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Abstract
Background: A Majorana bound state is a superconducting quasiparticle that is the superposition of particle and hole with equal

amplitude. We propose a verification of this amplitude equality by analyzing the spatial Rabi oscillations of the quantum states of a

quantum dot that is tunneling-coupled to the Majorana bound states.

Results: We find two resonant Rabi driving energies that correspond to the energy splitting due to the coupling of two spatially

separated Majorana bound states. The resulting Rabi oscillating frequencies from these two different resonant driving energies are

identical for the Majorana bound states, while different for ordinary Andreev bound states. We further study a double-quantum-dot

setup and find a nonlocal quantum correlation between them that is mediated by two Majorana bound states. This nonlocal correla-

tion has the signature of additional resonant driving energies.

Conclusion: Our method can be used to distinguish between Majorana bound states and Andreev bound states. It also gives a

precise measurement of the energy splitting between two Majorana bound states.

1527

Introduction
Majorana bound states are exotic non-Abelian quasiparticles in

topological superconductors [1-26]. The study of Majorana

bound states has attracted tremendous interest recently because

they constitute topological parity qubits. These qubits are

defined by the degenerate ground states of topological super-

conductors, and therefore are protected by the superconducting

energy gap [4,15]. They have a long coherence time and are

resistant to local decoherence sources [2,15,18,19]. Most impor-

tantly, the topological qubits can be topologically manipulated

by braiding the Majorana bound states [4,15,17]. These topo-

logical braiding operations set the foundation for topological

quantum computation [4,15], despite the fact that they are insuf-
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ficient to construct universal quantum gates for the topological

qubit [15,17,19,20].

A unique feature of the Majorana bound states is the self-conju-

gateness. In the language of second quantization, a self-conju-

gate quasiparticle means that the superposition of the electron

creation operators and electron annihilation operators are equal

[2,15,16]. This equality is the essential difference between the

Majorana bound states and the ordinary Andreev bound states.

Another unique feature of Majorana bound states is the expo-

nential protection [17-19], which states that the splitting energy

between two Majorana bound states exponentially decays as the

distance between them increases. The experimental verification

of these two properties helps the identification of Majorana

bound states in real systems.

Majorana bound states have been theoretically proposed in

several systems [5,6,9,13,20], while the experiments concen-

trate on semiconductors with spin–orbit coupling and the super-

conducting gap that is induced by the superconducting prox-

imity effect [19,21,24,25]. One promising candidate is the

hybrid system of a spin–orbit-coupling nanowire and a conven-

tional superconductor. Robust zero-bias conductance peak was

first reported in this system, which originates from the self-

conjugate nature of Majorana bound states and therefore was

wildly recognized as a signature. An exotic fractional Josephson

effect was also studied in the nanowire Josephson junctions,

where novel Shapiro steps and Josephson radiations have been

reported. Recently, the Coulomb blockade spectroscopy was

exploited on finite-size nanowire segments that form nanowire

islands with two Majorana bound states possibly existing at the

two ends of the island. The splitting energy between two Majo-

rana bound states is found to be decreasing exponentially when

the length of the island increases [24]. This exponential protec-

tion of zero-energy Majorana bound states stirs new excitement

in pursuing Majorana bound states.

Quantum dot has been proved to be a good probe to study the

Majorana bound states [3,7,27-38]. The quantum dots are zero-

dimensional systems that have controllable discrete energy

levels. The Rabi oscillation, a fundamental quantum phenome-

non in two-level quantum systems, may occur between the

states of the quantum dot when the quantum dot is periodically

modulated. In particular, the spatial Rabi oscillation between

two quantum dots has been proven to be useful for single-elec-

tron pumping. An attractive idea is to exploit the spatial Rabi

oscillation between the quantum dots and the Majorana bound

states [29] and to investigate the self-conjugateness and expo-

nential protection of Majorana bound states. In recent experi-

ments, a hybrid structure of a quantum dot and a one-dimen-

sional topological superconductor nanowire has been realized

[36]. This system attracts theoretical interest [7,37]. In this

context, it is interesting to study the spatial Rabi oscillation be-

tween the quantum dot and the topological nanowire.

