivity of the eigenmode to the tip–sample forces

decreases as the product of the force constant of the eigenmode

times its amplitude (kiAi) increases [5]. In that work we also

offered the general statement that, for a fixed oscillation ampli-

tude, higher eigenmodes are expected to generate greater inden-

tation into the sample due to their higher force constant (e.g.,

k2 ≈ 39k1). However, this is only true when no rate-dependent

effects (i.e., viscous effects) are present. When such effects are

present, the outcome is not always obvious to predict a priori.

This is because higher eigenmodes also have higher frequen-

cies (e.g., f2 ≈ 6.27f1), which lead to higher tip velocities for a

given value of the oscillation amplitude. This, in turn, results in

a faster sample deformation, which in a viscoelastic material

causes larger reaction forces that oppose the downward motion

of the tip into the sample. These larger forces cause greater per-

turbation of the cantilever oscillation, reducing its ability to

indent the sample [11].

This paper explores the above competing effects for single-

eigenmode imaging with higher eigenmodes. After briefly

discussing the key theoretical concepts, we present numerical

and experimental results involving the use of AM-AFM with

the first eigenmode, AM-AFM with the second eigenmode, and

bimodal AFM using the first two eigenmodes, and offer a

simple guideline for the characterization of soft viscoelastic

matter with small indentation. The paper is written in a very

brief manner, focusing only on the above competing effects, in

order to single out this useful concept for the small-indentation

imaging of viscoelastic materials.

Theoretical considerations regarding
sample indentation
Effect of the product kA on sample
indentation
As has been described in previous studies [5,12,13], the equa-

tion of motion for a given eigenmode can be written in a dimen-

sionless fashion as,

(1)

where A0 is the free oscillation amplitude, z(t) = z(t)/A0 is the

dimensionless tip position with respect to the cantilever

base position, Dts(t) = Dts(t)/A0 is the dimensionless tip–sample

distance,  is the dimensionless tip–sample velocity, and

t = ω0t is the dimensionless time, and the approximation

A ≈ A0 = F0Q/k has been used, where A is the free oscillation

amplitude of the cantilever and F0 is the amplitude of the oscil-

latory excitation force. This equation indicates that the rele-

vance of the tip–sample forces to the eigenmode dynamics can

be diminished or magnified by adjusting the product kA0. Thus,

if the forces are not dependent on the tip velocity, higher eigen-

modes will lead to greater sample indentation for a fixed value

of the oscillation amplitude A0, due to their higher force con-

stant. An implicit qualitative conclusion is that similar sensi-

tivity should be observed during single-eigenmode AM-AFM

for different eigenmodes, i and j, when kiAi = kjAj. Again, it is

important to stress that this qualitative trend is only expected to

hold if the tip–sample force is independent of velocity.

Effect of tip velocity on sample indentation
Viscoelastic materials generally exhibit two extremal behaviors

depending on whether they are probed at very high loading rates

(high tip velocities) or at very low loading rates (low tip veloci-

ties). Consider a material described by the generalized Maxwell

mechanical model for viscoelastic materials, shown in Figure 1,

where the material response is modeled using a combination of

elastic springs and viscous dashpots [13,14]. When the material

is probed at infinitely low loading rates, the springs in the

Maxwell arms do not experience any deformation at all because

the dashpots yield (recall that the force exerted by the dashpots

is proportional to the deformation velocity), and the only ele-

ment ruling the mechanical behavior is the rubbery modulus (Ge

spring). At this extreme, no energy dissipation takes place and

the material behaves in a soft-elastic manner [11,15-17]. On the

other hand, when the material is probed at extremely high

loading rates, the dashpots do not deform and the behavior of

the mechanical model is ruled by the summation of all the indi-

vidual springs in parallel. In this case, the material behaves in a

stiff-elastic manner, without any energy being dissipated, and

the response is ruled by the glassy modulus of the material (Gg):

(2)

