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Abstract
Background: Majorana states in condensed matter devices may be of a localized nature, such as in hybrid semiconductor/supercon-

ductor nanowires, or chirally propagating along the edges such as in hybrid 2D quantum-anomalous Hall/superconductor structures.

Results: We calculate the circular dichroism due to chiral Majorana states in a hybrid structure made of a quantum-anomalous Hall

insulator and a superconductor. The optical absorption of chiral Majorana states is characterized by equally spaced absorption peaks

of both positive and negative dichroism. In the limit of a very long structure (a 2D ribbon) peaks of a single sign are favored.

Conclusion: Circular-dichroism spectroscopy of chiral Majorana states is suggested as a relevant probe for these peculiar states of

topological matter.
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Introduction
The physics of Majorana states in condensed matter devices is

attracting strong interest for a few years now [1-8]. The

measured zero-bias conductance peaks in hybrid semiconduc-

tor/superconductor nanowires have been attributed to the pres-

ence of localized Majorana modes on the two ends of the nano-

wires [9-14]. A Majorana mode enhances the zero-bias conduc-

tance by allowing a perfect Andreev backscattering at zero exci-

tation energy when the nanowire is attached to a normal lead.

These peculiar pairs of states may be seen as nonlocal split

fermions, protected by an energy gap that separates them from

other normal states lying at finite energies. Besides the zero

energy of the Majorana state, also the conductance peak height

was recently seen to coincide with the expected value 2e2/h

[15].

Majorana end states in (quasi) 1D nanowires are inherently

localized, i.e., their wave function decays exponentially with the

distance to the nanowire end. By contrast, propagating Majo-

rana states with sustained spatial oscillations can be present at

the edges and along the perimeter of 2D-like hybrid structures.
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This is the situation in presence of p + ip superconductivity for

spinless quasiparticles, a class of hybrid systems where Majo-

rana states appear around 2D vortex cores in the bulk and on the

external edges of the sample [16]. Another class of 2D materi-

als with propagating Majorana modes are the topological insula-

tors based on the quantum-anomalous Hall effect. We refer,

specifically, to the hybrid devices of [17], consisting of a quan-

tum-anomalous Hall insulator and a superconductor material. In

such systems, chiral Majorana modes propagating along the

edges in a clockwise or anticlockwise manner, depending on the

orientation of a perpendicular magnetic field, are formed at the

2D interfaces between the quantum-anomalous Hall and the

superconductor materials [18-22]. Each chiral Majorana state

contributes 0.5e2/h to the linear conductance of the device, such

that by tuning the number of Majorana states the conductance

takes values 0.5e2/h and 1e2/h for the topological phases with

one and two chiral Majorana states, respectively. It is remark-

able that the intrinsic magnetization of the material in the anom-

alous Hall effect allows for the tuning of the phase transitions

using much weaker magnetic fields than with the standard Hall

effect.

In this work we discuss the connection between chiral Majo-

rana states and optical absorption. We expect that in presence of

chiral Majorana states, the optical absorption of circularly

polarized light will differ for clockwise and anti-clockwise po-

larizations. The difference, known as circular dichroism (CD)

[23,24], can thus be seen as a measure of the existence of such

chiral states. We want to investigate how this behavior is actu-

ally realized by explicit calculations of the optical aborption. In

previous works we analyzed the optical absorption of localized

Majorana states in nanowires [25,26]. In those systems the CD

vanishes and the presence of the Majorana state is signaled by a

plateau with lower absorption, starting at mid-gap energy, of the

y-polarized signal with respect to the x-polarized signal. It is

also worth mentioning that alternative techniques for detecting

Majorana fermions, based on microwave photoassisted tunnel-

ing in Majorana nanocircuits have been suggested in [27].

For chiral Majorana states in a 2D square or rectangular geome-

try the CD at low energies is characterized by a sequence of

equally spaced peaks, corresponding to transitions of Bogoli-

ubov–deGennes quasiparticles from negative to positive energy.

