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Abstract
We present a theoretical analysis of the equilibrium Josephson current-phase relation in hybrid devices made of conventional

s-wave spin-singlet superconductors (S) and topological superconductor (TS) wires featuring Majorana end states. Using Green’s

function techniques, the topological superconductor is alternatively described by the low-energy continuum limit of a Kitaev chain

or by a more microscopic spinful nanowire model. We show that for the simplest S–TS tunnel junction, only the s-wave pairing

correlations in a spinful TS nanowire model can generate a Josephson effect. The critical current is much smaller in the topological

regime and exhibits a kink-like dependence on the Zeeman field along the wire. When a correlated quantum dot (QD) in the mag-

netic regime is present in the junction region, however, the Josephson current becomes finite also in the deep topological phase as

shown for the cotunneling regime and by a mean-field analysis. Remarkably, we find that the S–QD–TS setup can support φ0-junc-

tion behavior, where a finite supercurrent flows at vanishing phase difference. Finally, we also address a multi-terminal S–TS–S ge-

ometry, where the TS wire acts as tunable parity switch on the Andreev bound states in a superconducting atomic contact.

1659

Introduction
The physics of topological superconductors (TSs) is being

vigorously explored at present. After Kitaev [1] showed that a

one-dimensional (1D) spinless fermionic lattice model with

nearest-neighbor p-wave pairing (‘Kitaev chain’) features a

topologically nontrivial phase with Majorana bound states

(MBSs) at open boundaries, references [2,3] have pointed out

that the physics of the Kitaev chain could be realized in

spin–orbit coupled nanowires with a magnetic Zeeman field and

in the proximity to a nearby s-wave superconductor. The spinful

nanowire model of references [2,3] indeed features p-wave

pairing correlations for appropriately chosen model parameters.

In addition, it also contains s-wave pairing correlations which

become gradually smaller as one moves into the deep topolog-

ical regime. Topologically nontrivial hybrid semiconductor
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nanowire devices are of considerable interest in the context of

quantum information processing [4-12], and they may also be

designed in two-dimensional layouts by means of gate lithogra-

phy techniques. Over the last few years, several experiments

employing such platforms have provided mounting evidence for

MBSs, e.g., from zero-bias conductance peaks in N–TS junc-

tions (where N stands for a normal-conducting lead) and via

signatures of the 4π-periodic Josephson effect in TS–TS junc-

tions [13-25]. Related MBS phenomena have been reported for

other material platforms as well [26-30], and most of the results

reported below also apply to those settings. Available materials

are often of sufficiently high quality to meet the conditions for

ballistic transport, and we will therefore neglect disorder

effects.

In view of the large amount of published theoretical works on

the Josephson effect in such systems, let us first motivate the

present study. (For a more detailed discussion and references,

see below.) Our manuscript addresses the supercurrent flowing

in Josephson junctions with a magnetic impurity. By consid-

ering Josephson junctions between a topological supercon-

ductor and a non-topological superconductor, we naturally

extend previous works on Josephson junctions with a magnetic

impurity between two conventional superconductors, as well as

other works on Josephson junctions between topological and

non-topological superconductors but without a magnetic impu-

rity. In the simplest description, Josephson junctions between

topological and non-topological supeconductors carry no super-

current. Instead, a supercurrent can flow only with certain devi-

ations from the idealized model description. The presence of a

magnetic impurity in the junction is one of these deviations, and

this effect allows for novel signatures for the topological transi-

tion via the so-called φ0-behavior and/or through the kink-like

dependence of the critical current on a Zeeman field driving the

transition. We consider two different geometries in various

regimes, e.g., the cotunneling regime where a controlled pertur-

bation theory is possible, and a mean-field description of the

stronger-coupling regime. We study both idealized Hamilto-

nians (allowing for analytical progress) as well as more real-

istic models for the superconductors.

To be more specific, we address the equilibrium current–phase

relation (CPR) in different setups involving both conventional

s-wave BCS superconductors (‘S’ leads) and TS wires, see

Figure 1 for a schematic illustration. In general, the CPR is

closely related to the Andreev bound state (ABS) spectrum of

the system. For S–TS junctions with the TS wire deep in the

topological phase such that it can be modeled by a Kitaev chain,

the supercurrent vanishes identically [31]. This supercurrent

blockade can be traced back to the different (s/p-wave) pairing

symmetries for the S/TS leads, together with the fact that MBSs

have a definite spin polarization. For an early study of

Josephson currents between superconductors with different

(p/d) pairing symmetries, see also [32]. A related phenomenon

concerns Multiple Andreev Reflection (MAR) features in

nonequilibrium superconducting quantum transport at subgap

voltages [33-36]. Indeed, it has been established that MAR pro-

cesses are absent in S–TS junctions (with the TS wire in the

deep topological regime) such that only quasiparticle transport

above the gap is possible [37-44].

Figure 1: Schematic setups studied in this paper. a) S–QD–TS geom-
etry: S denotes a conventional s-wave BCS superconductor with order
parameter , and TS represents a topologically nontrivial super-
conducting wire with MBSs (shown as stars) and proximity-induced
order parameter . The interface contains a quantum dot (QD)
corresponding to an Anderson impurity, connected to the S/TS leads
by tunnel amplitudes λS/TS (light red). The QD is also exposed to a
local Zeeman field B. b) S–TS–S geometry: Two conventional super-
conductors (S1 and S2) with the same gap Δ and a TS wire with prox-
imity gap Δp form a trijunction. The order parameter phase of S1 (S2),

1 = /2 ( 2 = − /2), is taken relative to the phase of the TS wire, and
tunnel couplings λ1/2 connect S1/S2 to the TS wire. When the TS wire
is decoupled (λ1,2 = 0), the S–S junction becomes a standard SAC with
transparency  determined by the tunnel amplitude t0, see
Equation 42.