In general, the response of the material to the oscillation of the

tip tapping on its surface falls in between these two extremes,

and approaches one or the other behavior according to how rela-

tively fast or slow the material is deformed. For the specific

case of an AFM probe tapping on a viscoelastic surface, one

may expect that when it is probed with the second eigenmode

instead of the fundamental eigenmode, where the former has a
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natural frequency that is approximately 6.27 times the funda-

mental eigenfrequency, the material will behave in a regime

closer to the stiff-elastic behavior. That is, the material will

exert larger opposing forces when it is impacted by the tip,

which makes it more capable of perturbing the eigenmode oscil-

lation for a given product kA0, as the rightmost term in Equa-

tion 1 will become more prominent due to a larger numerator.

Generally speaking, a stiffer material has the potential to cause

greater reductions in the eigenmode oscillation amplitude with

smaller indentations.

Figure 1: Generalized Maxwell or Wiechert mechanical model diagram
representing the relationship between stress and strain in the complex
plane for a linear viscoelastic material with multiple characteristic
times. This model describes arrheodictic (there is no steady-state flow)
behavior. Gn refers to the modulus of the n-th spring. ηn refers to the
viscosity of the n-th dashpot. Ge refers to the rubbery modulus. The
Laplace transformed stress  is regarded as the excitation and the
transformed strain as the response.

Results and Discussion
Numerical results
A numerical study was performed simulating a parabolic tip

penetrating a polyisobutylene half-space. The dynamics of the

cantilever tip are assumed to be mainly contained in the lower

modes and therefore we included only the contribution of the

first three flexural eigenmodes, using an individual equation of

motion for each of them, all coupled through the tip–sample

forces:

(3)

Here zi, ki, Qi and  refer to the i-th (with i = 1, 2, 3) eigen-

mode displacement, cantilever stiffness, cantilever quality

factor, and resonance frequency, respectively. The summation

term on the right-hand side refers to the excitation force

applied, where F0 is the amplitude of the i-th term in the oscilla-

tory excitation force. The notation employed to represent the

tip–sample force term in Equation 3,

emphasizes the nature of the viscoelastic material modeled. Ac-

cording to it, the tip–sample force is a functional of the sample

deformation h, i.e., the force at the current time t, Fts(t),

depends on the history of the surface deformation at all previous

times ξ, from ξ = 0 to ξ = t. This definition of tip–sample force

emphasizes the history-dependent behavior of the material,

therefore the tip–sample force not only depends on tip position

but also on tip velocity and higher displacement derivatives, in

addition to force derivatives [11,16].

This contact-mechanics problem for viscoelastic half spaces has

been formulated by independent studies [18-21], which agree

that during the loading portion (monotonically increasing

tip–sample contact radius) the relationship between force and

displacement is given by:

(4)

where ζ is a dummy variable used to perform the convolution

integral, Fts is the tip–sample contact force, R is the radius of

curvature of the tip apex, δ is the tip indentation and G(t) is the

shear relaxation modulus, which in our case is described by the

Generalized Maxwell (also called Wiechert) model (see

Figure 1):

(5)

where τn = ηn/Gn is the ratio between viscosity (ηn) and

modulus (Gn) in the n-th arm in the model in Figure 1. The

values for Gn and τn used in the simulations were digitalized

from the data provided by Brinson and Brinson [17], who ob-

tained the values by fitting the experimental data of Catsiff and

Tobolsky [22]. The digitalized values are summarized in

Table 1. The plot for these values is also provided in Support-

ing File 1 (Figure S1).

