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Abstract
We study the influence of the inverse proximity effect on the superconductivity nucleation in hybrid structures consisting of semi-

conducting nanowires placed in contact with a thin superconducting film and discuss the resulting restrictions on the operation of

Majorana-based devices. A strong paramagnetic effect for electrons entering the semiconductor together with spin–orbit coupling

and van Hove singularities in the electronic density of states in the wire are responsible for the suppression of superconducting

correlations in the low-field domain and for the reentrant superconductivity at high magnetic fields in the topologically nontrivial

regime. The growth of the critical temperature in the latter case continues up to the upper critical field destroying the pairing inside

the superconducting film due to either orbital or paramagnetic mechanism. The suppression of the homogeneous superconducting

state near the boundary between the topological and non-topological regimes provides the conditions favorable for the

Fulde–Ferrel–Larkin–Ovchinnikov instability.
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Introduction
The transport phenomena in semiconducting wires with in-

duced superconducting ordering and strong spin–orbit interac-

tion are in the focus of current experimental and theoretical

research in field of nanophysics and quantum computing [1-10].

The interest in these systems is stimulated by the perspectives

of their use for design of topologically protected quantum bits.

The key idea is based on the observation that for a certain range

of parameters and rather strong applied magnetic fields H the

induced superconducting order parameter reveals so called

p-wave symmetry realizing, thus, a model of Kitaev's chain [1].

The edges of such wires can host the subgap quasiparticle states

that are considered as a realization of Majorana particles in

condensed matter systems [11-16].

In most cases, theoretical studies of these Majorana wires are

based on a simplified model of the superconducting correla-

tions described by a phenomenological gap potential inside the

wire [3,4] placed in contact with a standard s-wave supercon-

ductor (Figure 1). This model, while being useful in many cases

for a qualitative understanding of the induced superconduc-
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tivity, is known to possess still a number of important short-

comings. An obvious way to overcome these shortcomings is to

use the microscopic theory of the proximity effect [17-24], i.e.,

Gor'kov equations. The microscopic approach allows one to get

the effective gap operator analogous to the one used in the

phenomenological model. On top of that it gives the gap depen-

dence on the transparency of the interface between the wire and

the s-wave superconductor and chemical potential via density of

states (DOS). Another important point is that the exchange of

electrons between the wire and superconductor can cause a

so-called inverse proximity effect, i.e., the suppression of the

gap function at the superconductor surface. For a rather thin

superconducting shell covering the wire this gap suppression

can result in the change of the superconducting critical tempera-

ture of the whole system. The analysis of this inverse proximity

phenomenon is important to find out the optimal range of pa-

rameters that allows one to realize the switching between the

topologically trivial and nontrivial states of the semiconducting

wire used in various braiding protocols.

Figure 1: Schematic picture of the semiconducting wire (yellow)
covered by the superconducting layer (green) placed on a substrate
(light blue). Rw, ds and φ0 show linear and azimuthal dimensions. The
magnetic field H is applied along the wire axis Oy while the Rashba
spin–orbit vector is perpendicular to the substrate (not shown).

The goal of this work is the self-consistent analysis of the criti-

cal-temperature behavior of the wires while considering the in-

fluence of the inverse proximity effect on the induced supercon-

ducting ordering. For this purpose we start from the full set of

microscopic equations for the Green functions taking into

account both scattering rates describing the quasiparticle

transfer between the superconducting film and the wire [17].

The first rate, γs, characterizes the electron leakage from the

wire to the superconductor and is responsible for the energy-

level broadening in the wire. The second rate, γw, corresponds

to the reverse process. These rates are determined both by the

probability of electron tunneling through the barrier at the

superconductor/semiconductor (S/SM) interface and the corre-

sponding densities of states. In particular, it is important that the

rate γw is proportional to the DOS in the SM nanowire resulting

in its non-trivial energy dependence. Indeed, considering, e.g., a

single-channel nanowire we get the DOS diverging as a square

root function of the energy relative to the bottom of the conduc-

tion band. This van Hove singularity in the DOS should cause a

strong energy dependence of the scattering rate γw and, as a

consequence, the superconducting critical temperature should

depend on the position of the Fermi level with respect to the

bottom of the one-dimensional conduction band in the SM wire.

