
1358

Disorder-induced suppression of the zero-bias conductance
peak splitting in topological superconducting nanowires
Jun-Tong Ren1, Hai-Feng Lü*1,2, Sha-Sha Ke1, Yong Guo2 and Huai-Wu Zhang1

Full Research Paper Open Access

Address:
1State Key Laboratory of Electronic Thin Films and Integrated
Devices and School of Physical Electronics, University of Electronic
Science and Technology of China, Chengdu 610054, China and
2Department of Physics and State Key Laboratory of
Low-Dimensional Quantum Physics, Tsinghua University, Beijing
100084, China

Email:
Hai-Feng Lü* - lvhf04@uestc.edu.cn

* Corresponding author

Keywords:
conductance peak spacing; disorder; Majorana energy splitting; shot
noise; zero-bias conductance

Beilstein J. Nanotechnol. 2018, 9, 1358–1369.
doi:10.3762/bjnano.9.128

Received: 16 November 2017
Accepted: 27 March 2018
Published: 04 May 2018

This article is part of the Thematic Series "Topological materials".

Guest Editor: J. J. Palacios

© 2018 Ren et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
We investigate the effect of three types of intrinsic disorder, including that in pairing energy, chemical potential, and hopping

amplitude, on the transport properties through the superconducting nanowires with Majorana bound states (MBSs). The conduc-

tance and the noise Fano factor are calculated based on a tight-binding model by adopting a non-equilibrium Green’s function

method. It is found that the disorder can effectively lead to a reduction in the conductance peak spacings and significantly suppress

the peak height. Remarkably, for a longer nanowire, the zero-bias peak could be reproduced by weak disorder for a finite Majorana

energy splitting. It is interesting that the shot noise provides a signature to discriminate whether the zero-bias peak is induced by

Majorana zero mode or disorder. For Majorana zero mode, the noise Fano factor approaches zero in the low bias voltage limit due

to the resonant Andreev tunneling. However, the Fano factor is finite in the case of a disorder-induced zero-bias peak.
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Introduction
Searching for Majorana bound states (MBSs) have recently

received widespread attention due to their potential applica-

tions in topologically-protected quantum computing [1-9]. In

the past two decades, the realizations of MBSs has been pre-

dicted in many condensed-matter systems, including p-wave

superconductors [10,11], topological insulator-superconductor

hybrid structures [12,13], artificially engineered Kitaev chains

[14,15], semiconductor-superconductor hybrid nanowire

systems [16-21]. Very recently, the one-dimensional Majorana

mode running along the sample edge was shown in the hetero-

structure consisted of a quantum anomalous Hall insulator bar

contacted by a superconductor [22]. Among all these proposals,

the semiconductor-superconductor hybrid Majorana systems

have attracted particular attention and have been demonstrated

in several experiments since 2012 [23-30]. As an important

signature of MBSs in the semiconductor nanowires which are
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proximity-coupled to s-wave superconductors, the zero-bias

conductance peak has been observed in the tunneling spectra in

the presence of a finite magnetic field [23-28]. However, it is

suggested that such zero-bias features could also be induced by

non-topological physics such as Kondo effect [31], smooth

confinement [32], or strong disorder [33-35].

In one-dimensional case, the hybridization of the pair of MBSs

localized at the wire ends produces a finite Majorana energy

splitting and zero-bias peak splitting [36-38] due to the finite

size effects. In a recent experiment [39], the energy splitting of

Majorana zero mode has been observed in InAs nanowire seg-

ments with epitaxial aluminium, which forms a proximity-in-

duced superconducting Coulomb island. It is illustrated that the

energy splitting is exponentially suppressed with increasing

wire length. For short wires with a typical length of a few

hundred nanometers, the Majorana energies oscillate as the

magnetic field varies. These observations are consistent with

previous theoretical predictions [36,37]. However, there still

exist some critical discrepancies between the theories and ex-

perimental results of the evidences for the MBSs. Firstly, it is

easy to note that the zero-bias peak is significantly lower than

the predicated value of , whereas the MBSs are expected

to give exactly  [40-43]. Secondly, theory predicts an in-

creasing oscillation magnitude of Majorana energy splitting

with the increase of magnetic field [36,44], while the experi-

ment indicates the damped oscillation with increasing field.

Similar discrepancy was also shown in the Majorana-quantum

dot hybrid devices in the subsequent experiments [45-47]. It is

important to know what physical mechanism leads to the

damped oscillation of Majorana energy splitting.