The contact mechanics described by Equation 4 are strictly only

valid for the approach portion of the indenter trajectory. A

generalized approach has been derived by Ting, which is applic-
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Figure 2: Numerical simulations corresponding to a parabolic AFM tip tapping on a polyisobutylene surface, described as a viscoelastic material con-
taining multiple characteristic times using the generalized Maxwell model with the parameters of Table 1. The results show: (a) the peak tip–sample
interaction force, and (b) the maximum indentation depth, with respect to amplitude setpoint ratio for AM-AFM using the first eigenmode (red line),
AM-AFM using the second eigenmode (blue line), and bimodal AFM using the first two eigenmodes (green line). f1 ≈ 45 kHz, f2 ≈ 280 kHz,
k1 ≈ 5.80 N/m, k2 ≈ 210 N/m, A1 ≈ 350 nm, A2 ≈ 11 nm. The parameters are selected based on the experimental values found by tuning the cantilever
as discussed in the next section. The amplitudes provided are the free oscillation amplitudes.

Table 1: Generalized Maxwell parameters for poly-isobutylene given
by Brinson and Brinson [17].

element number relaxation time  (s) modulus (Pa)

1 1.166 × 10−9 4.132 × 108

2 4.852 × 10−9 8.227 × 108

3 2.250 × 10−8 6.315 × 108

4 9.652 × 10−8 3.607 × 108

5 3.832 × 10−7 1.533 × 108

6 1.671 × 10−6 4.522 × 107

7 7.196 × 10−6 2.230 × 107

8 2.888 × 10−5 6.101 × 106

9 1.479 × 10−4 2.606 × 106

10 5.871 × 10−4 1.108 × 106

11 2.361 × 10−3 2.816 × 105

12 9.355 × 10−3 1.288 × 105

13 4.028 × 10−2 6.354 × 104

14 1.798 × 10−1 7.212 × 103

15 8.160 × 10−1 1.336 × 104

16 3.293 9.276 × 104

17 1.303 × 101 4.567 × 104

18 5.847 × 101 1.315 × 105

19 2.967 × 102 8.110 × 104

20 1.046 × 103 1.390 × 105

21 5.278 × 103 1.068 × 105

22 2.635 × 104 1.276 × 105

23 8.797 × 104 6.263 × 104

24 4.124 × 105 3.094 × 104

25 1.831 × 106 1.384 × 10−1

26 7.757 × 106 1.322 × 10−1

able for any arbitrary (a priori) known loading history [21]. In

our simulations, where a priori knowledge of the loading history

is not available, we use an alternative approach based on the

method of dimensionality reduction (MDR) in which a three-

dimensional continuum is replaced by a uniquely defined one-

dimensional linear viscoelastic foundation [23]. This simple

method has proven to generate exact solutions for the general

viscoelastic problem [24,25], and we therefore employ it in our

simulations. For details about the simulations refer to code pro-

vided in [26].

Three different AFM schemes where used in the simulations,

namely AM-AFM with the fundamental eigenmode, AM-AFM

with the second eigenmode, and bimodal AFM using the first

two eigenmodes. In all cases, the product(s) kiAi of the active

eigenmode(s) was/were kept constant. Figure 2a presents the

peak force observed during the cantilever trajectory as a func-

tion of the setpoint ratio of the modulated amplitude. Figure 2b

presents the indentation depth as a function of the setpoint ratio

of the modulated amplitude. As the results show, AM-AFM

using the second eigenmode has the smallest penetration depth.

On the other hand, bimodal AFM leads to the greatest tip pene-

tration, since there are “kiAi” contributions from two eigen-

modes. The kinks in these non-smooth curves may be ascribed

to energy transfer occuring between eigenmodes [27], espe-

cially for the case of second-eigenmode AM-AFM operation

using large setpoints. This led us to use lower setpoints in the

experimental results (see below in Figure 3) in order to mini-

mize this phenomenon. To model the dynamics of the cantile-

ver, a system of three ordinary differential equations was used,

in which each equation corresponds to one eigenmode of the

cantilever (assuming the dynamics are mainly contained in the

first three eigenmodes) [28]. The equations are solved numeri-

cally as described in previous studies [29] and details can be

found in the computational code provided in [26].

