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Abstract
We show conceptually that the edge of a two-dimensional topological insulator can be used to construct a solid-state Stern–Gerlach

spin splitter. By threading such a Stern–Gerlach apparatus with a magnetic flux, Aharanov–Bohm-like interference effects are intro-

duced. Using ferromagnetic leads, the setup can be used to both measure magnetic flux and as a spintronics switch. With normal

metallic leads a switchable spintronics NOT-gate can be implemented. Furthermore, we show that a sequence of such devices can

be used to construct a single-qubit SU(2)-gate, one of the two gates required for a universal quantum computer. The field sensi-

tivity, or switching field, b, is related to the characteristic size of the device, r, through b = h/(2πqr2), with q being the unit of elec-

tric charge.
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Introduction
Two famous examples of the fundamental difference between

quantum mechanical and classical particles are provided

through the Stern–Gerlach (SG) experiment [1] and the

Aharanov–Bohm (AB) effect [2]. The SG experiment demon-

strates the peculiar behavior of the quantum mechanical spin,

teaching us that for any chosen axis the spin can be pointing

either up or down. Even more nonintuitive, the spin can also be

in a superposition of these two states, and thereby split in a SG

apparatus to travel along different paths [1]. The AB effect, on

the other hand, shows that the introduction of a magnetic vector

potential has important effects on the phase of the wave func-

tion. This is not merely a mathematical formality, but has

measurable consequences in interference measurements. When

a particle travels along two different paths that enclose a mag-

netic flux, it picks up different phases along the two paths, even

though the paths do not pass through the magnetic flux [2].

A topological insulator is a material with insulating bulk, but

with topologically protected helical edge states. Here we show

that it is possible to construct a solid state SG apparatus, or spin
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splitter, using the edge states in a two-dimensional topological

insulator (2D TI) [3-13]. The device consists of a small hole

drilled in the 2D TI, contacted by two leads. By threading a

magnetic flux through the hole an AB-like effect gives rise to

important interference effects, which allows for precise manipu-

lation of spin currents, as has already been noted in [14]. While

the ordinary AB effect arises because of interference in a single

complex number, the effects achieved here relies on modifying

the relative phase between the up and down components of the

spin. Thus, the effects we describe here can be classified as a

SU(2)-AB effects, while the ordinary situation corresponds to a

U(1)-AB effect.

While the AB effect recently has attracted some attention in 3D

TI [15-19], we here outline the concept for several concrete and

different applications of the SU(2)-AB effect in a 2D TI. More

specifically, we find that if using ferromagnetic leads, the

device can be used for sensitive measurements of magnetic field

strengths. The same setup can also be used to implement a spin-

tronic switch. Instead using normal metallic leads, we show that

a switchable spintronics NOT-gate can be constructed. Finally,

we also demonstrate how a sequential setup of normal-lead

solid-state SG spin splitters can be used to construct a single-

qubit SU(2)-gate, one of two gates required to construct a

universal quantum computer [20]. This also demonstrates the

full extent to which the effect is best thought of as a generaliza-

tion of the AB effect from U(1)-AB to SU(2)-AB.

Results
Setup
Consider the conceptual setup in Figure 1. The circular channel

around the hole forms an edge of the 2D TI and therefore hosts

helical edge states. We assume for simplicity that the spin-po-

larization axis is perpendicular to the plane of the TI. The

Hamiltonian describing the two counter-propagating edge chan-

nels is then simply given by

where arrows indicate the spin direction. In the ground state no

net current is carried from one side to the other. Since the

system is symmetric under a rotation of π around the z-axis or-

thogonal to the TI, even persistent currents are prevented. How-

ever, if a voltage is applied across the circuit, electrons can start

to flow from one side to the other, say from the left to the right.

This current will be proportional to the transfer matrix of the

states that are occupied at the left side, but unoccupied on the

right. We therefore begin by calculating this transfer matrix.

Figure 1: A hole drilled in a 2D TI creates two edge channels (orange).
Leads (grey) are attached on each side of the hole, and a bias voltage
is applied across the circuit. The transport properties of the device can
be altered by threading a magnetic flux (blue arrow) through the hole,
as well as by choosing either ferromagnetic or normal leads. The circu-
lar shape is not essential, but is used to simplify calculations.