In the usual energy ordering of quasiparticle states (n = ±1, ±2,

…), the selection rules are: a) transitions between conjugate

states −n→n are forbidden by electron–hole symmetry, b) tran-

sitions −n→m are allowed only when n and m are both even or

both odd. The rationale behind rule b) is the constructive inter-

ference of the corresponding quasiparticle states connected by

the excitation operator on the edges of the system. Furthermore,

it will be shown below that the CD peaks corresponding to

those even–even or odd–odd quasiparticle transitions may be

either positive or negative. In the limit of a long 2D ribbon there

is a preferred CD sign, depending on the magnetic field orienta-

tion. For a disc geometry the generalized angular momentum Jz

becomes a good quantum number. Then, the combination of cir-

cular and particle–hole symmetries in a disc causes a vanishing

absorption for px ± ipy fields and, obviously, also a vanishing

CD.

Model
We use the model of [17] for a quantum-anomalous Hall (3D)

thin film in contact with two different superconductors. This

model represents the device as two surfaces with a certain inter-

action between them, with Majorana states being located at their

edges. In a Nambu spinorial representation that groups the field

operators in the top (t) and bottom (b) layers,

the Hamiltonian is reformulated in the notation of Pauli

matrices (with t and b surfaces corresponding to the Pauli

indices 1 and 2, respectively):

(1)

This Hamiltonian is acting in the combined position–spin–iso-

spin–pseudospin space. Spatial positions are treated as a 2D

continuum ( ) and a discrete two-valued pseu-

dospin (z). The two-valued spin, isospin and pseudospin degrees

of freedom are represented by σ, τ and λ Pauli matrices, respec-

tively. As mentioned, the pseudospin (λ) is modeling a coupled

bilayer system in which quasiparticles move. The set of Hamil-

tonian parameters is m0, m1, ΔB, μ, α, Δp and Δm. The latter two

are given in terms of the pairing interaction in the two layers, Δt

and Δb, by

(2)

Hybridization of the two surfaces is represented by parameters

m0 and m1. ΔB is an effective Zeeman-like parameter including

the exchange field associated with the intrinsic magnetization of

the material. The chemical potential is given by μ while α repre-

sents a Rashba-type spin–orbit interaction.
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Below we numerically determine the eigenvalues and eigen-

states of  using a 2D grid for x and y. When ΔB is increased,

the spectrum of low-energy eigenvalues evolves from a gapped

(void) spectrum around zero energy at low values of ΔB, to the

emergence of chiral near-zero-energy modes for sufficiently

large values of ΔB. When the pairing parameters for each layer

are equal (Δm = 0) chiral Majorana states appear in pairs

(0–2–…), while for sufficiently different parameters it is Δm ≠ 0

and there may be phases with odd numbers of chiral Majorana

states as well.

The numerical results shown below are given in an

effective unit system, characterized by the choice of ,

mass m ≡ 1/2m1 ≡ 1 and a chosen length unit LU, typically

LU  ≈  1 μm. The corresponding energy unit is then

.

Circular dichroism
We compute the optical absorption cross section for right (+)

and left (−) circularly-polarized light from

(3)

where  is the energy difference between particle

(unoccupied) and hole (occupied) states. The prefactor 

gives the squared inverse effective mass ( ) of the Hamil-

tonian and fixes the dimensions of  as an area. The circular di-

chroism at a given frequency  is then defined as the

difference between the absorptions for the two circular polariza-

tions,

(4)

Obviously, in absence of any chirality preference  exactly

vanishes.

Results and Discussion
Chiral bands
Figure 1 shows the evolution of the eigenvalue spectrum as a

function of the magnetic field parameter ΔB. The results repro-

duce already known results [17]. At vanishing ΔB the spectrum

around zero energy is gapped, a gap that tends to close with in-

creasing ΔB by the appearance of a quasi-continuum distribu-

tion of eigenvalues. These low-energy states are indicating the

presence of propagating Majorana states, energy-discretized due

to the finite size of the system. When Δt = Δb (Figure 1a,c) the

degeneracy is such that the Majorana branches appear in pairs.