Experimental results
Polystyrene thin film height measurements were performed

using the same imaging modes as in the numerical simulations.
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Figure 3: Polystyrene thin-film topography images for AM-AFM using the fundamental eigenmode (a), AM-AFM using the second eigenmode (b), and
bimodal AFM using the first two eigenmodes (c); (d) shows the scan line profiles, whereby the color code on the graph is based on the dashed lines in
the images. The inset graph is the enlarged graph of a portion of the topography in order to show the differences in topography values among the
three different experiments. f1 ≈ 45 kHz, f2 ≈ 280 kHz, k1 ≈ 5.80 N/m, k2 ≈ 210 N/m, A1 ≈ 350 nm, A2 ≈ 11 nm, amplitude setpoint (on the controlled
amplitude) = 50%. For all the experiments the oscillation amplitudes were selected such that k1A1 ≈ k2A2. The setpoint was selected such that the ex-
periments remained in the repulsive regime.

All three measurements were performed with a single cantile-

ver having f1 ≈ 45 kHz and k1 ≈ 5.80 N/m. Polystyrene with

33 kDa molecular weight diluted to 2.5 wt % in THF was used,

which was spin-coated onto a silicon wafer at 1400 rpm for

60 s. We have selected a polystyrene of low molecular weight

to prepare a sample that displays time-dependent behavior

within the deformational timescale in our studies (previous

studies have quantified the dependence of characteristic times

on the molecular weight for polystyrene [30]). In order to

ensure a homogenous surface, the relative humidity was con-

trolled to be approximately 30% during the spin-coating

process. A portion of the polymer film was scratched off from

the substrate to provide a reference for the thickness measure-

ments. All of the measurements were performed on the same

location on the polymer sample and the results are provided in

Figure 3. As in the numerical simulations, AM-AFM with the

second eigenmode led to the smallest indentation (largest

measured film thickness) compared to the other two experi-

ments, and the relative indentations for AM-AFM using the

fundamental eigenmode and bimodal AFM follow the trend ob-

served in the numerical results for polyisobutylene. The

discrepancy between the magnitude of the indentation in the

simulations (Figure 2) and the experiments (Figure 3), i.e., the

larger indentation in the experiments, may be explained partly

by viscoelastic steady-state flow induced by the tip during the

experiments, through which the surface may not fully recover

after the tip taps on it, differences in tip geometry, and differ-

ences in surface material properties.

Conclusion
As stated in the Introduction, we have focused on the simple

concept of the key competing effects governing tip–sample

indentation in the characterization of soft viscoelastic materials,

providing qualitative mathematics that can help the experimen-

talist select imaging conditions that place the various eigen-

modes in roughly equal footing (i.e., via comparisons of their

kiAi product). Clearly, the conclusions and guidelines presented

here are only general and can vary in applicability from sample

to sample for a number of reasons. For example, (i) the argu-

ments made based on Equation 1 rely on the order of magni-

tude of the various terms, and the quality of the approximation

A ≈ A0 = F0Q/k decreases as the amplitude setpoint is de-

creased. Additionally, (ii) not all soft materials are equally

viscoelastic. Some samples may be more or less viscous or

more or less elastic than others, so the balance of the competing

effects governing indentation may shift in one or the other

direction. Furthermore, (iii) the environment in which the sam-

ple is imaged plays a key role. In particular, many additional

effects occur in liquid environments, which we have not consid-

ered in this study, but where many soft samples are imaged.

Some of these effects include mass loading of the cantilever,

excitation of higher cantilever eigenmodes, and the inability to
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accurately track the tip motion for piezoelectrically excited can-

tilevers [31-33]. Nevertheless, as our results show, it may in

many instances be possible to reduce tip–sample indentation of

soft materials by using higher eigenmodes during their AFM

characterization, keeping in mind the amplitude adjustments

based on matching the product kiAi of different eigenmodes and

taking advantage of the deformation-rate-dependence of visco-

elastic materials. We encourage further research in this area,

especially in liquids, where the softest (biological) samples find

their native environment.

Supporting Information
Supporting Information File 1
Prony coefficients for polyisobutylene.

[https://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-9-103-S1.pdf]
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