The influence of the van Hove singularity on superconductivity

should be also accompanied by the strengthening of the para-

magnetic effect. Indeed, one can naturally expect that the scat-

tering rate γw could result in an additional effective Zeeman

field induced in the superconductor due to the electron

exchange with the SM wire. Due to the divergence in the DOS

together with the large g-factor in the wire this induced Zeeman

field can even exceed the value of the usual Zeeman field.

Under such conditions the field dependence of the critical tem-

perature would have a minimum near the fields H ≈ |μw|/gβ,

where μw is the Fermi energy of the wire relative to the bottom

of its conduction band at H = 0 and β is the Bohr magneton.

Strictly speaking, the spin–orbit interaction may cause the

emergence of the third van Hove singularity below −gβH/2, but

it appears only at rather large spin–orbit interaction strengths.

Note that for a vanishing induced superconducting gap Δind this

field separates the regimes with trivial and nontrivial topolog-

ical properties of the system [3,4,18]. Further increase in the

magnetic field is known to suppress the proximity effect since

in the absence of the spin–orbit coupling the Fermi level crosses

the only energy branch with a complete spin polarization along

the magnetic field direction. The nonzero spin–orbit coupling

destroys this spin polarization mixing different spin projections

and resulting in a nonzero induced superconducting gap in the

wire of approximately αΔind/gβH, where Δind is the induced

superconducting order parameter in the wire, and α is the

spin–orbit coupling constant. Still, even in the presence of the

spin–orbit coupling the increasing magnetic field suppresses the

induced superconductivity, which definitely restores the super-

conducting order parameter in the S film. This reentrant super-

conductivity stimulated by the magnetic field can only be main-

tained up to the upper critical field associated with either orbital

or intrinsic paramagnetic effect in the S shell.

The suppression of the superconducting order parameter near

the line of transition between the topologically trivial and

nontrivial phases can result in one more interesting phenome-

non: Similarly to the standard paramagnetic effect this suppres-

sion can cause the transition into the analogue of the so-called

Fulde–Ferrel–Larkin–Ovchinnikov (FFLO) [25,26] state with

the spatially modulated superconducting order parameter.

The paper is organized as follows: In section “Basic equations”

we give the main equation of our model. Section “Results and

Discussion” is devoted to the description of the solution and the

analysis of the phase diagrams. In the Conclusion section we

summarize our results and the suggestions for the experiment.
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Basic Equations
Hereafter we consider a long 1D semiconducting wire partially

covered by a thin superconducting shell with the thickness

, where ξs is the superconducting coherence length. In

the cross section of the wire the superconducting film covers the

angular sector φ0. The model system is schematically shown in

Figure 1. Hereafter we use the units with kB =  = 1, where kB

is the Boltzmann constant, and  is the Planck constant. The

Hamiltonian of the system reads:

(1)

with the first term

(2)

describing the s-wave superconducting shell.

(3)

corresponds to the Hamiltonian of the nanowire, and the tunnel

Hamiltonian takes the form

(4)

Here σ = ↑, ↓ denotes spin degrees of freedom (summation over

repeated spin indices is always assumed throughout the paper),

while  (m = x, y, z) are the Pauli matrices in the spin space.

Rw is the radius and  is the cross-sectional area of the

wire, (r) = (Rw, φ, y), φ is the polar angle in the plane perpen-

dicular to the wire axis, which changes in the interval

0 < φ < φ0. y denotes the coordinate along the wire,

 and  stand for

the quasiparticle kinetic energies in the shell and in the wire

with respect to the corresponding chemical potentials μs and μw.

ms and mw are the effective masses of the electrons in the

subsystems, Δs(r) is the superconducting order parameter, α is

the spin–orbit coupling constant, h = gβH/2 is the Zeeman

energy, and H is the applied magnetic field.

We consider the incoherent tunneling model, which does not

conserve the momentum, e.g., due to the presence of the

disorder at the interface. Thus, the ensemble average of the

tunneling amplitudes has the form:

(5)

where  is the length of the order of the atomic scale. The

tunneling is also assumed to be independent of energy and spin

and occurs locally in time and in space, i.e., from a point r on

the superconducting shell into the point y in the wire and back

with the amplitude .

It is important to note that here we do not consider the orbital

effects in the superconducting shell. This approximation

imposes some restrictions on the value of magnetic fields under

consideration, which are nevertheless quite realistic for the ex-

periments aimed at the manipulation with Majorana states in

such systems. It is the large g-factor in the SM wire that allows

to have the magnetic field values affecting the electronic states

in the wire and barely affecting the ones in the superconducting

cover. Note that omitting the orbital effects we cannot describe

possible Little–Parks effect arising in the wires fully covered by

the S shell [27,28].