There are several ways to circumvent this supercurrent blockade

in S–TS junctions. (i) One possibility has been described in

[43]. For a trijunction formed by two TS wires and one S lead,

crossed Andreev reflections allow for the nonlocal splitting of

Cooper pairs in the S electrode involving both TS wires (or the

reverse process). In this way, an equilibrium supercurrent will

be generated unless the MBS spin polarization axes of both TS

wires are precisely aligned. (ii) Even for a simple S–TS junc-

tion, a finite Josephson current is expected when the TS wire is

modeled as spinful nanowire. This effect is due to the residual

s-wave pairing character of the spinful TS model [2,3]. Interest-

ingly, upon changing a control parameter, e.g., the bulk Zeeman

field, which drives the TS wire across the topological phase
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transition, we find that the critical current exhibits a kink-like

feature that is mainly caused by a suppression of the Andreev

state contribution in the topological phase. (iii) Yet another pos-

sibility is offered by junctions containing a magnetic impurity

in a local magnetic field. We here analyze the S–QD–TS setup

in Figure 1a in some detail, where a quantum dot (QD) is

present within the S–TS junction region. The QD is modeled as

an Anderson impurity [36], which is equivalent to a spin-1/2

quantum impurity over a wide parameter regime. Once spin

mixing is induced by the magnetic impurity and the local mag-

netic field, we predict that a finite Josephson current flows even

in the deep topological limit. In particular, in the cotunneling

regime, we find an anomalous Josephson effect with finite

supercurrent at vanishing phase difference (φ0-junction behav-

ior) [45-47], see also [48-51]. The 2π-periodic CPR found in

S–QD–TS junctions could thereby provide independent evi-

dence for MBSs via the anomalous Josephson effect. In addi-

tion, we compute the CPR within the mean-field approximation

in order to go beyond perturbation theory in the tunnel

couplings connecting the QD to the superconducting leads. Our

mean-field analysis shows that the φ0-junction behavior is a

generic feature for S–QD–TS devices in the topological regime

which is not limited to the cotunneling regime.

In the final part of the paper, we turn to the three-terminal

S–TS–S setup shown in Figure 1b, where the S–S junction by

itself (with the TS wire decoupled) represents a standard super-

conducting atomic contact (SAC) with variable transparency of

the weak link. Recent experiments have demonstrated that the

many-body ABS configurations of a SAC can be probed and

manipulated to high accuracy by microwave spectroscopy [52-

54]. When the TS wire is coupled to the S–S junction, see

Figure 1b, the Majorana end state acts as a parity switch on the

ABS system of the SAC. This effect allows for additional func-

tionalities in Andreev spectroscopy. We note that similar ideas

have also been explored for TS–N–TS systems [55].

Results and Discussion
S–QD–TS junction
Model
Let us start with the case of an S–QD–TS junction, where an

interacting spin-degenerate single-level quantum dot (QD) is

sandwiched between a conventional s-wave superconductor (S)

and a topological superconductor (TS). This geometry is shown

in Figure 1a. The corresponding topologically trivial S–QD–S

problem has been studied in great detail over the past decades

both theoretically [56-63] and experimentally [64-69]. A main

motivation for those studies came from the fact that the QD can

be driven into the magnetic regime where it represents a spin-

1/2 impurity subject to Kondo screening by the leads. The

Kondo effect then competes against the superconducting bulk

gap and one encounters local quantum phase transitions. By

now, good agreement between experiment and theory has been

established. Rather than studying the fate of the Kondo effect in

the S–QD–TS setting of Figure 1a, we here pursue two more

modest goals. First, we shall discuss the cotunneling regime in

detail, where one can employ perturbation theory in the

dot–lead couplings. This regime exhibits π-junction behavior in

the S–QD–S case [56]. Second, in order to go beyond the cotun-

neling regime, we have performed a mean-field analysis similar

in spirit to earlier work for S–QD–S devices [57,58].

The Hamiltonian for the setup in Figure 1a is given by

(1)

where HS/TS and HQD describe the semi-infinite S/TS leads and

the isolated dot in between, respectively, and Htun refers to the

tunnel contacts. We often use units with e =  = kB = 1, and β =

1/T denotes inverse temperature. The QD is modeled as an

Anderson impurity [36], i.e., a single spin-degenerate level of

energy ε0 with repulsive on-site interaction energy U > 0,

(2)

where the QD occupation numbers are nσ =  dσ = 0,1, with

dot fermion operators dσ and  for spin σ. Using standard

Pauli matrices σx,y,z, we define

(3)

such that S/2 is a spin-1/2 operator. In the setup of Figure 1a,

we also take into account an external Zeeman field B = (Bx, By,

Bz) acting on the QD spin, where the units in Equation 2 include

gyromagnetic and Bohr magneton factors. The spinful nano-

wire proposal for TS wires [2,3] also requires a sufficiently

strong bulk Zeeman field oriented along the wire in order to

realize the topologically nontrivial phase, but for concreteness,

we here imagine the field B as independent local field coupled

only to the QD spin. One could use, e.g., a ferromagnetic grain

near the QD to generate it. This field here plays a crucial role

because for B = 0, the S+QD part is spin rotation [SU(2)]

invariant and the arguments of [31] then rule out a supercurrent

for TS wires in the deep topological regime. We show below

that unless B is inadvertently aligned with the MBS spin polari-

zation axis, spin mixing will indeed generate a supercurrent.

The S/TS leads are coupled to the QD via a tunneling Hamil-

tonian [70],
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(4)

where ψσ and ψ are boundary fermion fields representing the S

lead and the effectively spinless TS lead, respectively. For the S

lead, we assume the usual BCS model [62], where the operator

ψσ annihilates an electron with spin σ at the junction. The TS

wire will, for the moment, be described by the low-energy

Hamiltonian of a Kitaev chain in the deep topological phase

with chemical potential μ = 0 [1,5]. The corresponding fermion

operator ψ at the junction includes both the MBS contribution

and above-gap quasiparticles [40]. Without loss of generality,

we choose the unit vector  as the MBS spin polarization

direction and take real-valued tunnel amplitudes λS/TS, see

Figure 1a, using a gauge where the superconducting phase

difference  appears via the QD–TS tunneling term. These

tunnel amplitudes contain density-of-states factors for the

respective leads. The operator expression for the current

flowing through the system is then given by

(5)

We do not specify HS/TS in Equation 1 explicitly since within

the imaginary-time (τ) boundary Green’s function (bGF)

formalism [40] employed here, we only need to know the bGFs.