Up to now, several theoretical studies have been devoted to

explain these discrepancies [48-61], among which some

possible reasons have been proposed, such as the combining

effect of high temperature and multisubband occupancy in a

Coulomb-blocked nanowire where the non-topological low-

energy Andreev bound states and MBSs simultaneously exist

[53], the zero-energy pinning effect induced by the interactions

between the bound charges in the dielectric surroundings and

the free charges in the nanowire [55], a finite leakage out of the

Majorana modes due to the presence the normal drain [59], a

finite coherence length in the induced superconducting pairing

[60], and the orbital magnetic effects [61]. Although it is

noticed that the trivial Andreev bound states are non-negligible

in the experiments, the enhanced Majorana energy oscillation

for increasing Zeeman field is robust and unaffected when

various mechanisms are taken into account.

Here we investigate the effect of different types of disorder on

the transport properties of a topological superconducting wire

Figure 1: Scheme of our one-dimensional Majorana system. A semi-
conductor nanowire with spin-orbit interaction sandwiched by two
normal leads (L, R) is proximity-coupled to an s-wave superconductor.
The nanowire is driven into the topological phase and a pair of MBSs
(γ1, γ2) emerge at the two wire ends with suitable parameters. A bias
voltage V is applied across the device. The nanowire is arranged along
the x-axis and the magnetic field (B) is applied along the z-axis, per-
pendicular to the spin-orbit coupling field (SO) in the y-direction.

hosting a pair of MBSs. Although the disorder-modulated phase

transition in this system has been widely discussed [43,62-74],

we focus on the transport properties, especially the splitting of

zero-bias conductance peak in presence of disorder. We adopt

the non-equilibrium Green’s function (NEGF) method for a

tight-binding model of the nanowire. Three different types of

disorder are separately considered, including the disorder in the

site-dependent chemical potential, the spatial deformations of

the superconducting gap, and hopping disorder between the

nearest neighbors. The results reveal that the disorder could sig-

nificantly suppress the conductance magnitude. More impor-

tantly, the splitting of the conductance peak is removed by the

disorder and a zero-bias peak is reformed with an increasing

disorder strength. This paper is organized as follows. In section

’The model’ we present a tight-binding model for the one-

dimensional superconducting nanowire and the theoretical

framework based on NEGF. In section ’Numerical results’ we

give the numerical results of the conductance and the noise

Fano factor for different wire lengths and discuss different types

of disorder-induced effect on these transport properties respec-

tively. Finally, we conclude our results in section ’Conclusion’.

Results and Discussion
The model
The schematic representation of our one-dimensional Majorana

system is shown in Figure 1. We consider a setup of two normal

metal leads sandwiching a spin-orbit coupled semiconductor

nanowire, which is covered by a parent s-wave superconductor

to induce the proximity effect. The Zeeman field is realized by

applying a magnetic field perpendicular to the spin-orbit cou-

pling direction and the wire. It is proposed that such a hybrid

system can hold a pair of MBSs at the two wire ends by tuning

the Zeeman field or chemical potential to satisfy 

[16-21], for which the nanowire will be driven into the topolog-
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ical phase. Here VZ, Δ and μ are the Zeeman splitting energy,

proximity-induced superconducting pairing and the chemical

potential, respectively. Although this work is motivated by the

experiment by Albrecht et al. [39], our model does not take the

Coulomb blockade effects into account. The reason is that the

physics of disorder-induced suppression of the conductance

peak spacings and reformation of the zero-bias peak, which we

discuss below, is independent of Coulomb blockade physics. In

the presence of a charging energy in the nanowire, it was shown

that the zero-bias conductance values are considerably

suppressed by the Coulomb energy [75]. The situation of

interest to us is how intrinsic disorder in the nanowire affect the

Majorana energy EM and the splitted zero-bias conductance

peak induced by EM. In situations like this, the intrawire

charging energy could modulate the actual conductance value,

but the main physics induced by the disorder is captured even

though the charging energy is not taken into account.

The generic form of the Hamiltonian that models this Majorana

hybrid structure reads as

(1)

where the term Hnw, HL(R), and HT account for the supercon-

ducting nanowire, the left (right) normal metal lead, and the

tunnel coupling between the leads and the wire, respectively.