Directly determining the degeneracy of the energy eigenstates

close to zero energy is an alternative way to characterize the

topological invariant or Chern number discussed in [20]. We

also notice that there is no qualitative difference in the eigen-

value distribution between a square and a rectangle (upper vs

lower panels). It is remarkable that when a Majorana phase is

well developed the low-energy states are equally spaced in

energy. This is particularly clear for 2 < ΔB/EU < 4 in Figure 1a

and Figure 1c, corresponding to the phases with two Majorana

states. It can also be seen in Figure 1b and Figure 1d for the

phases with one Majorana state while that the equally spaced

distribution also hints to the beginning of the phase with two

Majorana states.

Figure 1: Energy eigenvalues close to zero energy as a function of ΔB.
Panels a) and b) are for a square of dimensions Lx = Ly = 10LU, while
c) and d) correspond to a rectangle of Lx = 2Ly = 20LU. In a) and c) the
same pairing energy is assumed in each layer Δt = Δb = EU while in b)
and d) it is Δt = Δb/3 = EU. The framed labels indicate the degeneracy
of the near-zero energy states, which indicates the topological phase.
Other parameters: m0 = 0, μ = 0, α = EULU.

The chiral character of the gap-closing Majorana states is

clearly seen in Figure 2. The equally spaced states at low energy

arrange themselves on a line (a chiral band) when plotted as a

function of the z-component of the angular momentum. For pos-

itive ΔB the angular momentum decreases with increasing

energy, causing empty (particle) states to have negative values

of , while occupied (hole) states have positive values of

. The results of Figure 2a,b correspond to the rectangle

with different pairing energies in each layer shown in Figure 1d.

For ΔB = 2EU (Figure 2a) there is a single chiral band, while for

ΔB = 4.75EU (Figure 2b) there are two overlapping bands.

Notice that the overlap of states in Figure 2b degrades as the

energy deviates from zero, indicating that the second Majorana

band is not yet fully settled for this particular ΔB. Additionally,

Figure 2c explicitly shows the edge character of the states of a

chiral Majorana band. A similar distribution is obtained for all

the states in a chiral band. On the contrary, states that are not
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aligned along the chiral band in Figure 2a,b are bulk states sepa-

rated by a gap from zero energy.

Figure 2: Energy eigenvalues as a function of . Panels a) and b)
correspond to the phases in Figure 1d with one (ΔB = 2EU) and two
(ΔB =4.75EU) Majorana states, respectively. The grey shaded zones
indicate the occupied (hole) states while the arrows in panel a) show
the two lowest allowed transitions to the first particle state. Panel c)
shows the probability density corresponding to the lowest positive-
energy state in panel a), adding all spin, isospin and pseudospin
contributions.

Absorption and CD
Absorption cross-sections and CD for the spectra of the

rectangle with different pairing energies in the two layers

(Figure 1d) are shown in Figure 3 for selected values of ΔB.

They correspond to zero (Figure 3a), one (Figure 3b) and two

(Figure 3c) chiral bands. As anticipated, in presence of the

chiral states the system develops a clear CD. For the sake of a

better comparison, identical scales have been used in the three

panels of Figure 3. In these scales, the two absorptions and the

CD essentially vanish in the absence of chiral modes

(Figure 3a). The rightmost inset in panel Figure 3a shows that

for energies exceeding the quasiparticle gap a small absorption

eventually appears due to transitions between bulk states (cf.

Figure 1d). However, the CD still vanishes within numerical

precision. The negative CD peaks dominate in Figure 3b,c due

to the negative slope of the chiral bands (Figure 2a,b). It is

remarkable, however, that a few positive peaks are also present.

We attribute them to the fact that in a rectangular geometry Jz is

not a good quantum number and, therefore, there are states with

mixed angular momentum. We have performed calculations in a

circular geometry confirming this interpretation. Therefore,

quasiparticle scattering by the corners plays a nontrivial role on

the absorption by chiral edge states.