When considering processes that transfers electrons from the

left to the right, we can, because of the helicity of the edge

states, restrict ourselves to up-spins along the upper edge, and

down-spins along the lower edge. Further, we introduce the co-

ordinate x1 = r(2π − θ) and x2 = rθ along the upper and lower

edges, respectively. The eigenvalue equations along the two

edges are then

and the corresponding eigenstates can be written as

We now thread a magnetic flux of magnetic field strength

B through the hole. To describe this we choose the vector

potential , which translates into 

and  in the new (x1, x2)-coordinates. The addition of

this vector potential acts on the phase of the eigenstates accord-

ing to

where q is the unit of electric charge. It is therefore clear

that the transfer matrix that describes the transport of spins from
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the left side, x1 = x2 = 0, to the right side, x1 = x2 = rπ, is given

by

(1)

We here note that under a gauge transformation A→A + A′,

where A′ satisfies , the transfer matrix trans-

forms as

We have confirmed that this additional phase drops out of all

physical quantities below, proving the gauge invariance of our

results, and we can therefore set A′ = 0. Similarly, the overall

phase in the above equation will drop out of all physical quanti-

ties. This also justifies us in not having specified the chemical

potential. Because, as long as the spectrum is described by the

same edge Hamiltonian, the only role of the chemical potential

is to determine around which momentum pf the relevant excita-

tions are located.

Transfer between lead and edge channels
The total transfer matrix for the system will not only depend on

the transfer matrix that describes the motion around the hole,

but also on the matrices that describe the transfer processes be-

tween the leads and the circular edge. We will here assume that

this process preserves phase coherence between the states in the

leads and the TI edge states, and that it is described by a single

tunneling parameter t, which we for now set to t = 1 to indicate

perfect transmission between lead and edge. That is, the trans-

mission is described by the identity matrix, and therefore con-

tributes trivially to the total transfer matrix. However, we will in

what follows be interested in tilting the TI by an angle φ rela-

tive to the quantization axis of the leads. It is therefore neces-

sary to also let the total transfer matrix encode a change of basis

between the leads and the TI. For this purpose we define two

sets of coordinate axes, the laboratory axes x,y,z, and the TI

axes x′,y′,z′. We choose to describe the electrons in the leads

with the coordinates in the laboratory frame, while the edge

states in the TI are described by the primed coordinates. It is

clear that Equation 1 refers to the transfer of states in the primed

basis. In particular, we choose the x,x′-axes along the direction

of motion of the electrons through the circuit, while the z,z′-axes

are chosen such that they coincide when φ = 0 and z′ is always

perpendicular to the TI. Explicitly, the x,y,z- and x′,y′,z′-coordi-

nates are related through

Using that spins transform according to

and simultaneously performing a gauge transformation

G = diag(1, i) to simplify the expressions below, the change of

basis from the x,y,z-basis to the x′,y′,z′-basis for the spins is

given by

(2)

We have here used L and R to denote the transformations from

the unprimed to the primed coordinates, and the primed to the

unprimed coordinates, respectively. The symbols L and R are

chosen since they are applied at the left and right end of the

system, respectively. With these definitions we are now ready

to write down the complete transfer matrix for the system

Here we have made explicit the dependence of T on the parame-

ters B and r on Equation 1, and of φ on Equation 2. The main

advantage of introducing the L and R matrices is that they allow

us to work in the laboratory frame alone. To calculate the prob-

ability that an incoming spin σ in the left lead is transferred to a

spin λ in the right lead, we now simply need to calculate the

square of the corresponding matrix element

Measuring magnetic flux
As a first example of a concrete application, we consider a

system with fully spin-polarized ferromagnetic leads only con-

taining electrons with spin-up. Further, the SG spin splitter is

assumed to be oriented at an angle φ = π/2, which forces the in-

coming spins to split equally into both channels. Because the

leads only conduct spin-up electrons, the only relevant matrix
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Figure 2: Three solid-state SG spin splitters in series, with the middle device at an angle π/2 relative to the other two.

element for the scattering matrix is

The conductance is therefore given by

(3)

It is clear that the very strong dependence of the current on the

magnetic flux Br2π makes this setup ideal for measuring mag-

netic field strength, as a potential alternative to supercon-

ducting quantum interference devices (SQUIDs). The measure-

ment resolution is directly set by the radius of the hole in the TI.

This is of special interest because it provides a potential route

for high-resolution magnetic field measurements even at room

temperatures [21,22].

Logic spintronics gates
Next we note that the configuration in the previous section can

also be used as a spintronics switch, with voltage used to

encode 0 and 1. The two leads can be used as source and drain,

while the magnetic field is used as the gate. From Equation 3 it

is clear that a magnetic field strength  corre-

sponds to “on” and “off” states for n even and odd, respectively,

and we therefore define the magnetic switching quantum

(4)

An alternative way to encode 1 and 0 is to use the currents of

up- and down-spins, respectively. This requires normal leads

through which both up- and down-spins can be transported. We

therefore consider the same configuration, but now evaluate all

four components of the transfer matrix T(B, r, π/2):

Similarly to the expressions above, the square of the transfer

matrices gives the transfer probability of the spin-polarized

currents. In particular, the off-diagonal matrix elements

 converts between up and down spin currents.