In this work, we study the spatial Rabi oscillations between

quantum dots and a Majorana island. This system involves two

Majorana bound states that have an exponentially protected

small splitting energy. As shown in Figure 1a, one of the Majo-

rana bound states is coupled to the quantum dot with a single

electron tunneling through a potential barrier. The barrier is pro-

duced by a voltage gate, which is implemented between the

quantum dot and the Majorana island. If an ac voltage is applied

to the gate, the tunneling strength between the quantum dot and

the Majorana bound states will be driven periodically [39]. We

show that there are two resonant driving energies that induce

coherent spatial Rabi oscillations between the quantum dot and

the island. The difference between the two driving energies is

proportional to the exponentially protected splitting energy be-

tween two Majorana bound states. More importantly, the Rabi

frequencies connected to the two different resonant driving

energies are identical, which is a result of the self-conjugate-

ness of the Majorana bound states. For comparison, we show

the results when the Majorana bound state is replaced by an

Andreev bound state as shown in Figure 1b. We find that the

two Rabi frequencies at the different resonant driving energies

are now different. We also investigate the setup with two quan-

tum dots at each side of the island and calculate the resonant

driving energies for spatial Rabi oscillation. We show that the

two quantum dots exhibit nonlocal correlations when coupled

with Majorana bound states while the two dots have no correla-

tion when coupled with Andreev bound states, since two Majo-

rana bound states can form one single fermionic level while two

Andreev bound states are two distinct fermionic levels.

Figure 1: Schematics of a quantum dot tunneling-coupled to a nano-
wire island with (a) Majorana bound states, and (b) an Andreev bound
state. The Andreev bound state has a small excitation energy δ, which
is similar to the splitting energy between two Majorana bound states.
The effective coupling between the quantum dot and the Andreev
bound state has different electron and hole components Tμ and Tν,
due to the different electron and hole wave functions of the Andreev
bound state. In contrary, the effective coupling between the quantum
dot and the Majorana bound state has identical electron and hole com-
ponent T, due to the self-conjugateness of the Majorana bound states.
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Results and Discussion
Model
The hybrid system schematically illustrated in Figure 1 consists

of two parts, a quantum dot and a nanowire island, where Majo-

rana or Andreev bound states are present at the ends of the

island. Let us first consider the model for the quantum dot.

Realistic topological superconducting systems usually involve a

large Zeeman field, which in principle should break the spin

degeneracy and split the two spin-dependent levels with the

Zeeman energy. Therefore, it is reasonable to consider only

one-spin direction. Meanwhile, we consider a large Coulomb

blockade regime for the quantum dot, which corresponds to a

large Coulomb interaction. For this regime, additional electron

hopping to the quantum dot requires a large Coulomb energy,

which effectively reduces the quantum dot to only one relevant

energy level. The Hamiltonian of a minimal model for the quan-

tum dot is [3,7,27,38],

(1)

where ε is the excitation energy for the single energy level of

the quantum dot and d† represents the creation operator on the

energy level.

The Majorana island consists of a one-dimensional topological

superconductor such as a nanowire–superconductor hybrid

structure and a ferromagnetic chain, with zero-energy Majo-

rana bound states at the ends of the system. The wave functions

of the two Majorana bound states overlap with each other, in-

ducing an energy splitting that exponentially decays as the

length of the island increases. The low-energy physics of the

island can be described by an effective Hamiltonian [2,3],

(2)

where and γM and γM′ represent the two Majorana bound states,

and δ represents the exponentially protected splitting energy.

The quantum dot is coupled to one of the Majorana bound states

by electron tunneling through a potential barrier between the

dot and the Majorana island. This coupling can be described by

a tunneling Hamiltonian,

(3)

where T is the tunneling strength that is taken as a real number

for simplicity. Here we consider an oscillating tunneling

strength T = T0 + 2T1cosωt, with T0 being the static tunneling

strength, T1 the oscillating tunneling strength, and ω the oscil-

lating frequency for the tunneling strength. It can be produced

by an ac gate voltage controlling the tunneling barrier [39].

When the driving frequency is at resonance, this oscillating

tunneling strength can induce a Rabi oscillation on the quantum

dot.

We write out the matrix form for the total Hamiltonian

HM = Hd + Hδ + HT. We first define a new fermionic operator

f† = (γM − iγM′)/2, which leads to

(4)

Then we take the four eigenstates of the fermionic operators

, , , and  as the basis states of the

Hilbert space, and express the Hamiltonian in this basis explic-

itly,

(5)

This matrix is block diagonal due to the parity conservation of

the total system. We notice that the upper left and the lower

right 2 × 2 blocks have the same off-diagonal elements but dif-

ferent diagonal elements.

