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The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of

nontrivial topological states even in zero-dimensional systems, i.e., systems with a discrete energy spectrum. Here, we show that a

quantum dot coupled with two superconducting leads can realize a nontrivial zero-dimensional topological superconductor with

broken time-reversal symmetry, which corresponds to the finite size limit of the one-dimensional topological superconductor.

Topological phase transitions corresponds to a change of the fermion parity, and to the presence of zero-energy modes and disconti-

nuities in the current—phase relation at zero temperature. These fermion parity transitions therefore can be revealed by the current

discontinuities or by a measure of the critical current at low temperatures.

Introduction

Since the discovery of the quantum Hall effect [1,2] and the the-
oretical prediction of Majorana bound states in triplet supercon-
ductors [3], a whole new class of novel electronic phases has
been theoretically described and experimentally realized,
namely, the class of topologically nontrivial states of matter
[4-7]. Topological states of matter can be classified in terms of
the antiunitary symmetries and dimensionality of the Hamil-

tonian [7-10]. Analogously to the periodic table of chemical ele-

ments in chemistry, this classification has been a general guide
to the discovery of novel topological phases in solid-state
physics. Moreover, it predicts the existence of nontrivial topo-
logical states even in zero dimensions, i.c., in a system with

discrete energy spectrum.

A very important class of topological states of matter are topo-

logical superconductors: These materials support Majorana
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zero-energy modes at the edges of the system [11-13], which
have been proposed as the building block of topological quan-
tum devices [14-20]. The simplest realization of a topological
superconductor is the well-known Kitaev chain [3], which can
be implemented in a one-dimensional system proximized by a
conventional superconductor in the presence of a magnetic field
and spin—orbit coupling [21-25]. Moreover, topological super-
conductors exhibit very distinct features in their transport prop-

erties and in particular in their Josephson current [26-49].

In a recent work [50], we have studied the short-size limit of a
one-dimensional (1D) topological superconductor with broken
time-reversal and chiral symmetries. In this limit, the system
turns zero-dimensional (0D), i.e., its energy spectrum is a finite
set of discrete energy levels. This 0D superconductor exhibits
topological phase transitions that correspond to variations of the
fermion parity and to the occurrence of zero-energy modes that
are a linear combination of particle and hole states [50]. These
fermion parity transitions can be revealed by discontinuities in
the Josephson current—phase relation (CPR) in the zero-temper-

ature limit.

Here we describe the simplest realization of such a 0D topolog-
ical superconductor, i.e., a quantum dot [51-54] coupled with
two superconducting leads in a magnetic Zeeman field, forming
a superconductor—quantum dot—superconductor (SC-QD-SC)
Josephson junction. Zero-energy modes and the corresponding
CPR discontinuities and ground-state parity crossings [55-61]
have been recognized as precursors of Majorana modes in the
long-wire limit [27,50], and of Floquet-Majorana modes real-
ized in driven quantum dots [62,63]. We will analytically derive
and discuss the spectrum and the Josephson current of the dot,
which agrees with the universal prediction for zero-dimen-
sional systems described in our previous work [50]. This allows
us to reinterpret in terms of topological states the different
regimes of the dot, which are already discussed in the literature
[34,64-68]. We will analyze in detail the relation between the
topological properties of the groundstate, the zero-energy
modes, and the corresponding CPR discontinuities. We will
show that, in this system, a topologically nontrivial state can be
induced by a finite Zeeman field that breaks the time-reversal
symmetry, even without a finite spin—orbit coupling. The result-
ing topological transitions coincide with a change of the
fermion parity (topological invariant) and can be identified by
discontinuities in the CPR and by a measure of the critical cur-
rent at low temperatures.

Results and Discussion
Effective model

We consider a semiconducting quantum dot in a magnetic field

B and coupled with two superconducting leads, as shown in
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Figure 1. We assume that the only effect of the magnetic field is
the lifting of the spin degeneracy via the Zeeman effect, and we
neglect orbital effects of the field. Moreover, we assume that
the level spacing of the dot is larger than the Zeeman energy B
and larger than the Coulomb interaction U within the dot.
Therefore we neglect the contribution of higher energy levels
and take into account only the levels € + B of the Kramers
doublet closest to the Fermi energy. Here, € is the energy level
of the dot in absence of Zeeman field, which can be modified
by controlling the gate voltage. This system can be described by
a superconducting Anderson impurity model