Therefore, the device relates the ingoing and outgoing spin

currents to each other through

Considering once again the special case , with n

being an integer, the currents transforms according to

This means that the device can be switched between a normal

lead and a NOT-gate, simply by changing B by the switching

quantum in Equation 4.

Quantum computer gate
Having seen how a TI SG apparatus can be used to construct

classical logic gates for spintronics, we finally turn to possible

applications in quantum computing. It has been shown that a

universal quantum computer can be built using only two-qubit

CNOT-gates and single-qubit SU(2)-gates [20]. We here show
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that a SG TI spin-splitter provides a route for implementing the

latter of these two gates.

For this purpose we consider three sequential spin-splitters

connected by normal leads. The three devices are oriented as in

Figure 2, with the middle device oriented at an angle φ2 = π/2,

while the first and the last spin splitter are at an angle

φ1 = φ3 = 0. The total transfer matrix for the complete system is

then given by

When evaluated, this expression can be written as

(5)

where

The six physical parameters Bi, ri are more than sufficient to

make the four parameters α, β1, β2 and β3 independent of each

other. Moreover, when all these four parameters can be chosen

independently, it is possible to express any U(2)-matrix using

Equation 5 [20]. Thus, it is possible to implement any unitary

single-qubit gate, and in particular any SU(2)-gate, through the

use of three sequential solid-state SG spin splitters. In fact, the

overall U(1)-phase provided by the parameter α can be ignored

for reasons similar to those for which the U(1)-phase provided

by the gauge transformation A→A + A′ can be ignored. This

phase would only be relevant if the incoming electron is further

split up into one part passing through the device, and one part

moving through another path joining only at the far right

outgoing lead.

In light of these results it is useful to think of the devices dis-

cussed here as exhibiting an SU(2)-AB effect. While the ordi-

nary AB effect arises as a consequence of interference in a

single U(1)-phase, these devices rely on a generalized SU(2)-

interference effect in the relative phase and amplitude of the up-

and down-components of the spin. To be able to create an arbi-

trary SU(2)-transformation, a sequence of three devices is

needed, while an individual spin splitter gives rise to a subset of

such SU(2)-transformations. Finally, we note that in this calcu-

lation we have omitted transfer matrices describing the propaga-

tion through the leads. We are justified in doing so because

these would be proportional to the identity matrix and therefore

only contribute to the irrelevant α phase.

Discussion
We would like to end with a few comments on some of the

assumptions made when deriving the above results. First of all,

the tunneling parameter t, which otherwise would have multi-

plied the L and R matrices was set to t = 1. It is clear that the

zero-th order correction to deviations from t = 1 is to include the

factor t2 in front of all transmission coefficients, which shows

up as t4 in the conductivity. The higher-order corrections would

come from particles that are reflected and travel an additional

time around the loop. While such terms can introduce correc-

tions to the interference pattern for intermediate field strengths,

they would not affect the result at multiples of the switching

quantum in Equation 4. The reason for this is that additional

circuits around the loop will only affect the relative phase be-

tween the up- and down-spins by multiples of 2π. Such interfer-

ence effect could also play a role for t = 1 when ferromagnetic

leads are used, because the down spins at the right edge will be

completely reflected. In a standard Landauer treatment such re-

flected terms would have been taken into account through

reflection matrices in addition to the transmission matrix we

have derived, as was for example done in [14]. However, a 2D

TI is very special in this regard, because the reflected spins

travel back along the opposite edge from which it traveled

toward the exit lead. Since we are only interested in forward

propagation of up spins along one edge, and down spins along

the other, it is possible to add additional floating ferromagnetic

leads with opposite spin polarization to the forward propa-

gating modes to the two edges. This allows for reflected spins to

escape without affecting the forward propagating spins and

thereby we can suppress higher-order corrections.

We also mention that although the setup in Figure 2 might seem

difficult to realize in practice, the focus of this work is to

provide a conceptual setup and an explanation of the phenome-

non itself. In fact, the only reason the middle spin splitter is

tilted at an angle π/2 is to make its edge states have their spin-

polarization perpendicular to those of the other two. In practice

it would therefore be possible to have all three devices in the

same plane, if it is constructed out of two different types of 2D

TIs with perpendicular spin-polarization axes.

Conclusion
We have shown that the helical edge states of a 2D TI can be

utilized to construct a solid-state SG spin splitter that when

threaded by a magnetic flux gives rise to a generalized SU(2)-
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AB interference effect. With two ferromagnetic leads, the

device can be used to accurately measure magnetic flux, as well

as be used as a magnetic field gated spintronics switch. Instead

by using normal leads, a switchable spintronics NOT-gate can

be implemented, or when using three devices connected in se-

quence, a SU(2)-gate for quantum computing is achieved.
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