For the S lead with gap value Δ, the bGF has the Nambu matrix

form [40]

(6)

where the expectation value  refers to an isolated S lead, 

denotes time ordering, ω runs over fermionic Matsubara

frequencies, i.e., ω = 2π(n + 1/2)/β with integer n, and we define

Pauli (unity) matrices τx,y,z (τ0) in particle–hole space corre-

sponding to the Nambu spinor ΨS. Similarly, for a TS lead with

proximity-induced gap Δp, the low-energy limit of a Kitaev

chain yields the bGF [40]

(7)

The matrices τ0,x here act in the Nambu space defined by the

spinor ΨTS. Later on we will address how our results change

when the TS wire is modeled as spinful nanowire [2,3], where

the corresponding bGF has been specified in [43]. We empha-

size that the bGF (Equation 7) captures the effects of both the

MBS (via the 1/ω term) and of the above-gap continuum quasi-

particles (via the square root) [40,71].

In most of the following discussion, we will assume that U is

the dominant energy scale, with the single-particle level located

at ε0 ≈ − U/2. In that case, low-energy states with energy well

below U are restricted to the single occupancy sector,

(8)

and the QD degrees of freedom become equivalent to the spin-

1/2 operator S/2 in Equation 3. In this regime, the QD acts like

a magnetic impurity embedded in the S–TS junction. Using a

Schrieffer–Wolff transformation to project the full Hamiltonian

to the Hilbert subspace satisfying Equation 8, H → Heff, one

arrives at the effective low-energy Hamiltonian

(9)

with the interaction term

(10)

where S± = Sx ± iSy and δn =  − 1. Moreover,

 is the anticommutator of the composite bound-

ary fields

(11)

We note that Λ is real-valued and does not depend on . Due to

the constraint (Equation 8) on the dot occupation, the last two

terms in Equation 10 do not contribute to the system dynamics

and we obtain

(12)
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A formally exact expression for the partition function is then

given by

(13)

where  with  in Equation 9 and the

trace extends only over the Hilbert subspace corresponding to

Equation 8. We can equivalently write Equation 13 in the form

(14)

where F is the free energy. The Josephson current then follows

as I =(2e/ ) ∂ F, see Equation 5.

Cotunneling regime
We now address the CPR in the elastic cotunneling regime,

(15)

where perturbation theory in Hint is justified. We thus wish to

compute the free energy F( ) from Equation 14 to lowest

nontrivial order. With W0 = , the standard cumulant

expansion gives

(16)

By virtue of Wick’s theorem, time-ordered correlation func-

tions of the boundary operators (Equation 11) are now

expressed in terms of S/TS bGF matrix elements, see

Equation 6 and Equation 7,

(17)

and similarly

(18)

Next we observe that  As a consequence, the

-independent terms W0 and  in Equation 16 do not contrib-

ute to the Josephson current. The leading contribution is then of

second order in Hint,

(19)

with  in Equation 12 and the small dimensionless parame-

ter

(20)

From Equation 6 and Equation 7, the bGF matrix elements

needed in Equation 19 follow as

(21)

Now |g12(τ)| is exponentially small unless Δ|τ| < 1. In particular,

g12(τ) → −δ(τ) for Δ → ∞. Moreover, for B  Δ with B ≡ |B|,

the magnetic impurity (S) dynamics will be slow on time scales

of the order of 1/Δ. We may therefore approximate the

spin–spin correlators in Equation 19 by their respective equal-

time expressions,

(22)

Inserting Equation 21 and Equation 22 into the expression for

the supercurrent in Equation 19, the time integrations can be

carried out analytically.

We obtain the CPR in the cotunneling regime as

(23)
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with κ in Equation 20. We note that while I( ) is formally inde-

pendent of Δ, the value of Δ must be sufficiently large to justify

the steps leading to Equation 23. Remarkably, Equation 23

predicts anomalous supercurrents for the S–QD–TS setup, i.e., a

finite Josephson current for vanishing phase difference (  = 0)

[45,46,72]. One can equivalently view this effect as a φ0-shift in

the CPR, I( ) = Ic sin(  + φ0). An observation of this φ0-junc-

tion behavior could then provide additional evidence for MBSs

(see also [47]), where Equation 23 shows that the local magnet-

ic field is required to have a finite By-component with 

defining the MBS spin polarization direction. In particular, if B

is aligned with , the supercurrent in Equation 23 vanishes

identically since s-wave Cooper pairs cannot tunnel from the S

lead into the TS wire in the absence of spin flips [31]. Other-

wise, the CPR is 2π-periodic and sensitive to the MBS through

the peculiar dependence on the relative orientation between the

MBS spin polarization ( ) and the local Zeeman field B on the

QD. The fact that By ≠ 0 (rather than Bx ≠ 0) is necessary to

have φ0 ≠ 0 can be traced back to our choice of real-valued

tunnel couplings. For tunable tunnel phases, also the field direc-

tion where one has φ0 = 0 will vary accordingly.

Noting that the anomalous Josephson effect has recently been

observed in S–QD–S devices [73], we expect that similar exper-

imental techniques will allow to access the CPR (Equation 23).

We mention in passing that previous work has also pointed out

that experiments employing QDs between N (instead of S) leads

and TS wires can probe nonlocal effects due to MBSs

[12,16,74-78]. In our case, e.g., by variation of the field direc-

tion in the xy-plane, Equation 23 predicts a tunable anomalous

supercurrent. We conclude that in the cotunneling regime, the

π-junction behavior of S–QD–S devices is replaced by the more

exotic physics of φ0-junctions in the S–QD–TS setting.