H=Hqp+ ), Hi+H,,

i=L,R M
where the dot Hamiltonian is given by
21 ld d
- i . %t i e
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where d T, I and d4, d) are the creation and annihilation opera-
tors of the electrons in the dot, np = dT T and n) = di 1 the
number operators, € = B the two-energy levels of the dot,
and U the onsite Coulomb repulsion. We assume hereafter that
e=h=1

e+ B
Ae19/2 — A/

@&

Figure 1: An SC—QD-SC Josephson junction realized by a two-level
quantum dot in a magnetic field B and electric gate € coupled with two
superconducting leads. The two energy levels are respectively € + B.
The dot is coupled to the superconducting leads via tunneling junc-
tions with transparency t. The Josephson current /,, through the dot
depends on the gauge-invariant phase difference ¢ between the two
superconducting leads.

The Hamiltonians of the two superconducting leads i = L, R are

given by
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where CL.,T, Clt’l., | and Ci,it>Ck il Are the creation and annihi-
lation operators of electrons in the superconducting lead i = L, R
and with momentum Kk, € is the bare electron dispersion with
respect to the Fermi level e = 0, A the magnitude of the super-
conducting gap, and ¢; the phase of the superconducting gap in
the two leads, respectively. Here we assumed a standard BCS
s-wave pairing and the same bare electron dispersion in the two
superconducting leads. In the following we furthermore assume
that the bare electron dispersion varies in the interval [-D,D]
and that the density of states is pg = 1/(2D) with 2D the total
bandwidth.

The tunneling between the dot and the leads is described by the
tunnel Hamiltonians, which read

dy
H,, = tZ[c;m Clt,i,i]{di}rh'c" “®

where ¢ = t; = tp is the transparency of the dot-lead tunneling.
We assume that the junction is symmetric and that the tunnel-
ing amplitudes do not depend on the electron momenta (wide

band limit approximation).

In the limit of a large superconducting gap, i.e., when the gap
is larger than the characteristic frequencies of the quantum dot,
the degrees of freedom of the leads can be effectively inte-
grated out [34,64-68]. In absence of interactions (U = 0) the
system can be described by an effective Hamiltonian that reads
[34,64,65,67,68]
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where ¢ = op — ¢, is the gauge-invariant phase difference be-
tween the two leads, and where
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is the effective local superconducting pairing induced by the
leads on the dot [64,65]. The Hamiltonian (Equation 5) can be
written in the Bogoliubov—de Gennes formalism as

e+ Bo,

—T'cos(¢/2)io,,

[ cos(/2)io,

Hy =¥
eff —S—BGZ

¥, 1)

where W =[df,d],d,.d] and ¥ =[d,.d|,d],d]]" are the
Nambu spinors describing the electron—hole pairs in the dot.
Notice that our definition of Nambu spinor differs from [64,65],
but it will allow us to define the topological invariant using the
same formalism used in 1D superconductors.

The spectrum of this effective Hamiltonian is a set of four

single-particle states corresponding to two pairs of particle—hole
symmetric Andreev levels +£4 and +£| with

Er =Ey+B, ®

Ey =Ey-B, ©)

with

E,= \/82 +T2 cos? (¢/2),

which correspond to the eigenstates described by the operators
dTT | defined by the Bogoliubov transformation

—p

N ud}{ +vd,, (10)
gj =udI _VdT’ (11)
where
u= /(1+8/E(p)/2, (12)
v= (l—s/E(P)/2, (13)
2 _

The Bogoliubov factors satisfy the properties u? + v
ur — v = &/Eq, and uv = Tlcos(¢/2)|/(2E¢).

s
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Now we generalize the Hamiltonian (Equation 7) to the case of
finite interaction U > 0. A tedious but elementary calculation
gives (ny — 1/2)(ny — 1/2) = (myp —1/2)(ny —1/2) where
m =JTT07T and nj =c?fa7¢ are the number operators corre-
sponding to the eigenstates of the effective Hamiltonian. There-
fore the Hamiltonian in the presence of Coulomb interaction U
> 0 can be written in diagonal form as

u)_ _ _ —
H :(E(p _7j<nT +n¢)+B(nT —n¢)+UnTn¢, (14)
up to a numerical phase-independent constant.
The Hamiltonian eigenstates comprise the vacuum |00>, the two

single-particle states |01) and |10}, and the two-particle state
[11) with energies

Ey =0, (15)
E, =E,-U/2-B, (16)
Ep =E,-U/2+B, (17

Eyy =2E,. (18)

Each of these particle states corresponds to a hole state by parti-
cle-hole symmetry. The groundstate energy of the supercon-
ducting condensate is given by the sum of the single-particle
energy levels [69], which yield in this case