Following the Bogoliubov–de Gennes formalism the Hamil-

tonian describing the low-energy physics for our one-dimen-

sional superconducting wire is given by

(2)

where  is the Nambu spinor

for which cσ(x)  annihilates (creates) electrons with spin

σ at position x. For numerical calculations, we invoke a lattice

tight-binding model to discretize the BdG Hamiltonian and the

Hamiltonian for the nanowire can then be written as [16-19]

(3)

where ti characterizes the nearest-neighbor hopping between

site i and i + 1, μi and Δi represent the on-site chemical

potential and pairing, α is the spin-orbit coupling constant,

ci = [ci↑, ci↓]
T ( ) is the spinor form of electron

annihilation (creation) operator on the ith site, and σi,

i = 0, x, y, z, are Pauli matrices acting on the spin space. The

wire length is L = Na where a is the lattice constant and N is the

total number of sites. In this work, three different types of

intrinsic disorder in the nanowire are considered: the fluctua-

tions of the site-dependent chemical potential, the nonlinear

tunneling between neighboring sites, and the disorder arising in

the pairing as a result of inhomogeneous superconductor–semi-

conductor coupling. In the case of a clean wire, we set μi = μ0,

Δi = Δ0, and ti = t0 for all sites. For each single disordered con-

figuration of the system, the on-site disorder are modeled by the

white noise and their strength is assumed to be randomly distri-

buted in the range [−δW, +δW], where the W = t, μ, Δ denotes

the strength for different types of disorder.

The Hamiltonian describing the normal metallic leads is given

by

(4)

where εαkσ (α = L, R) represents the single-particle energy in

the lead α and cαkσ ( ) is the annihilation (creation) oper-

ator for the lead α. The sum is over momentum k and the spin σ.

The last term in the total Hamiltonian, HT, characterizes the

coupling between the wire and the two leads, which is given by

(5)

where tL(R) denotes the hopping strength through left (right)

lead and the wire. The operators c1σ and cNσ correspond to the

annihilation operators on the first and last site at opposite ends

of the wire. Taking all lattice sites into account, we can now

write out the Hamiltonian for the nanowire as a 4N × 4N matrix

of which the submatrix entry Hi,j fully characterizes the cou-

pling between site i and site j. The nonzero off-diagonal entries

read as

(6)

(7)

and the subdiagonals are related to the superdiagonals by

 Here τi, i = 0, x,y,z, are the Pauli matrices acting

on the Nambu space.

The operator of tunneling current from the lead α to the central

region is defined as
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and then one can obtain [76-79]

(8)

The current noise correlations are defined as

(9)

Sαβ is referred to as the noise auto- or cross-correlation between

the currents flowing through the lead α and lead β. To evaluate

the current and noise within the framework of Keldysh

NEGF formalism, we need to derive the retarded (advanced)

Green’s function Gr(a) and the lesser (greater) Green’s

function G<(>) from the contour-ordered Green function

 in the Nambu space spanned by the

spinor  where cL(R) is

the electron annihilation operator in the left (right) lead. In this

Nambu space, we define the matrix of the lesser Green’s func-

tion G< [78,79]

(10)

In this representation, the currents are given by

(11)

and the noise spectrum Sαβ(ω) is given by:

(12)

where  is the frequency-independent Schottky noise origi-

nating from the self-correlation of a given tunneling event with

itself, which the double-time correlation function can not

contain, and  denotes the lesser

(greater) green functions in the frequency space. The matrices

of the current operators are given by

(13)

where ML and MR are the block (2N + 4) × (2N + 4) matrices

with nonzero elements

(14)

respectively. From the standard equation of motion for the

central region, we can write the retarded Green’s function Gr in

terms of the Dyson equation Gr = gr + grΣrGr, which gives

(15)

Here gr is the bare Green’s function of the central region with-

out coupling to the leads (tL = tR = 0),

(16)

where In×n is the n × n identity matrix. Since Gr is already

given and the advanced Green’s function Ga can be obtained

from Gr = (Ga)†, it is now straightforward to obtain the lesser

Green’s function from the standard Keldysh equation,

(17)

In the present case, Σ< = 0 and

(18)

with

(19)

where O4N×4N is the 4N × 4N zero matrix, 

is the Fermi–Dirac distribution function and kBT is the tempera-

ture. In the calculation of the noise spectrum Sαβ(ω), the greater



Beilstein J. Nanotechnol. 2018, 9, 1358–1369.