Mean-field approximation
Next we present a mean-field analysis of the Hamiltonian

(Equation 1) which allows us to go beyond the perturbative

cotunneling regime. For the corresponding S–QD–S case, see

[58,79]. We note that a full solution of this interacting many-

body problem requires a detailed numerical analysis using, e.g.,

the numerical renormalization group [60,61] or quantum Monte

Carlo simulations [59,63], which is beyond the scope of the

present work. We start by defining the GF of the QD,

(24)

Note that this notation introduces double counting, which

implies that only half of the levels are physically independent.

Of course, the results below take this issue into account.

With the above Nambu bi-spinor basis, the mean-field Hamil-

tonian has the 4 × 4 matrix representation

(25)

The mean-field parameters appearing in Equation 25 follow by

solving the self-consistency equations

(26)

where the mean-field approximation readily yields

(27)

The self-energies ΣS/TS(ω) due to the coupling of the QD to the

S/TS leads have the matrix representation

(28)

and

(29)

with the hybridization parameters ΓS/TS = . The bGFs

g(ω) and G(ω) have been defined in Equation 6 and Equation 7,

respectively. Once a self-consistent solution to Equation 26 has

been determined, which in general requires numerics, the

Josephson current is obtained from Equation 5 as
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Figure 2: Phase dependence of the subgap spectrum of an S–QD–TS junction in the noninteracting case, U = 0. The TS wire is modeled from the
low-energy limit of a Kitaev chain, and we use the parameters By = 0, Bx = Bz = B/ , ε0 = 0, Δp = Δ, and ΓS = ΓTS = Γ. From blue to yellow, the color
code indicates increasing values of the spectral density. The left (right) panel is for Γ = 0.045Δ and B = 0.1Δ (Γ = B = 0.5Δ). Solid curves were ob-
tained by numerical evaluation of Equation 30. Dashed curves give the analytical prediction (Equation 32). In the right panel, the energies resulting
from Equation 32 have been rescaled by the factor 1 + Γ/Δ.

(30)

In what follows, we study a setup with Δp = Δ and consider the

zero-temperature limit.

In order to compare our self-consistent mean-field results to the

noninteracting case, let us briefly summarize analytical expres-

sions for the U = 0 ABS spectrum in the atomic limit defined by

ΓS,TS  Δ. First we notice that at low energy scales, the self-

energy Σ = ΣS + ΣTS, see Equation 28 and Equation 29, simpli-

fies to

(31)

The ABS spectrum of the S–QD–TS junction then follows by

solving a determinantal equation,  One finds a

zero-energy pole which is related to the MBS and results from

the 1/ω dependence of ΣTS(ω). In addition, we get finite-energy

subgap poles for

(32)

with the notation

(33)

In Figure 2, numerically exact results for the U = 0 ABS spec-

trum are compared to the analytical prediction (Equation 32).

We first notice that, as expected, Equation 32 accurately fits the

numerical results in the atomic limit, see the left panel in

Figure 2. Deviations can be observed for larger values of ΓS,TS/

Δ. However, as shown in the right panel of Figure 2, rather

good agreement is again obtained by rescaling Equation 32 with

a constant factor of the order of (1 + ΓS,TS/Δ). For finite By, we

find (data not shown) that the phase-dependent ABS spectrum

is shifted with respect to  = 0. In fact, since the phase depen-

dence of the subgap states comes from the term  in

the atomic limit, see Equation 25 and Equation 33, By can be

fully accounted for in this limit by simply shifting  →  + φ0.

We thereby recover the φ0-junction behavior discussed before

for the cotunneling regime, see Equation 23.

We next turn to self-consistent mean-field results for the phase-

dependent ABS spectrum at finite U. Figure 3 shows the spec-

trum for the electron–hole symmetric case ε0 = −U/2, with other

parameters as in the right panel of Figure 2. For moderate inter-

action strength, e.g., taking U = Δ (left panel), we find that com-
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Figure 3: Phase-dependent ABS spectrum from mean-field theory for S–QD–TS junctions as in Figure 2 but with U > 0 and ε0 = −U/2. We put Δp = Δ,
By = 0, and ΓS = ΓTS = Γ. The color code is as in Figure 2. The left panel is for U = Δ, Γ = 0.5Δ, and Bx = Bz = B/  with B = 0.5Δ [cf. the right panel
of Figure 2]. The right panel is for U = 10Δ, Γ = 4.5Δ, Bx = 15Δ, and Bz = 0.

pared to the U = 0 case in Figure 2, interactions push together

pairs of Andreev bands, e.g., the pair corresponding to  in

Equation 30. On the other hand, for stronger interactions, e.g.,

U = 10Δ (right panel), the outer ABSs leak into the continuum

spectrum and only the inner Andreev states remain inside the

superconducting gap. The ABS spectrum shown in Figure 3 is

similar to what is observed in mean-field calculations for

S–QD–S systems with broken spin symmetry and in the mag-

netic regime of the QD, where one finds up to four ABSs for

U < Δ while the outer ABSs merge with the continuum for

U > Δ [79]. Interestingly, the inner ABS contribution to the free

energy for U = 10Δ is minimal for  = π, see right panel of

Figure 3, and we therefore expect π-junction behavior for By = 0

also in the regime with U  Δ and B  Δ. We notice, howev-

er, that changing the sign of Bx would result in zero junction be-

havior. We interpret the inner ABSs for U  Δ as Shiba states

with the phase dependence generated by the coupling to the

MBS. Without the latter coupling, the Shiba state has -inde-

pendent energy slightly below Δ determined by the scattering

phase shift difference between both spin polarizations [80].

As illustrated in Figure 4, the CPR computed numerically from

Equation 30 for different values of ΓS,TS/Δ, where Bx has been

inverted with respect to its value in Figure 3, results in zero

junction behavior. This behavior is expected from Equation 23

in the cotunneling regime, and Figure 4 shows that it also

persists for ΓS,TS  Δ. In contrast to Equation 23, however, the

CPR for ΓS,TS  Δ differs from a purely sinusoidal behavior,

see Figure 4. Moreover, for By ≠ 0, we again encounter φ0-junc-

tion behavior, cf. the inset of Figure 4, in accordance with the

perturbative result in Equation 23. Our mean-field results

suggest that φ0-junction behavior is very robust and extends

also into other parameter regimes as long as the condition

By ≠ 0 is met.