Neglecting the order parameter inhomogeneity in the shell for

, we derive the following system of Gor'kov equations

written in the frequency–momentum representation (see Sup-

porting Information File 1 for the details of the derivation):

(6)

(7)

where ωn = 2πT(n + 1/2) is the Matsubara frequency, T is the

temperature, py is the momentum along the wire,  (m = x, y,

z) are the Pauli matrices acting in the Nambu space,

, , Δs is the superconducting order

parameter, which we assume to be constant in space and real-

valued,  ,  and .  The

tunneling self-energy parts are given by the following expres-

sion:

(8)

where  and . The func-

tions  are the quasiclassical Green’s functions:

(9)
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(10)

The precise definitions of the Green’s functions  of the

wire and of the shell, respectively, together with the derivation

of Equation 6 and Equation 7 are given in Supporting Informa-

tion File 1.

Note that we neglect here the possible dependence of these

quasiclassical Green’s functions on the coordinate along the

wire. That is, we assume the limit of an infinitely long wire

without edge effects. The velocity υ0 is introduced just for the

purpose of unification of dimensionality of the tunneling rates

Γw and Γs and does not appear in the product  that enters

the measurable quantities. One can choose this velocity, e.g., as

 so that the rate Γw includes the divergent DOS

in the 1D wire.

Tunneling rates for the quasiparticles from the shell into the

wire, Γw, and from the wire into the shell, Γs, can be expressed

in terms of the normal-state tunnel resistance  in the

following manner [20]:

(11)

(12)

where  is the contact area,  is the wire length,

G0 = e2/π is the conductance quantum, νs = ms/2π and

νw = (2mw/μw)1/2 are the normal DOS in the shell and in the

wire, respectively, , , and kFs(w) is

the Fermi momentum in the shell (wire). The expressions for

the tunneling rates can be conveniently written through the

numbers of transverse modes in the superconducting shell

( ) and in the wire (Nw):

(13)

(14)

where . Here we use the simplest generalization

[17] of the expression for Γw for the case of an arbitrary num-

ber of transverse modes in the nanowire assuming also the value

1/υ0 to be averaged over these modes. The resulting ratio of the

tunneling rates takes the form:

(15)

Due to the growth of Ns with the shell thinkness ds in the multi-

mode regime of the superconductor this ratio may become

rather small weakening the inverse proximity effect (the details

of experimental relevance are considered in the next section).

Equation 6 and Equation 7 must be solved together with the

self-consistency equation for the superconducting gap function:

(16)

where λ is the dimensionless pairing constant and the trace is

taken over the spin indices. The next section is devoted to the

perturbative solution of the Gor'kov equations (Equation 6 and

Equation 7) and the self-consistency equation (Equation 16) in

the gap potential which allows one to find the critical tempera-

ture of superconducting transition as a function of magnetic

field and materials parameters.

Results and Discussion
Considering the perturbation theory in the superconducting gap

function Δs it is natural to start with the equations for the

normal Green’s functions

(17)

(18)

(19)

(20)

which give us the zero-order solution of the Gor'kov equations

(21)

(22)
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(31)

(32)

Here, Uw = [(αpy + Γsgsx), (h + Γsgsy), Γsgsz] and the quasiclas-

sical Green’s functions are written in the spin form

(23)

with k = s(w) for the shell (wire). The solutions for spin matrix

functions  are given by Equation 21 and Equation 22 with

the replacements εk→−εk and .

According to the definitions for the quasiclassical Green’s func-

tions (Equation 9 and Equation 10) and due to a specific spin

structure of the Zeeman term and spin–orbit coupling term in

Equation 17–Equation 20, one can easily get that only gk0 and

gky are nonzero. It is convenient to rewrite the normal Green’s

function in the wire as a sum of singular contributions :

(24)

(25)

where

The equations for the anomalous Green’s functions read:

(26)

(27)

and give the solution for the anomalous Green’s functions 

within the first-order perturbation theory in the supercon-

ducting gap:

(28)

(29)

Introducing a general presentation for the components of the

quasiclassical anomalous Green’s functions

(30)

we get the set of equations in Equation 31 for them with

.

The solutions of Equation 31 take the form given in

Equation 32 and Equation 33.