1362

Green’s function G> can be readily obtained since the relation

G< −G> = Ga −Gr holds. Finally, we define the noise Fano

factor F = SL(ω = 0)/2eIL to measure the deviation from the

uncorrelated Poissonian noise for which F = 1, with respect to

which the shot noise can be enhanced or suppressed because the

current fluctuations in the device are highly susceptible to dif-

ferent interactions in the system.

Numerical results
In this section we present the numerical results of the transport

properties for the disordered Majorana nanowire. Here we

mainly discuss the disorder-induced effects on the differential

conductance, especially on the conductance peak spacing and

its relation with the Majorana energy oscillation. To exclude

thermal fluctuations, we restrict our discussion to the zero tem-

perature kBT = 0. The lattice constant is set to a = 10 nm

throughout the paper. For the disorder-free situation, we choose

t0 = 12 meV, μ0 = 2.0 meV, Δ0 = 0.9 meV, α = 2.4 meV, and

the symmetric lead-wire coupling strength ΓL = ΓR = 0.3 meV.

The bias voltage V across the whole device will shift the chemi-

cal potential μL(μR) in the leads to ±V/2. In modeling the

disorder effect on the quantum transport in mesoscopic devices,

the numerical results need to be averaged over enough random

configurations. In our calculation, the conductance and the

noise Fano factor is averaged over 400 random configurations

for each data point.

In previous work [35], it was found that the disorder could in-

duce a nonquantized zero-bias peak at finite temperature even

when the nanowire is in a topologically trivial regime. In their

work, a single disorder realization is considered for their

3-dimensional multiband Majorana wire. The consideration of

the multiband wire model leads to the weaker sample–sample

fluctuations than the single channel model. Although a single

disorder configuration is considered, their results are obtained at

a finite temperature, which implies that thermal averaging is

done. With the increase of temperature, the sample-to-sample

fluctuations are suppressed [80]. It is thus reasonable for them

to consider a single disorder configuration.

Here we study the effect of three types of disorder on the trans-

port in a Majorana device. To exclude the thermal effect, we

restrict our discussion to the zero temperature case. The large

sample-to-sample fluctuations is thus unavoidable. In principle,

several similar samples are also needed in experiments to

confirm the existence of related physical mechanisms. In a

previous experiment [39], only one sample is reported for each

wire length. It is indicated that a damped oscillation magnitude

of the Majorana energy splitting occurs with the increase of

magnetic field, which contradicts the theoretical result. Our

calculation suggests that the discrepancy may arise from the

intrinsic disorder. To confirm this, more experiments are ex-

pected to be performed in the future for similar samples.

Majorana energy oscillation
We firstly present the lowest energy EM as a function of the

magnetic field in the presence of different kinds of disorder.

Considering the finite-size effects on the coupling between the

two MBSs and the recently reported suppression of the energy

splitting due to the increase in wire length [39], we consider

wires of two typical lengths in particular: a shorter one with

L = 0.60 μm and a longer one with L = 0.95 μm. In Figure 2,

when VZ is relatively small, the system stays in the topologi-

cally trivial phase, and the lowest energy is linearly suppressed

as the magnetic field strength increases. Without disorder in the

system, the nanowire is driven into a topological supercon-

ducting phase when we tune VZ to exceed the phase transition

point  and EM begins to oscillate near the zero

value. This behavior, originating from the finite-size effects, is

absent in a long enough wire, where the field-independent exact

Majorana zero mode emerges with its energy pinned to zero.

Figure 2: The Majorana energy EM as a function of the Zeeman split-
ting VZ for different types of disorder. (a,b) The clean cases;
(c,d) disorder in pairing energy δΔ = 0.9 meV; (e,f) disorder in the
chemical potential δμ = 1.0 meV; (g,h) disorder in the nearest hopping
δt = 1.0 meV. For comparison, two different wire lengths L = 0.6 μm
(left panels) and L = 0.95 μm (right panels) are separately considered.
Other parameters are taken as t0 = 12.0 meV, Δ0 = 0.9 meV,
μ0 = 2.0 meV, α = 2.4 meV, and ΓL = ΓR = 0.3 meV. The MBSs
appears at the wire ends for VZ > VZC.

For disordered wires, we find that the exact Majorana zero

mode gradually vanishes in the presence of disorder in hopping

or chemical potential. In particular, as shown in Figure 2, a δt
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with strength 1.0 meV, which is comparable to the strength of

Zeeman splitting, can remarkably flatten the energy oscillation.