EGS(‘P):|E(|)_U/2_B|+|E¢_U/2+B|> (19)

whereas the Josephson current at zero temperature is defined as
Iy = =0pEGs(¢). Notice that for small couplings U/2 < [gl,|T,
the only effect of the interaction is to shift the energy of the
single-particle levels. For this reason, if the conductance from
the dot to the superconductor is relatively large (high dot—lead
transparency) and one can consider the effect of interactions as
a small perturbation. Therefore, the ground-state properties,
such as the topological invariant and the Josephson current at
zero temperature, are not affected in the case where U/2 < ¢ and
U/2 <T, as long as the particle-hole gap remains open and the

Andreev levels do not cross.
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In absence of interactions U = 0, the only possible ground states

are those with energies

2F for ETEi« >0,
ECS(@):{ ?

(20)
2B for EAE| <0,

which correspond, respectively, to the cases where the two
single-particle levels E4 and £ have the same sign or opposite
sign. We will show that the ground state with energy 2E, is
topologically trivial and has a finite Josephson current, whereas
the ground state with energy 2B is topologically nontrivial and

has a Josephson current that vanishes at zero temperature.

The phase diagram of this system has been already discussed in
the literature [34,64-68]. Since we consider here only the weak
interacting case, we will not discuss the 0—n transition driven by
the presence of strong interaction. A more thorough discussion
of the role of interactions on the 0D topological transition and
on the ensuing m-phase will be addressed in a following
research paper. Therefore, we will discuss hereafter only quan-
tum phase transition in the regime of weak interactions in
systems which can be described by Equation 7 or Equation 14
for U= 0. Our findings cannot be applied to 0—r transitions and
to other kinds of quantum phase transitions that may be eventu-
ally present in this system, beyond the topological one we dis-
cussed.

The particle—hole gap and gapless points

The particle-hole gap, i.e., the difference between the particle
and hole levels closest to the Fermi level, closes if |B| = E,,.
If one defines the two threshold fields B, = |¢| and
Bmax =Ve> + T2 | one can verify that the spectrum is gapped
for both small |B| < By, and large |B| > B, Zeeman fields.
For intermediate fields Bpjn < |B| < Bmax, the energy gap closes
at specific values of the gauge-invariant phase ¢ = ¢ * where

)
¢* = arccos(—1) withk:1+2(8—28),
r

@1

where [A| < 1 if Byin < |B| < Bmax- We will show that these
gapless points define a topological phase transition in the
system that corresponds to the appearance of discontinuous
drops in the CPR of the junction.

Figure 2 shows the single-particle energy spectrum of the

system, i.e., the four particle-hole symmetric Andreev levels

+E| and +£Ej, as a function of the gauge-invariant phase differ-
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Figure 2: Energy spectrum of a two-level quantum dot coupled with two superconducting leads (SC—QD-SC junction), consisting of a set of four
Andreev levels, i.e., two single-particle levels +E; (blue curves) and +E, (red curves), as a function of the gauge-invariant phase difference ¢ be-
tween the two superconducting leads. We take € = 2[/3 and U = 0. The three panels correspond to different values of the Zeeman field: (a) small
fields |B| < Bmin, (b) intermediate fields Bmin < |B| < Bmax, With the particle-hole gap closing at the gapless points +¢* (see Equation 21), and (c) large
fields |B| > Bmax-

ence ¢@. As one can see, the energy spectrum is gapped for small
|B| < Bmin and large |B| > Bax Zeeman fields, respectively, in-
dependently from the phase difference ¢. At intermediate fields
Biin < |B] < Bmax, the particle-hole gap closes at the gapless
points +¢* that satisfy Equation 21. One can verify that the
effect of a small Coulomb interaction U/2 < |g|, [I'| is a shift of
the threshold fields By, and By.x and of the value of the
phases +¢* where the gap closes.