Now we consider the scenario that the nanowire island has an

Andreev bound state at the end instead of Majorana bound

states. From the mean-field Bogoliubov–de Gennes approach,

the general form for Andreev bound states is the quantum

superposition of electron and hole wave function, which in the

second quantization form writes as,

(6)

where c†(r) is the creation operator for the electron, μ and ν are

the electron and hole wave functions. For the sake simplicity

they are real numbers and the factor of 1/2 for describing super-

conducting quasiparticles is absorbed into μ and ν. We assume

the simplest wave function of delta equations since the Andreev

bound state is extremely localized at the end of the wire. Then

the Andreev operators can be written as . With

this in mind, we can now study the Hamiltonian of the system

of a quantum dot and an Andreev bound state. It can be written

as HA = Hd + HTa + Ha where the Hamiltonian for the Andreev

bound state, Ha, is
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(7)

with δ = δ′(|μ|2 − |ν|2). Due to the particle–hole symmetry of the

superconducting system, we can always obtain another Andreev

bound state by defining a new operator . This leads to

the excitation energy −δ, which accounts for the negative

energy excitations observed in experiments [17,37]. The tunnel-

ing Hamiltonian between the Andreev bound state and the

quantum dot is,

(8)

where we define Tμ = μT and Tν = νT. Now we can establish a

basis for HA with eigenstates , ,  and ,

and rewrite in the matrix form,

(9)

It looks similar to Equation 5 but with one critical difference:

The off-diagonal terms in the upper left block and the lower

right block are now different because they contain electron and

hole wave functions, which are different for Andreev bound

states. We note that the Andreev bound state may have equiva-

lent particle and hole components (u↑ = v↑) for some spin direc-

tions. For this case, the matrices in Equation 5 and Equation 9

are identical if the energy level of the quantum dot is in the

same direction. However, the spin direction of the quantum

level on the dot can be reversed by inverting the Zeeman field.

Then the matrix for the Andreev bound state contains the elec-

tron and hole wave functions in the reverse spin direction and

must be different.

Spatial Rabi oscillations
Now we are ready to consider the spacial Rabi oscillations

where an electron oscillates between the quantum dot and the

bound states. For this purpose we solve the Schrödinger equa-

tion . The Hamiltonian is periodic in time,

therefore the equation is not exactly solvable. To obtain the

Rabi oscillations, we need to study the transition probability

from one state to the other under this time periodic Hamil-

tonian. We take advantage of the Floquet theory, which

states that the solution of the Schrödinger equation for any time-

periodic Hamiltonian must satisfy Ψ(t) = ψ(t) e−iDt, with

ψ(t) = ψ(t + (2π/ω) a time-periodic function that has a Fourier

transformation . Let us first consider the

scenario of Majorana bound states where we can obtain a series

of secular equations by inserting the ansatz solution back into

the Schrödinger equation,

(10)

where l = 0, ±1, and the Fourier transformed components of the

Hamiltonian Hl are

(11)

Now the problem of solving a time-dependent Schrödinger

equation is transformed to a problem of solving a set of time-in-

dependent secular equations [40]. Since ψn is a vector with two

components, special care is needed when trying to solve the

secular equations. They should be rewritten as

with α,β = 0, 1, 2, 3. Then, the secular equations can be viewed

as the eigenproblem for the infinite dimensional Floquet Hamil-

tonian [40],

(12)

In this Floquet formalism, the transition probability between

any two states is written as

(13)
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which could be calculated once we solve the eigenproblem for

the Floquet Hamiltonian.

In the Floquet Hamiltonian, the off-diagonal elements are be-

tween the nearest blocks. For the zero-order perturbation, we

first consider the transition between  and . Two

cases are studied: α = 0 with β = 1 and α = 2 with β = 3. Then

we can extract a 4 × 4 matrix,

(14)

which of course can be divided into two relevant 2 × 2 matrices,

(15)

We can also include the second-order perturbation, which

slightly alters the diagonal elements of the 2 × 2 matrix,

(16)

where

and

Now the transition probability is clear. Starting from an initial

state

we would have a Rabi oscillation for

(17)

with

or for

(18)

with

Clearly, there are Rabi oscillations at with two resonant driving

energies at

However, for both resonant driving energies, the Rabi

frequency is the same ωr = ωr′ = T1. This is not a coincidence,

but is a result of the self-conjugateness of the Majorana bound

states.