Figure 4: Main panel: Mean-field results for the CPR of S–QD–TS
junctions with different Γ/Δ values, where we assume Δp = Δ, U = 10Δ,
ε0 = −U/2, ΓS = ΓTS = Γ, B = 15Δ, and Bz = 0. Main panel: For Bx = −B
and By = 0. Inset: Same but for By = −Bx = B/ , where φ0-junction
behavior occurs.

Next, Figure 5 shows mean-field results for the critical current,

|I( )|, as function of the local magnetic field Bx

and otherwise the same parameters as in Figure 4. The main

panel in Figure 5 shows that Ic increases linearly with

Bx for small Bx < Δ, then exhibits a maximum around Bx ≈ Γ,

and subsequently decreases again to small values for

Bx  max{ΓS,TS,Δ}. On the other hand, for a fixed absolute
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value B of the magnetic field and By = 0, the critical current also

exhibits a maximum as a function of the angle θB between B

and the MBS spin polarization axis ( ). This effect is illus-

trated in the inset of Figure 5. As expected, the Josephson cur-

rent vanishes for θB → 0, where the supercurrent blockade argu-

ment of [31] implies Ic = 0, and reaches its maximal value for

θB = π/2.

Figure 5: Main panel: Mean-field results for the critical current Ic vs
local magnetic field scale Bx in S–QD–TS junctions. Parameters are as
in the main panel of Figure 4, i.e., U = 10Δ, ε0 = −U/2, and By,z = 0.
From left to right, different curves are for Γ/Δ = 4.5, 8, 10 and 12.5.
Inset: Ic vs angle θB, where B = B (sinθB,0,cosθB) with B = 15Δ.

Spinful nanowire model for the TS
Model
Before turning to the S–TS–S setup in Figure 1b, we address the

question of how the above results for S–QD–TS junctions

change when using the spinful nanowire model of [2,3] instead

of the low-energy limit of a Kitaev chain, see Equation 7. In

fact, we will first describe the Josephson current for the elemen-

tary case of an S–TS junction using the spinful nanowire model.

Surprisingly, to the best of our knowledge, this case has not yet

been addressed in the literature.

In spatially discretized form, the spinful nanowire model for TS

wires reads [2,3,43]

(34)

where the lattice fermion operators cjσ for given site j with spin

polarizations σ = ↑,↓ are combined to the four-spinor operator

The Pauli matrices τx,y,z (and unity τ0) again act in Nambu

space, while Pauli matrices σx,y,z and σ0 refer to spin. In

the figures shown below, we choose the model parameters in

Equation 34 as discussed in [43]. The lattice spacing is set to

a = 10 nm, which results in a nearest-neighbor hopping

t = 2/(2m*a2) = 20 meV and the spin–orbit coupling strength

α = 4 meV for InAs nanowires. The proximity-induced pairing

gap is again denoted by Δp, the chemical potential is μ, and the

bulk Zeeman energy scale Vx is determined by a magnetic field

applied along the wire. Under the condition

(35)

the topologically nontrivial phase is realized [2,3]. As we

discuss below, the physics of the S–QD–TS junction sensi-

tively depends on both the bulk Zeeman field Vx and on the

local magnetic field B acting on the QD, where one can either

identify both magnetic fields or treat B as independent field. In

any case, the bGF (ω) for the model in Equation 34, which

now replaces the Kitaev chain result G(ω) in Equation 7, needs

to be computed numerically. The bGF  has been described in

detail in [43], where also a straightforward numerical scheme

for calculating (ω) has been devised. With the replacement

G→ , we can then take over the expressions for the Josephson

current discussed before. Below we study these expressions in

the zero-temperature limit.

S–TS junction
Let us first address the CPR for the S–TS junction case. The

Josephson current can be computed using the bGF expression

for tunnel junctions in [40], which is a simplified version of the

above expressions for the S–QD–TS case. The spin-conserving

tunnel coupling λ defines a transmission probability (trans-

parency)  of the normal junction [40,43]. Close to the topo-

logical transition, the transparency is well approximated by

(36)
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where t = 20 meV is the hopping parameter in Equation 34. We

then study the CPR and the resulting critical current Ic as a

function of  for both the topologically trivial (Vx < ) and

the nontrivial (Vx > ) regime, see Equation 35.

In Figure 6, we show the Vx dependence of the critical current Ic

for the symmetric case Δ = Δp. In particular, it is of interest to

determine how Ic changes as one moves through the phase tran-

sition in Equation 35. First, we observe that Ic is strongly

suppressed in the topological phase in comparison to the topo-

logically trivial phase. In fact, Ic slowly decreases as one moves

into the deep topological phase by increasing Vx. This observa-

tion is in accordance with the expected supercurrent blockade in

the deep topological limit [31]: Ic = 0 for the corresponding

Kitaev chain case since p-wave pairing correlations on the TS

side are incompatible with s-wave correlations on the S side.

However, a residual finite supercurrent can be observed even

for rather large values of Vx. We attribute this effect to the

remaining s-wave pairing correlations contained in the spinful

nanowire model (Equation 34). Second, Figure 6 shows kink-

like features in the Ic(Vx) curve near the topological transition,

Vx ≈ . The inset of Figure 6 demonstrates that this feature

comes from a rapid decrease of the ABS contribution while the

continuum contribution remains smooth. This observation sug-

gests that continuum contributions in this setup mainly origi-

nate from s-wave pairing correlations which are not particular-

ly sensitive to the topological transition.

Figure 6: Main panel: Critical current Ic vs Zeeman energy Vx for an
S–TS junction using the spinful TS nanowire model (Equation 34) for
Δp = Δ = 0.2 meV, μ = 5 meV, and different transparencies  calcu-
lated from Equation 36. All other parameters are specified in the main
text. Inset: Decomposition of Ic for  = 1 into ABS (dotted-dashed)
and continuum (dashed) contributions.