On the contrary, the strong disorder in the pairing energy leaves

the Majorana energy oscillation almost unaffected. In the topo-

logical phase and in the strong Zeeman field regime, the spins

are nearly polarized and one can project the original Hamil-

tonian onto a simpler one-band problem [7]. To leading order,

one obtains an effective p-wave-like Hamiltonian with the

effective chemical potential μeff = μ + VZ/2 and the effective

pairing energy Δeff = αΔ/2VZ. Because small spin-orbit cou-

pling is considered, the effect of the disorder δΔ in the pairing

energy is considerably suppressed with increasing VZ due to the

multiplication factor α/2VZ. However, there is no multiplication

factor for μ, hence the disorder δμ has a stronger influence on

the Majorana energy oscillation. The hopping disorder and

chemical potential disorder can both considerably destroy the

Majorana zero modes, leading to increased Majorana energy

splitting and enhancement of the MBSs hybridization.

To get a closer look into the effects of disorder on the Majo-

rana energy splitting, it is beneficial to investigate the localiza-

tion length that characterizes the hybridization between the pair

of MBSs. In weak spin-orbit coupling regime, the localization

length increases gradually as B [36,38]. Therefore, the

strength of the Zeeman splitting VZ should be chosen as the

energy scale to determine whether the disorder strength is

strong or not. Meanwhile, the disorder strength that can remove

the energy splitting signature is also determined by the wire

length. For a longer wire, a disorder of the same strength could

lead to a more evident suppression of the energy splitting signa-

ture.

In Figure 3, without loss of generality, we focus on the evolu-

tion of the MBS probability density on the left wire end in the

presence of disorder in chemical potential, of which the influ-

ence is more evident compared with the limited effects induced

by the pairing disorder. Here we choose a rather long wire of

length L = 2.0 μm, where the two spatially separated MBSs are

well localized at each end of the wire, thus the hybridization be-

tween the pair of MBSs is negligibly small. In our case where

 the system is in a weak spin-orbit interaction

regime, and the approximate value of the localization length for

a discretized tight-binding model is analytically given by

with which the MBS probability density has an exponentially

decaying envelope of the form  [81]. As shown in

Figure 3, the numerically fitted decaying envelope of the

disorder-free probability density gives ξ ≈ 0.0727 μm, com-

pared to the approximate analytical results of ξ ≈ 0.0775 μm the

difference is below a lattice constant. With the disorder strength

increasing, the probability density at the end is suppressed and

the localization length ξ of the fitted envelope becomes larger.

This can also be directly identified from the noticeable defor-

mations of the tail part of the probability density, which implies

an enhanced hybridization between the two MBSs with an in-

creasing disorder strength. In a shorter wire where the overlap

between the two MBSs is stronger, it is reasonable to expect a

more evident disorder-induced increment in the MBSs hybridi-

zation, which agrees with the results shown in Figure 2.

Figure 3: The spatial distribution of probability density |Ψ|2 (solid lines)
and their fitted envelopes  (dashed lines) in the presence of dif-
ferent strengths of chemical potential disorder δμ; the inset shows the
localization length ξ of the fitted envelope varies with different values of
δμ. Here we choose L = 2.0 μm, μ = 0, Δ = 2.0 meV, VZ = 6.1 meV and
other parameters are taken as those used in Figure 2.

Conductance peak spacings
In Figure 4, we demonstrate the effects of three types of

disorder on the conductance peak spacings for different wire

lengths. In a disorder-free case, the Majorana energy splitting of

the system can be reflected by the conductance peak spacing.

We take a Zeeman field VZ = 6.6 meV that is associated with

clear energy splittings and conductance peak spacings.

For a shorter nanowire L = 0.6 μm, it is found that all three

types of disorder can suppress the amplitude of the conduc-

tance peak and broaden the peak width to some different extent.

The presence of disorder in the system leads to a similar result

induced by dissipation or finite temperature, both of which can

lower the peak and broaden its width [57]. What makes a differ-

ence here is that one can additionally observe a suppression,

which is pronounced especially in the cases of hopping or

chemical potential, of the conductance peak spacings due to the

effect of disorder.
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Figure 4: The differential conductance G = dI/dV as a function of the bias voltage V under the influence of different types of disorder. (a,d) disorder δμ
in the chemical potential; (b,e) disorder δt in the nearest hopping; (c,f) disorder δΔ in pairing energy. The upper panels corresponds to the shorter wire
case L = 0.6 μm and the lower panels represents the case of L = 0.95 μm. Other parameters are taken as those used in Figure 2.