Now we consider the scenario of Andreev bound states. With

the same Floquet approach, we can obtain the effective Floquet

Hamiltonians,

(19)
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where

and

when we set T0 = 0. Clearly, we also have two resonant driving

energies. However, now we have different Rabi frequencies for

these two resonant driving energies, ωr = νT1 and −ωr′ = μT1,

which are given by solving the Floquet Hamiltonians in Equa-

tion 19. The difference between the Rabi frequencies comes

from different particle and hole wave functions, μ and ν, for the

Andreev bound states.

We present numerical simulations for the hybrid system in

Figure 2. First, we show the largest oscillation amplitude on the

quantum dot as a function of the driving energy ω in Figure 2a,

where the scenario for Majorana bound states and for Andreev

bound states present the same result. The two peaks represent

the two resonant driving energies. For the Majorana bound

state, the energy difference between these two peaks is propor-

tional to the splitting energy between the two Majorana bound

states at the ends of the island. Since the measurement of Rabi

oscillation is much more accurate than transport measurements,

the resonant driving energy provides a precise method to

measure the exponential decay of the splitting energy. The Rabi

oscillations of the occupation state of the quantum dot for Majo-

rana and Andreev bound states are presented in Figure 2b. We

find that the Rabi frequencies of the Majorana bound state are

identical as predicted by the analytic results based on the

Floquet theory. For comparison, we also present the Rabi

frequencies for the Andreev bound state. The Rabi frequencies

are different, reflecting the inequality of the electron and hole

components for the Andreev bound state.

The results presented in Figure 2 are the central results of our

work. We emphasize that these theoretical results can be

measured with existing experimental techniques. Our calcula-

tion gives the Rabi oscillations of the occupation states of the

quantum dot, which can be measured by probing the electron

occupation on the quantum dot. The measurement of the elec-

tron occupation state of the quantum dot has been achieved with

the single-electron transistor [27,41], which is a routine tech-

nique in the study of charge qubits based on quantum dots [42].

Finally, we note that our results are based on the minimal

models for the quantum dot, the Majorana bound state and the

Figure 2: Numerical simulations of the Rabi oscillations. (a) The
maximum Rabi oscillation amplitude measured by the occupation prob-
ability of the quantum dot, as a function of the driving energy, where
the two peaks marks the resonant driving energies. (b) The Rabi oscil-
lation for the two resonant driving energies for the Majorana bound
state (upper panel) and the Andreev bound state (lower panel). We
see that the Rabi frequencies are identical for the Majorana bound
state while they are different for the Andreev bound state. Parameters
are taken as ε ≡ J, T0 = 0, δ = 0.1J, T1 = 0.01J, δ = 0.2J, μT1 = 0.008J
and νT1 = 0.006J with the initial state .

Andreev bound state. It is certainly helpful to consider more

sophisticated models for the quantum dot by including the

Zeeman energy and Coulomb energy explicitly, and more real-

istic models for the Majorana bound state and Andreev bound

state by exploiting the Bogoliubov–de Gennes Hamiltonian.

However, these works are beyond the scope of our current work

and belong to our plan of future works.

Correlation between quantum dots through
Majorana islands
Now we investigate the setup with two quantum dots on the two

sides of a nanowire island, as shown in Figure 3. In this setup,

nonlocal entanglement between quantum dots mediated by

Majorana bound states has been discussed [28]. It seems logical

to consider how this nonlocal entanglement influences the Rabi

oscillations. First, each quantum dot certainly has Rabi oscilla-

tions with a Majorana bound state or an Andreev bound state at

each end. However, we will show a more interesting correla-

tion between quantum dots mediated by two Majorana bound

states. This correlation does not occur for the Andreev bound

state. Let us first establish the Hamiltonian for the proposed

setup. The two quantum dots have the Hamiltonian

(20)
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where ε1,2 are the energy for quantum dot levels, and  are

the creation operators on the quantum dot levels.