In Figure 7, we show the CPR for the S–TS junction with

 = 1 in Figure 6, where different curves correspond to differ-

ent Zeeman couplings Vx near the critical value. We find that in

many parameter regions, in particular for  < 1, the CPR is to

high accuracy given by a conventional 2π-periodic Josephson

relation, I( ) = Ic sin . In the topologically trivial phase, small

deviations from the sinusoidal law can be detected, but once

one enters the topological phase, these deviations become

extremely small.

Figure 7: CPR for the S–TS junction with  = 1 in Figure 6, for differ-
ent bulk Zeeman fields Vx (in meV) near the critical value

 = 5.004 meV.

S–QD–TS junction with spinful TS wire: Mean-field
theory
Apart from providing a direct link to experimental control pa-

rameters, another advantage of using the spinful nanowire

model of [2,3] for modeling the TS wire is that the angle be-

tween the local Zeeman field B and the MBS spin polarization

does not have to be introduced as phenomenological parameter

but instead results from the calculation [43]. It is thus interest-

ing to study the Josephson current in S–QD–TS junctions where

the TS wire is described by the spinful nanowire model. For this

purpose, we now revisit the mean-field scheme for S–QD–TS

junctions using the bGF (ω) for the spinful nanowire model

(Equation 34). In particular, with the replacement G→ , we

solve the self-consistency equations (Equation 26) and thereby

obtain the mean-field parameters in Equation 25. The resulting

QD GF, Gd(ω) in Equation 27, then determines the Josephson

current in Equation 30. Below we present self-consistent mean-

field results obtained from this scheme. In view of the huge pa-

rameter space of this problem, we here only discuss a few key

observations. A full discussion of the phase diagram and the

corresponding physics will be given elsewhere.

The main panel of Figure 8 shows the critical current Ic vs

the bulk Zeeman energy Vx for several values of the

chemical potential μ, where the respective critical value  in
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Equation 35 for the topological phase transition also changes

with μ. The results in Figure 8 assume that the local magnetic

field B acting on the QD coincides with the bulk Zeeman field

Vx in the TS wire, i.e., B = (Vx,0,0). For the rather large values

of ΓS,TS taken in Figure 8, the Ic vs Vx curves again exhibit a

kink-like feature near the topological transition, Vx ≈ . This

behavior is very similar to what happens in S–TS junctions with

large transparency , cf. Figure 6. As demonstrated in the inset

of Figure 8, the physical reason for the kink feature can be

traced back to a sudden drop of the ABS contribution to Ic when

entering the topological phase Vx > . In the latter phase, Ic

becomes strongly suppressed in close analogy to the S–TS junc-

tion case shown in Figure 6.

Figure 8: Main panel: Critical current Ic vs Zeeman energy Vx for
S–QD–TS junctions from mean-field theory using the spinful TS nano-
wire model (Equation 34). Results are shown for several values of the
chemical potential μ (in meV), where we assume U = 10Δ, ε0 = −U/2,
Δp = Δ = 0.2 meV, ΓS = 2ΓTS = 9Δ, and B = (Vx,0,0). Inset: Detailed
view of the transition region Vx ≈  for μ = 4 meV, including a decom-
position of Ic into the ABS (dotted-dashed) and the continuum (dashed)
contribution.

In Figure 8, both the QD and the TS wire were subject to the

same magnetic Zeeman field. If the direction and/or the size of

the local magnetic field B applied to the QD can be varied inde-

pendently from the bulk magnetic field Vx  applied to the TS

wire, one can arrive at rather different conclusions. To illustrate

this statement, Figure 9 shows the Ic vs Bz dependence for

B = (0,0,Bz) perpendicular to the bulk field, with Vx >  such

that the TS wire is in the topological phase. In this case,

Figure 9 shows that Ic exhibits a maximum close to Bz ~ Γ. This

behavior is reminiscent of what we observed above in Figure 5,

using the low-energy limit of a Kitaev chain for the bGF of the

TS wire. Remarkably, the critical current can here reach values

close to the unitary limit, Ic ~ eΔ/ . We note that since Bz does

not drive a phase transition, no kink-like features appear for the

Ic(Bz) curves shown in Figure 9. Finally, the inset of Figure 9

shows that for B perpendicular to Vx , where Vx >  for the

parameters chosen in Figure 9, the ABSs provide the dominant

contribution to the current in this regime.

Figure 9: Main panel: Mean-field results for Ic vs Bz in S–QD–TS junc-
tions for several values of ΓS = ΓTS = Γ (in meV) and μ = 4 meV. The
bulk Zeeman field Vx = 5 meV along  (where Vx >  for our param-
eters) is applied to the spinful TS wire, while the QD is subject to the
local magnetic field B = Bz . All other parameters are as in Figure 8.
Inset: Decomposition of Ic into ABS (dotted-dashed) and continuum
(dashed) contributions for Γ = 1.6 meV.

S–TS–S junctions: Switching the parity of a
superconducting atomic contact
Model
We now proceed to the three-terminal S–TS–S setup shown in

Figure 1b. The CPR found in the related TS–S–TS trijunction

case has been discussed in detail in [43], see also [44]. Among

other findings, a main conclusion of [43] for the TS–S–TS ge-

ometry was that the CPR can reveal information about the spin

canting angle between the MBS spin polarization axes in both

TS wires. In what follows, we study the superficially similar yet

rather different case of an S–TS–S junction. Throughout this

section, we model the TS wire via the low-energy theory of a

spinless Kitaev chain, where the bGF G(ω) in Equation 7

applies.

One can view the setup in Figure 1b as a conventional super-

conducting atomic contact (SAC) with a TS wire tunnel-

coupled to the S–S junction. Over the past few years, impres-

sive experimental progress [52-54] has demonstrated that the

ABS level system in a SAC [81] can be accurately probed and
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manipulated by coherent or incoherent microwave spectrosco-

py techniques. We show below that an additional TS wire, cf.