When the device becomes longer (L = 0.95 μm), the Majorana

energy splitting is exponentially suppressed, thus the conduc-

tance peak spacing in a clean system becomes much narrower.

As illustrated in the lower panels of Figure 4, smaller disorder

than that in the shorter wire can lead to notable suppressions on

the conductance peak spacings, and as the disorder strength

eventually exceeds some certain value, a zero-bias peak is

formed from the two spaced peaks. It is interesting that a strong

disorder in pairing could even elevate the induced zero-bias

conductance peak. These numerical results, together with that

revealed in Figure 2, suggest that we can not simply neglect the

role played by disorder in detecting Majorana energy oscilla-

tion experimentally through transport measurements since for

some values of Zeeman field the disorder-induced effects can

broaden the Majorana energy splitting of the low-energy states

while simultaneously narrows the conductance peak spacing.

This means that the Majorana energy splitting can not be

genuinely characterized by the conductance signature. One

possible reason is that the Majorana energy splitting is not

robust. When the energy splitting of the Majorana modes is

negligible compared to the magnitude of disorder, the conduc-

tance signature associated with the Majorana energy splitting

could be annihilated by the noise arising in the system, which is

equivalent to raising the temperature. Different from the ther-

mal fluctuations that could be excluded by lowering the temper-

ature, the three types of intrinsic disorder discussed here are

hard to avoid in a realistic experiment.

Figure 5: The differential conductance G = dI/dV in the longer wire
(L = 0.95 μm) as a function of the bias voltage V with
δμ = δΔ = δt = 0.8 meV approaching the critical Zeeman splitting
VZC = 0.9 meV. Here we have μ0 = 0, VZ = 6.0 meV and other parame-
ters are taken as those used in Figure 4.

Above we consider the case that the critical Zeeman field VZC is

much stronger than the disorder strength δW. Now we turn to

discuss the more experimentally relevant case where δW ≈ VZC.

Figure 5 demonstrates the effect of three types of disorder on

the conductance for a small VZC. The chemical potential in the

wire is tuned as μ0 = 0, while the other parameters are taken as

the same as that for the lower panels in Figure 4. It is shown in
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Figure 6: The zero-bias conductance G as a function of the Zeeman splitting VZ for different types of disorder. (a,e) The clean case; (b,f)disorder in
pairing energy δΔ = 0.5 meV; (c,g) disorder in the chemical potential δμ = 1.0 meV; (d,h) disorder in the nearest hopping δt = 0.5 meV and 1.0 meV.
The upper panels correspond to the shorter wire case L = 0.6 μm and the lower panels represent the case of L = 0.95 μm. In panel (h), we show that
a disorder of δt = 1.0 meV could remove the conductance oscillation as VZ increases. Other parameters are taken as those used in Figure 2.

Figure 5 that for δW ≈ VZC, the disorder can suppress the peak

spacing and a single zero-bias peak is produced. Similar to the

large VZC case, the main conclusion is qualitatively consistent

with the results in Figure 4.

In previous experiments [39,46,47], the Majorana energy split-

ting for a nanowire with Coulomb interactions was represented

by the even–odd peak spacing differences. However, the ex-

pected field-dependent decay behavior of Majorana energy

oscillations is not observed in the experiments. On the contrary,

the detected conductance peak differences tend to decay sharply

as the magnetic field increases, which contradicts the theoreti-

cal predictions. Although here we consider an interaction-free

scenario, our results indicate that the disorder can partially

reduce the splitting of the conductance peak. In addition, for a

shorter wire, the hybridization of the MBSs at two ends can

generate a relatively large splitting in the conductance peak,

which is consistent with the result of the previous experiments.

The magnetic field could suppress the superconducting pairing

energy, which leads to the enhancement of disorder strength in

some sense.

Zero-bias conductance as a function of Zeeman
field
In superconducting nanowire systems, a quantized zero-bias

conductance peak is considered as direct evidence for the pres-

ence of MBSs, and its emergence is often associated with the

resonant Andreev reflection [41]. However, for realistic Majo-

rana nanowires, the observed conductance peaks are often much

smaller than 2e2/h. In Figure 6, we show the disorder-induced

effects on the zero-bias conductance oscillation as a function of

the Zeeman splitting VZ. For the clean wire, the zero-bias

conductance has a clear oscillating behavior in the topological

phase (VZ > VZC), and its peak value is quantized to 2e2/h.