Figure 3: Schematics of two quantum dots coupling with the nanowire
island with (a) two Majorana bound states and (b) two Andreev bound
states. The two Majorana bound states form a single energy level,
while the Andreev bound states form two energy levels.

The Hamiltonian for the Majorana bound states is the same as

in the previous section, which could be described by a fermi-

onic operator f† = (γM − iγM′)/2. The two quantum dots are

coupled with the Majorana bound states through the tunneling

Hamiltonian

(21)

where T1,2 are the tunneling strength between the left and the

right pair of quantum dot and Majorana bound state in the form

of T1,2 = 2T′1,2cosω1,2t. We can explicitly write down the total

Hamiltonian in the matrix form by defining basis functions

, ,  ,  ,  ,  ,  

and , where  is the vacuum state. We arrive at an

8 × 8 matrix that is block diagonal because the total fermionic

parity of the system is conserved. For simplify, we take the

even total parity, and get a 4 × 4 matrix,

(22)

Now let us look at the quantum dots coupling with two Andreev

bound states at the end of the nanowire island. Since Andreev

bound states are eigenstates of superconductors, there are, in

principle, four energy levels in the entire system. The Hamil-

tonian of the system cam be written as

(23)

where i represents the left/right side of each operator with

Tiμ = μTi, Tiν = νTi. For this case, the system can be divided into

Figure 4: The maximum occupation probability of the left quantum dot
for (a) Majorana bound states and (b) Andreev bound states. Panels
(c) and (d) give the detailed oscillation as a function of the time at two
specific parameters marked as circles on (a).

left and right segments, which are uncoupled from each other.

For simplicity, we take the even parity of both sides, where the

basis states are chosen as , ,  and

. Then the Hamiltonian can be reformed to a four by

four matrix:

(24)

We find that this matrix is very similar to the matrix of quan-

tum dots and Majorana bound states. However, there is the key

distinction that the left quantum dot and the right quantum dot

should be entirely uncoupled. We note that this matrix is differ-

ent from the one shown in Equation 22 even if μ = ν, since the

two Andreev bound states correspond to two superconducting

quasiparticles with a 4 × 4 Hilbert subspace, while the two

Majorana bound states gives a single superconducting quasipar-

ticle with a 2 × 2 Hilbert subspace.

We numerically simulate the oscillations for the Majorana

bound states scenario and illustrate the maximum oscillation

amplitude for the occupation state of the left quantum dot in

Figure 4a. We find three lines of resonant driving energy.

The two vertical lines represent the resonant Rabi oscillation at

ω1 = ε1 ± 2δ, with a typical result shown in Figure 4c. They are

identical to the case of the single quantum dot and represents

the Rabi oscillation between the left quantum dot and the two

Majorana bound states, while leaving the right quantum dot
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uninvolved. There is one extra line that represents the resonant

Rabi driving energy at ω1 + ω2 = ε1 + ε2. This resonant energy

involves both quantum dots, and therefore would be coming

from the nonlocal entanglement of the quantum dots. We

present a typical Rabi oscillation in Figure 4d. It is the higher-

order oscillations between the states  and , namely a

charge oscillation between the left and right quantum dots. This

is a nonlocal coherent charge transfer process between the

quantum dots mediated by the two Majorana bound states. For

comparison, we illustrate the results for quantum dot occupa-

tion mediated through Andreev bound states. We find that the

Rabi oscillations at ω1 ≈ ε1 ± δ still exist, however, the higher-

order oscillations disappear. This can be explained by the fact

that left and the right part of the setup are uncoupled. The extra

resonant driving energy for Majorana bound states is a result of

the nonlocal quantum dot correlation and can be used as a

signature for Majorana bound states.

Conclusion
We studied the spatial Rabi oscillation between quantum dots

and Majorana bound states in a topological superconducting

island. We demonstrate that the coupling energy between Majo-

rana bound states can be detected by investigating the resonant

driving energy for the Rabi oscillation. We also show that the

Rabi oscillating frequency carries the information of the elec-

tron and hole components, therefore can be used to differen-

tiate Majorana bound states and Andreev bound states. At the

two resonant driving energies, we find identical Rabi frequen-

cies for Majorana bound states and different Rabi frequencies

for Andreev bound states. We further study the case of two

quantum dots coupled through the island and show that the

Majorana bound states are able to create correlated higher-order

Rabi oscillations on the quantum dots.
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