Figure 1b, acts as tunable parity switch on the many-body ABS

levels of the SAC. As we have discussed above, the supercur-

rent flowing directly between a given S lead and the TS wire is

expected to be strongly suppressed. However, through the

hybridization with the MBS, Andreev level configurations with

even and odd fermion parity are connected. This effect has

profound and potentially useful consequences for Andreev

spectroscopy.

An alternative view of the setup in Figure 1b is to imagine an

S–TS junction, where S1 plays the role of the S lead and the

spinful TS wire is effectively composed from a spinless

(Kitaev) TS wire and the S2 superconductor. The p- and s-wave

pairing correlations in the spinful TS wire are thereby spatially

separated. Since the s- and p-wave bands represent normal

modes, they are not directly coupled to each other in this

scenario, i.e., we have to put λ2 = 0. We discuss this analogy in

more detail later on.

We consider a conventional single-channel SAC (gap Δ)

coupled via a point contact to a TS wire (gap Δp), cf. Figure 1b.

The superconducting phase difference across the SAC is

denoted by  where  is the phase difference be-

tween the respective S arm (j = 1,2) and the TS wire. In prac-

tice, the SAC can be embedded into a superconducting ring for

magnetic flux tuning of . To allow for analytical progress, we

here assume that Δp is so large that continuum quasiparticle ex-

citations in the TS wire can be neglected. In that case, only the

MBS at the junction has to be kept when modeling the TS wire.

However, we will also hint at how one can treat the general

case.

For the two S leads, boundary fermion fields are contained in

Nambu spinors as in Equation 6,

(37)

where their bGF follows with the Nambu matrix g(ω) in Equa-

tion 6 as

(38)

We again use Pauli matrices τx,y,z and unity τ0 in Nambu space.

The dimensionless parameters b1,2 describe the Zeeman field

component along the MBS spin polarization axis, see below.

Since above-gap quasiparticles in the TS wire are neglected

here, the TS wire is represented by the Majorana operator

γ = γ†, with γ2 = 1/2, which anticommutes with all other

fermions. We may represent γ by an auxiliary fermion f↑, where

the index reminds us that the MBS spin polarization points

along ,

(39)

The other Majorana mode γ′ =  which is

localized at the opposite end of the TS wire, is assumed to have

negligible hybridization with the ΨS,j spinors and with γ.

Writing the Euclidean action as S = S0 + Stun, we have an

uncoupled action contribution,

(40)

The leads are connected by a time-local tunnel action corre-

sponding to the tunnel Hamiltonian

(41)

Without loss of generality, we assume that the tunnel ampli-

tudes t0 and λ1,2, see Figure 1b, are real-valued and that they

include density-of-state factors again. The parameter t0 (with

0 ≤ t0 ≤ 1) determines the transparency  of the SAC in the

normal-conducting state [36], cf. Equation 36,

(42)

Note that in Equation 41 we have again assumed spin-

conserving tunneling, where only spin-↑ fermions in the SAC

are tunnel-coupled to the Majorana fermion γ, cf. Equation 4.

At this stage, it is convenient to trace out the ΨS,2 spinor field.

As a result, the SAC is described in terms of only one spinor

field, Ψ ≡ ΨS,1, which however is still coupled to the Majorana

field γ. After some algebra, we obtain the effective action
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(43)

where the operator P↑ = (τ0 + τz)/2 projects a Nambu spinor to

its spin-↑ component. Moreover, we have defined an effective

GF in Nambu space with frequency components

(44)

and the TS lead has been represented by the Majorana–Nambu

spinor

(45)

We note in passing that Equation 43 could at this point be

generalized to include continuum states in the TS wire. To that

end, one has to (i) replace Φ → (ψ, ψ†)T, where ψ is the bound-

ary fermion of the effectively spinless TS wire, and (ii) replace

δ(τ − τ′)∂τ′ → G−1(τ − τ′) with G in Equation 7. Including bulk

TS quasiparticles becomes necessary for small values of the

proximity gap, Δp  Δ, and/or when studying nonequilibrium

applications within a Keldysh version of our formalism.

In any case, after neglecting the above-gap TS continuum quasi-

particles, the partition function follows with Seff in Equation 43

in the functional integral representation

(46)

As before, the Josephson current through S lead no. j then

follows from the free energy via

The supercurrent flowing through the TS wire is then given by

(47)

as dictated by current conservation.

Atomic limit
In order to get insight into the basic physics, we now analyze in

detail the atomic limit, where Δ represents the largest energy

scale of interest and hence the dynamics is confined to the

subgap region. In this case, we can approximate .

After the rescaling

in Equation 43, we arrive at an effective action, Seff → Sat, valid

in the atomic limit,

(48)

where  is the reflection amplitude of the SAC, see

Equation 42. We recall that , see Equation 37.

Moreover, we define the auxiliary parameters

(49)

The parameters b1,2 in Equation 38 thus effectively generate the

Zeeman scale Bz in Equation 49.

As a consequence of the atomic limit approximation, the action

Sat in Equation 48 is equivalently expressed in terms of the

effective Hamiltonian

(50)

where we define

(51)
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For a SAC decoupled from the TS wire and taken at zero field

(Bz = 0), the ABS energy follows from Equation 50 in the stan-

dard form [62]

(52)

We emphasize that Hat neglects TS continuum quasiparticles as

well as all types of quasiparticle poisoning processes. Let us

briefly pause in order to make two remarks. First, we note that

the Majorana field

see Equation 39, couples to both spin modes ψσ in Equation 50.

The coupling λ↓ between γ and the spin-↓ field in the SAC, ψ↓,

is generated by crossed Andreev reflection processes, where a

Cooper pair in lead S2 splits according to ,

plus the conjugate process. Second, we observe that Hat is

invariant under a particle–hole transformation, amounting to the

replacements  and , along with Bz → − Bz

and  → 2π − .