These quantized peaks of the conductance emerge from the

exact zero-energy modes, while the valley of the conductance

corresponds to the peak value of Majorana energy splitting.

With an increasing magnetic field, the valley of the conduc-

tance gradually decays, corresponding to an enhancement of the

Majorana energy splitting through the magnetic field. When the

magnetic field is strong enough, the transport channel of the

resonant Andreev reflection is almost closed and the valley of

conductance approaches zero.

In the presence of disorder, the most notable difference is that

the conductance oscillation peaks do not become more quan-

tized. In Figure 2, it is shown that the disorder could destroy the

exact Majorana zero mode and produce a finite energy splitting.

Correspondingly, the quantized zero-bias conductance peak is

suppressed by the disorder, as a manifestation of the induced

finite energy splitting. This phenomenon is particularly evident

for the cases where the disorder in the hopping or in chemical

potential exists. As shown in Figure 6b and Figure 6f, the

conductance peaks stay almost quantized even in the presence

of a relatively strong pairing disorder. Additionally, one can

find that the valleys of the conductance oscillation are almost

unaffected by all kinds of disorder, which also agrees with the

result of Figure 2. These observations suggest that the intrinsic

disorder in the nanowire could strongly reduce the zero-bias

conductance oscillation associated with the Majorana energy
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Figure 7: Comparison of the noise Fano factor F between the cases of Majorana zero mode and disorder-induced zero-bias conductance peaks. The
upper, middle, and lower panels represent the effect of disorder in chemical potential δμ, superconducting pairing δΔ, and the hopping amplitude δt,
respectively. (a), (d) and (g): Majorana energy EM as a function of VZ. The points A and B denote the MBSs with zero energy and a finite energy in the
disorder-free case, respectively. The points C corresponds to the MBSs with a finite energy splitting in the disordered cases, where VZ at point C
equals to that at point B. (b), (e) and (h): The differential conductance G as a function of the bias voltage V. In the clean case, the quantized zero-bias
peak is formed for Majorana zero mode (green lines). Disorder-induced zero-bias peaks (black lines) are formed from the spaced conductance peaks
(orange, dotted line). (c), (f) and (i): The noise Fano factor F as a function of the bias voltage V. In the clean case, F in the low bias limit approaches
zero for Majorana zero mode (green line), and F is finite for a finite energy splitting (orange, dotted line). For the disordered case, F in the low bias
limit is finite (black line) although a zero-bias peak emerges in this case. The disorder strengths are δμ = 1.0 meV, δΔ = 0.8 meV, and δt = 0.5 meV.
The wire length is taken as L = 0.95 μm and other parameters are taken as those in Figure 2.

splitting. However, although the disorder significantly sup-

presses the oscillation, it does not eliminate the zero-bias

conductance peak.

Shot noise
We now turn to investigate the shot noise properties of the

Majorana system. For a long nanowire, the Majorana energy

splitting is negligible, and the noise Fano factor is suppressed at

zero voltage due to the resonant Andreev tunneling in an isolat-

ed MBS. In the clean case, a large Majorana energy splitting

could strongly suppress the resonant Andreev tunneling, leading

to the increase of the noise Fano factor and splitting of the

conductance peak. It is shown in Figure 4 that the split conduc-

tance peaks are reformed to one zero-bias peak by the disorder.

However, the zero-bias conductance peak can also arise due to

the exact Majorana zero mode in the clean case. It is expected

that the shot noise may provide the signature to distinguish the

zero-bias conductance peak in a clean system from that which

arises in a disordered one. This can be verified by the results

given in Figure 7.

Here we present the Majorana energy splitting EM, the conduc-

tance G and the noise Fano factor F = S/2eI in the clean and

disordered cases, in which three different types of disorder are

taken into account. In the clean case, we separately choose point

A and B which represents the zero energy mode and a finite

splitting case, respectively. For a Majorana zero mode, a quan-

tized zero-bias conductance peak could be induced and the

noise Fano factor approaches zero due to the resonant Andreev

tunneling. While for the case of finite energy splitting, the zero-

bias conductance peak is split and the shot noise is enhanced

due to the crossed Andreev reflection (CAR) which, con-

trasting with the local Andreev reflection that injects a Cooper

pair in a single lead, would split a Cooper pair over two leads.