The most conspicuous feature of Figure 3b is the regular energy

spacing of the first few CD peaks. Analysing them in terms of

Figure 3: Absorption cross-sections ,  and  defined in the
main text. The shown results correspond to the spectra of Figure 1d for
Zeeman parameters of (a) ΔB = 0.3EU, (b) 2EU), and (c) 4.75EU. The
rightmost inset in Figure 3a corresponds to an extended energy range
and a zoomed vertical scale for the data of this panel.

energy transitions of the chiral band it is easily noticed that they

correspond to jumps of 3, 5, 7,… steps (see arrows in

Figure 2a). We explain this selection rule noticing the following

restrictions for transitions from the negative n-th state to the

positive m-th state (−n→m): (a) Transitions between conjugate

states −n→n are forbidden by particle–hole symmetry [25], and

(b) n even to m odd transitions (or vice versa) are forbidden

because of destructive interference along the nanostructure

perimeter with the excitation operator. This rule is far less

obvious than rule (a) and results from the approximately 1D

character of the chiral edge modes and the interference induced

by the propagation through corners. Indeed, we have seen that

for active transitions within the chiral bands the regions around

the corners are those contributing the most to the matrix ele-

ment in Equation 3.

For a disc, Jz becomes a good symmetry and, by angular

momentum conservation with a dipole operator only the transi-

tion −1→1 is possible. However, this transition is blocked by

rule (a) and, therefore, no dipole absorption is possible and the

CD exactly vanishes. We have also checked this behavior by

explicit calculation for a device with circular geometry. For a
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square and rectangle, quasiparticle scattering by the corners

plays a nontrivial role yielding the mentioned deviations with

respect to the disc.

The pattern of equally spaced peaks is fulfilled only when one

or several chiral bands are fully developed and they exactly

overlap. In Figure 3c we see that the slight degradation of the

two-band overlaps of Figure 2b manifests in a small twofold

splitting of the CD peaks. It is also worth stressing that once the

chiral bands are fully formed, the energy positions of the first

few CD peaks become independent on ΔB (cf. Figure 2b and

Figure 2c).

Figure 4 shows the absorption results for different geometries, a

square (Figure 4a) and a long rectangle resembling a 2D ribbon

(Figure 4b). For the square, the first CD peaks alter sign in a

remarkable way. For the ribbon the alternation is of a longer

period, the positive peaks having a much lower intensity than

the negative ones and there are groups of a few consecutive

negative peaks. The 2D ribbon shape thus favors the observa-

tion of CD peaks of the same sign. Nevertheless, the presence

of the corners is still essential since for a strictly infinite ribbon

the CD exactly vanishes. This is clear when realizing that with

fully translational invariant states the px operator in Equation 3

is not yielding any excitation and, therefore, the sign of the py

operator becomes irrelevant, yielding .

Figure 4: Absorption cross-sections ,  and  for (a) a square
of Lx = Ly = 20 LU), and for (b) a rectangle of Lx = 6Ly = 60LU (b). In
both cases we used ΔB = 2EU and Δt = Δb/3 = EU.

Conclusion
In this work we have investigated the manifestation of chiral

Majorana modes in the CD of the dipole absorption. The chiral

bands formed at the edges of a hybrid system made of a quan-

tum-anomalous Hall insulator and a superconductor yield

equally spaced peaks in the CD signal. We identified the parti-

cle–hole selection rules responsible for this behavior from the

analysis in terms of chiral bands. In a disc there is no CD signal

due to the incompatibility of the selection rules with the angular

momentum restriction; a square or rectangular geometry (or,

more generally, a system with straight edges or breaking circu-

lar symmetry) is needed. The presence of two chiral bands can

be inferred from the small splitting of the CD peaks. Finally,

both positive and negative CD peaks can be seen, with a perfect

alternation in a square and a favored sign in a long 2D ribbon

geometry.

Our results suggest the use of CD spectroscopy as a valuable

probe of chiral Majorana states, complementing the evidences

obtained with electrical conductance measurements [17]. This

may require the use of an array of absorbing devices, in order to

achieve a combined signal of sufficient intensity. Alternatively,

techniques such as those developed for single plasmonic nano-

particle sensing [28] might be applied to an isolated chiral

Majorana device. Particularly, among the latter we stress the

techniques for single-particle absorption that have allowed

measuring the extinction spectrum of a single silica shell-coated

silver nanoparticle excited with varying polarizations [29].
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