We next notice that with nσ =  = 0,1 and nf =  = 0,1,

the total fermion parity of the junction,

(53)

is a conserved quantity, [ , Hat]− = 0. Below we restrict our

analysis to the even-parity sector  = +1, but analogous

results hold for the odd-parity case. The corresponding Hilbert

subspace is spanned by four states,

(54)

where (n↑, n↓, nf)  {(0,0,0), (1,1,0), (1,0,1), (0,1,1)} and  is

the vacuum state. In this basis, the Hamiltonian (Equation 50)

has the matrix representation

(55)

The even-parity ground state energy,  = min(ε), follows as

the smallest root of the quartic equation

(56)

In order to obtain simple results, let us now consider the special

case λ2 = 0, where the TS wire is directly coupled to lead S1

only, see Figure 1b. In that case, we also have λ↓= 0, see Equa-

tion 49, and Equation 56 implies the four eigenenergies ±ε±

with

(57)

with , see Equation 49. The ground-state

energy is thus given by  = −ε+. Since EG depends on the

phases  only via the Andreev level energy EA( ) in Equa-

tion 52, the Josephson current through the SAC is given by

(58)

Note that Equation 47 then implies that no supercurrent flows

into the TS wire.

Next we observe that in the absence of the TS probe (λ1 = 0),

the even and odd fermion parity sectors of the SAC,

, are decoupled, see Equation 55, and

Equation 57 yields  = −max(EA, |Bz|). Importantly, the

Josephson current is therefore fully blocked if the ground state

is in the  = −1 sector, i.e., for |Bz| > EA( ). For λ1 ≠ 0,

however,  is not conserved anymore. This implies that

the MBS can act as parity switch between the two Andreev

sectors with parity  = ±1. Near the level crossing point at

EA ≈ |Bz |, i.e., assuming  we

obtain

(59)

which implies a nonvanishing supercurrent through the SAC

even in the field-dominated regime, |Bz| > EA. The MBS there-

fore acts as a parity switch and leaves a trace in the CPR by

lifting the supercurrent blockade.
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Another interpretation
Interestingly, for λ2 =  = 0, the S–TS–S setup in Figure 1b

could also be viewed as a toy model for an S–TS junction,

where the TS part corresponds to a spinful model. In that

analogy, the Nambu spinor ΨS,1 stands for the S lead while the

spinful TS wire is represented by (i) the Nambu spinor ΨS,2

which is responsible for the residual s-wave pairing correla-

tions, and (ii) by the MF γ (or, more generally, by the Kitaev-

chain spinless boundary fermion ψ) which encodes p-wave

pairing correlations. Moreover, t0 and λ1 should now be under-

stood as spin-conserving phenomenological tunnel couplings

acting in the s–s and s–p wave channels, respectively. The

phase difference across this effective S–TS junction is  = 

and the net S–TS tunnel coupling is given by .

Putting λ1 = 0 in the topologically trivial phase of the TS wire,

the Josephson current carried by Andreev states in the s–s

channel is blocked when the ground state is in the odd parity

sector of the SAC. For λ1 ≠ 0, the MBS-mediated switching be-

tween odd and even parity sectors will now be activated and

thereby lift the supercurrent blockade.

Conventional midgap level
A similar behavior as predicted above for the MBS-induced

parity switch between  = ±1 sectors could also be ex-

pected from a conventional fermionic subgap state tunnel-

coupled to the SAC. Such a subgap state may be represented,

e.g., by a single-level quantum dot in the Coulomb blockade

regime. In particular, for a midgap (zero-energy) level with the

fermion operator d, the Hamiltonian Hat in Equation 50 has to

be replaced with

(60)

In the even total parity basis (Equation 54), the matrix represen-

tation of the Hamiltonian is then instead of Equation 55 given

by

(61)

Assuming |λ↑| = |λ↓| ≡ λ, Equation 56 then yields the eigenener-

gies ±ε± with

(62)

Remarkably, the ABS spectra in Equation 62 and Equation 57

are rather similar for . However, the MBS

will automatically be located at zero energy and thus represents

a generic situation.

Conclusion
We close this paper by summarizing our main findings. We

have studied the Josephson effect in different setups involving

both conventional s-wave BCS superconductors (S leads) and

topologically nontrivial 1D p-wave superconductors (TS leads)

with Majorana end states. The TS wires have been described

either by a spinless theory applicable in the deep topological

regime, which has the advantage of allowing for analytical

progress but makes it difficult to establish contact to experimen-

tal control parameters, or by a spinful nanowire model as sug-

gested in [2,3]. We have employed a unified imaginary-time

Green’s function approach to analyze the equilibrium proper-

ties of such devices, but a Keldysh generalization is straightfor-

ward and allows one to study also nonequilibrium applications.

For S–TS tunnel junctions, we find that in the topological phase

of the TS wire, the supercurrent is mainly carried by above-gap

continuum contributions. We confirm the expected supercur-

rent blockade [31] in the deep topological regime (where the

spinless theory is fully valid and thus no residual s-wave pairing

exists), while for realistic parameters, a small but finite critical

current is found. To good approximation, the Josephson current

obeys the usual 2π-periodic sinusoidal current–phase relation.

The dependence of the critical current on the bulk Zeeman field

driving the TS wire through the topological phase transition

shows a kink-like feature at the critical value, which is caused

by a sudden drop of the Andreev state contribution.

The supercurrent blockade in the deep topological phase could

be lifted by adding a magnetic impurity to the junction, also

allowing for the presence of a local magnetic field B. Such a

magnetic impurity arises from a spin-degenerate quantum dot

(QD), and we have studied the corresponding S–QD–TS prob-

lem for both the spinless and the spinful TS wire model. Based

on analytical results valid in the cotunneling regime as well as

numerical results within the mean-field approximation, we

predict φ0-junction behavior (anomalous Josephson effect) for

the current–phase relation when the TS wire is in the topolog-

ical phase.
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As a final example for devices combining conventional and

topological superconductors, we have shown that S–TS–S

devices allow for a Majorana-induced parity switch between

Andreev state sectors with different parity in a superconducting

atomic contact. This observation could be useful for future

microwave spectroscopy experiments of Andreev qubits in such

contacts.
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