The CAR processes will induce a current noise cross-correla-

tion between two normal leads and predominate over the local

Andreev reflection with the presence of a MBSs pair [77-79].

For short wires, the Fano factor at zero bias is close to unity for

a strongly coupled MBS pair between two leads. As the wire

length increases, the coupling between the MBSs at the two

ends decreases, leading to the suppression of CAR process and

a reduction of Fano factor.

For comparison we also choose a point C for the disordered

case. The points C correspond to MBSs with a finite energy

splitting in the disordered case, where VZ at point C is equal to
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the Zeeman field at point B. As shown in Figure 7 the Majo-

rana energy splitting in point C has a non-zero value, and its

value is slightly enhanced or weakened with respect to the

Zeeman field strength. For the conductance, the peak splitting at

point B is reformed to a single zero-bias peak induced by three

types of disorder. Differently, in the low-bias voltage regime,

the noise Fano factor F deviates from zero in the presence of

disorder, indicating a stronger coupling between the two sepa-

rated MBS. This result is a clear manifestation of the Majorana-

assisted CAR process. This means that although the zero-bias

conductance peak could originate from an exact zero mode or

intrinsic disorder in the nanowire, one can discriminate these

two different mechanisms from the shot noise properties. In a

clean nanowire, the zero-bias peak is induced by the Majorana

zero mode. In this case, the appearance of the zero-bias peak is

always accompanied by the zero noise Fano factor, i.e., F = 0.

However, in the disordered case, the zero-bias conductance

peak could also be induced for a finite energy splitting, while

the noise Fano factor F has a finite value. Thus, whether the

Fano factor F at the low-bias limit equals to zero or a finite

value provides a signature to distinguish the zero-bias peak in-

duced by Majorana zero mode from that by disorder.

Conclusion
To conclude, we investigated the effect of intrinsic disorder on

the transport properties of a Majorana nanowire by adopting a

one-dimensional tight-binding model. We introduce three types

of disorder into the system, including random fluctuations in the

chemical potential, spatially changing in the superconducting

pair potential, and the anisotropy of the nearest-neighbor

hopping strength through lattice sites. We demonstrated that the

disorder could remove the peak spacing in the differential

conductance and induce a zero-bias peak for a finite Majorana

energy splitting. For a shorter nanowire, the magnitude of the

conductance peaks and the peak spacings are considerably

suppressed as the disorder is taken into account. Such a

disorder-induced suppression of conductance peaks and peak

spacings provides a simple but interesting scenario to explain

the absence of Majorana energy oscillation observed in previous

experiments. Especially for a longer nanowire (L ≈ 1 μm), the

Majorana energy splitting is exponentially small, and the spaced

conductance peaks are facilitated to form a zero-bias peak by

the disorder. However, the presence of disorder does not

suppress the Majorana energy splitting. On the contrary, the

disorder in hopping and chemical potential destroys the locali-

zation of MBSs and thus enhance their hybridization, leading to

an increase in the Majorana energy splitting. This phenomenon

can be further identified with the disorder-induced increment in

the localization length. The exact Majorana zero modes in the

clean case gradually vanish with increasing disorder strength.

As a function of Zeeman field, the quantized zero-bias conduc-

tance peaks by the exact zero mode are shown to be strongly

suppressed due to the presence of disorder. In particular, for an

increase in hopping disorder, the oscillation behavior in the

zero-bias conductance spectra vanishes in the longer wire case.

In the presence of disorder, the Majorana energy splitting is not

suppressed and zero modes are removed, while the zero-bias

conductance peaks are induced for a finite energy splitting. To

distinguish whether the zero-bias conductance peak is induced

by a Majorana zero mode or by the disorder, we further investi-

gate the shot noise properties of the device. For a clean nano-

wire, we show that the appearance of the zero-bias peak is

always accompanied by a zero-noise Fano factor (F = 0) in the

low-bias voltage limit. In contrast, the Fano factor F in the

disordered case has a finite value at the low-bias limit. In this

case, the finite Majorana energy splitting induces a crossed

Andreev reflection and the resonant Andreev tunneling is

suppressed, resulting in the deviation of the Fano factor from

zero. Therefore, the shot noise provides a clear signature to

discriminate between the two different mechanisms that lead to

the formation of the zero-bias conductance peak.
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