We use the following notations:

(34)
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(33)

(35)

(36)

(37)

(38)

In addition, ν, η = ±1. The expressions for the integrals involv-

ing the products of the normal Green’s functions in the shell can

be written as follows:

(39)

(40)

(41)

In the definitions in Equation 34 and Equation 35 and

Equation 39–Equation 41, we have introduced the following

functions:

(42)

(43)

Here, gkη = (gk0 + ηgky), , and εI = Im(ε0).

Finally, we explicitly show the expressions for the normal

Green’s functions in the wire:

(44)

(45)

Note that in the absence of spin–orbit coupling, zero magnetic

field and for energy-independent DOS in the wire the self-

consistency equation formally coincides with the one obtained

in the seminal work by McMillan [17].

Turning now to the case of nonzero Zeeman energy and

spin–orbit coupling we use a numerical approach to analyze

the solution of the self-consistency Equation 16 with the Equa-

tion 32 and Equation 33 for the anomalous Green function.

Typical dependencies of the critical superconducting tempera-

ture on the magnetic field and chemical potential μw are shown

in Figure 2. Note that here we choose the strength of the

spin–orbit coupling consistent with the properties of InAs [22]:

εso = mwα
2 = 52 μeV, which corresponds to approximately

600 mK. Taking the critical temperature of Al Tc0 ≈ 1.3 K, we

find εso = mwα
2 = 0.46Tc0.

The color plots in Figure 2 show the critical temperature Tc both

in topologically trivial (|μw| > h) and nontrivial (|μw| < h)

regimes. The border lines μw = ±h (shown by white dashed

lines) coincide with the locations of van Hove singularities in

the SM nanowire. One can clearly see that the suppression of

the critical temperature appears to be the strongest close to these

lines. The magnetic field dependence of Tc appears to be drasti-

cally different in topologically trivial and nontrivial regimes.

Indeed, in the nontopological regime the critical temperature

decays as we increase the magnetic field due to a standard para-

magnetic effect. In contast, in the topologically nontrivial

regime Tc increases (with or without initial decay at small

fields). This increase in the critical temperature originates from

the reduction of the proximity effect due to almost pure spin po-

larization of quasiparticles in the wire. The above mentioned

increase in the critical temperature is limited from above by

either orbital or intrinsic paramagnetic effects in the S shell and
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Figure 2: Color plot of the critical temperature of the system as a function of the chemical potential μw and the Zeeman energy h = gβH/2 for
εso = mwα2 = 0.46Tc0 and several values of  and  with . In panels (a) and (b) Γw = 0.1Tc0, while in
panels (c) and (d) we take Γw = Tc0. In panels (a) and (c) Γs = 0.1Tc0, in panels (b) and (d) Γs = 10Tc0. In all panels the white dashed lines denote the
boundaries between nontopological and topological regimes μw = ±h.

Figure 3: The critical temperature of the system as a function of the Zeeman field h for different values of the chemical potential in the wire μw (shown
in the legend). Here, εso = 0.46Tc0 and Γw = Tc0. (a) Γs = 0.1Tc0 and (b) Γs = 10Tc0.

continues up to the upper critical field in the superconductor.

One can see that the scattering rates Γw and Γs have a strong

quantitative effect on the above physical picture because of

smearing and shifting of the peculiarities of the DOS and the re-

sulting smoothing of Tc variations. The nonmonotonic behavior

of Tc is illustrated by the plots in Figure 3. Using the above

expressions in Equation 13–Equation 15 for the tunneling rates,

we estimate the ratio of mode numbers as Nw/Ns ≈ 10−5–10−4

for typical Majorana nanowires [11-16]. Taking into account

the decrease of the υ0 value close to the van Hove singularity

( /υ0 ≈ 102–103), we get Γw/Γs ≈ 10−3–10−1. Assuming

strong coupling between the nanowire and superconducting

shell with Γs ≥ Tc0, we get Γw ≈ (10−3–10−1)Tc0. Note that

under realistic experimental conditions the number of modes in

the wire (Nw) can increase due to the formation of the accumu-

lation layer near the superconductor–semiconductor interface

[29-31]. However, the increase of the shell thickness ds may

weaken the effect in the multimode regime of the supercon-

ductor. Overall, such estimate allows us to expect that the

consequences of the inverse proximity effect analyzed in our

paper can be observed experimentally.

It is worth noting that the Tc(h) plot in the Figure 3a clearly

demonstrates the appearance of h regions where the linearized

self-consistency equation has three solutions instead of one. In

other words, there can exist three critical temperatures corre-

sponding to a given magnetic field. This is evidence for the fact

that although the superconducting shell has a small g-factor, the

indirectly superconducting region is affected by effective

Zeeman field through tunneling. The presence of several solu-
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Figure 4: Critical temperature of the system as a function of the
Zeeman field h for εso = 0.46Tc0, Γs→0 and Γw = Tc0 for the supercon-
ducting states with different modulation vectors q ranging from
q = 0.44msTc0/kFs at h = 11.05Tc0 to q = msTc0/kFs at h = 10.8Tc0.

tions for Tc is typical for the standard paramagnetic effect in

superconductors and usually this behavior results in the FFLO

instability of the homogeneous solution for the gap function

[32]. To verify this scenario in our system we have solved a

self-consistency equation for the modulated order parameter

 and found that the regions with several solutions for

Tc for the homogeneous gap can, indeed, host an energetically

more favorable inhomogeneous FFLO gap function. The criti-

cal temperature Tc(q) for different q values can be seen in

Figure 4. As we increase the h value from h = 10.8 to h = 11.05

the q value corresponding to the maximal Tc changes from

kFsq/ms = Tc0 to kFsq/ms = 0.44Tc0. It is important to note that

as we solve the linearized equation for the superconducting gap,

we find, of course, only the critical temperatures corresponding

to the second-order phase transitions. Changing the period of

the gap modulation of the FFLO-type we also find only the tem-

peratures corresponding to the second-order phase transition.

The physical picture can become more complicated if one takes

into account possible first-order transitions corresponding to the

interplay between different local minima of the thermodynamic

potential in the nonlinear regime. However, the solution of non-

linear gap equations is beyond the scope of the current work

and needs further investigations. Note also that the possible

FFLO phase appears on either side of topological transition

( ) depending on the sign of the chemical poten-

tial μw. Indeed, in general the temperature as a formal solution

of the self-consistency Equation 16 is not a single-valued func-

tion of the magnetic field in the regions h ≥ ±μw slightly above

the positions of van Hove singularities, being inside the topo-

logical (trivial) regime for the upper (lower) sign. In experimen-

tally feasible cases of considered Γs,w (Figure 2) the upper

singularity at μw = h is more pronounced (Figure 3). Additional-

ly, an accurate analysis of the FFLO state should include careful

consideration of the modulation of the superconducting order

parameter both along the wire and in the azimuthal direction

[27,28].

Before we conclude, we discuss briefly the influence of the

inverse proximity effect on the effective induced gap operator

Δtop in the topological regime, , which is of

crucial importance for topological superconducting electronics

and topologically protected fault-tolerant quantum computing.

In our estimates we take the standard limit of μw = 0 for

the sake of simplicity. First, the increase of Γw reduces the

parameter range of the topological insulator regime 

as the magnetic field should well exceed Γw to avoid the

suppression of the critical temperature due to the van Hove

singularities (see Figure 2a,c for small Γs values). As soon

as Γw becomes comparable with αp with the typical quasipar-

ticle momentum  this regime completely disap-

pears. Further increase of the scattering rate should suppress

the gap  in the Kitaev limit. Indeed, for

Γw > mwα
2 = εso its value is limited from above by the quantity

Δtop ≈ Δind(εso/Γw)1/2 < Δind. Such decrease in the attainable in-

duced gap values imposes more strict conditions on working

temperatures for Majorana-based devices, due to quasiparticle

poisoning as the residual quasiparticle density is exponentially

sensitive to the gap values [33-36]. Of course, at large values of

Γs (see Figure 2b,d) the van Hove singularities are smeared and

the critical temperature (together with the gap value) is

suppressed only partially. However, even the partial suppres-

sion up to tens of percents may drastically increase the effect of

quasiparticle poisoning mentioned above.

Conclusion
We have studied the distinctive features of the inverse prox-

imity effect arising in the presence of a large Zeeman energy

and strong spin–orbit coupling in the hybrid systems consisting

of the SM nanowires covered by thin superconducting films.

Assuming a strong difference in g-factors between the wire and

superconducting metal we find the range of parameters and

fields corresponding to the FFLO instability and the regime of

reentrant superconductivity. We focus on the topologically

nontrivial regime of relatively large magnetic fields and analyze

consequences of the inverse proximity effect on the quasipar-

ticle poisoning in Majorana-based devices.
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