Topological invariant

This simple 0D two-level system can realize a topologically
nontrivial state that breaks time-reversal symmetry while
preserving particle—hole symmetry. This topologically
nontrivial state can be seen as the 0D limit of a 1D topological
superconductor, and as the minimal model for the system
described in [50]. In fact, for finite Zeeman energies (B # 0)
and superconducting pairing (I' > 0), the system is in the
Altland—Zirnbauer [7-10] symmetry class D (particle-hole
symmetry, broken time-reversal and chiral symmetries). This
class is characterized in 0D by a Z, topological invariant that is
defined in the non-interacting case U = 0 as the fermion parity
of the ground state [50,70] P =sgn pf(Hg11,), i.€., as the sign
of the Pfaffian of the Hamiltonian in Majorana representation
(14 is the first Pauli matrix in the particle-hole space). The
fermion parity labels the topological inequivalent ground states
as a function of the gauge-invariant phase ¢, i.e., the trivial state
P =1 (even parity) and nontrivial state P = —1 (odd parity). The
fermion parity of the 0D topological quantum dot described by
Hamiltonian (Equation 7) can be evaluated analytically. The
square of the Pfaffian of a matrix is equal to the determinant,
which is equal to the product of its eigenvalues, and therefore
one has pf (Hefflrx)2 = det(Hgyit,) = det(Hegp) = E%Ef due to
particle—hole symmetry. A direct calculation of the Pfaffian
indeed shows that pf(Hegi1,) = E4E| and therefore

-T 0 T
¢ P

P, =sgn(ErEy )= sgn(qu) - B? ) =sgn(L+coso), (22)

where we used the definition of A given in Equation 21. This
equation is a special case of Equation 2 of [50]. Notice that if
B = 0 the time-reversal symmetry is unbroken and the ground
state is trivial £, = sgn(qu,) =1 as expected. As anticipated, the
ground state with energy 2E, is topologically trivial, since in
this case E4E| > 0, whereas the ground state with energy 2B is
topologically nontrivial, since in this case one has E4E| < 0.
Therefore, the inversion of the lowest-energy Andreev level
corresponds to a topological transition to the nontrivial state.
The fermion parity defines the topological phase space of the
system, and is completely determined by the gauge-invariant
phase ¢ and by the adimensional quantity A, as shown in
Figure 3. Moreover, since P = sgn[E4E ], the condition Py, =0
corresponds to the gapless points ¢ = £¢* where zero-energy
modes occur (solid line in Figure 3).

At small Zeeman fields |B| < By (i.€., A > 1), the system is in
the topologically trivial state with even fermion parity P =1 for
any value of the phase ¢. At large fields |B| > By, instead (i.e.,
A < —1), the system realizes the topologically nontrivial state
with odd fermion parity P = —1 for any value of the phase ¢.
However, for intermediate Byi, < |B| < Bmax (i-€., |A] < 1)
topological transitions occur at the gapless points £¢* (see
Equation 21). In this case the system realizes the trivial or in the
nontrivial state (even or odd parity), respectively, for |p| < ¢*
and |p| > ¢* in the interval ¢ €[-m, ], as one can see in
Figure 3. The two gapless points +¢ * therefore correspond to a
quantum phase transition where the fermion parity of the
ground state changes from trivial to nontrivial. Note that for
|B| = Bin and for |B| = Byax (i-€., |A| = 1) no topological transi-
tion occurs, and the system is, respectively, in the trivial or
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Figure 3: Topological phase space of a 0D topological supercon-
ductor realized by a quantum dot coupled with two superconducting
leads (SC—QD-SC junction). The system realizes, respectively, a
trivial state P = 1 for small Zeeman fields |B| < Bmin (.., A > 1), and a
nontrivial state P = -1 for large fields |B| > Bpax (i-€., A <-1). The
Josephson current vanishes in the nontrivial state. Topological transi-
tions coincides with the occurrence of zero-energy modes at

+@* = tarccos(-A) (solid line) for intermediate fields Bpin < |B| < Bmax
(i.e., || <1). In this case the system is in its trivial P = 1 and nontrivial
P = -1 state respectively for |(|)| < @ * within the interval @ e [-1,T1].

nontrivial gapped state with the exceptions of the single gapless
point * =1 or ¢ * = 0, respectively.

The particle-hole gap can also close in absence of a Zeeman
field if € = 0. For B =¢ =0 (which gives A = 1) the gap closes at
¢*=n. In this case the time-reversal symmetry is unbroken, and
the system is gapped and topologically trivial for any value of
the phase ¢ # 7.

The topological phase space derived in the case of a supercon-
ducting quantum dot is universal for the class of zero-dimen-
sional superconductors. It coincides in fact with the topological
phase space in Figure 2a of [50], where it was derived in the
more general case of a zero-dimensional quantum system
(short-size regime) with an arbitrary number of energy modes.
The topological phases can be defined also in the case of small
Coulomb interactions as long as the particle-hole gap remains
open. In this case in fact the topological invariant cannot
change, since the phase with small interaction U > 0 can be
transformed with the non-interacting phase U = 0 by a smooth
transformation without closing the gap.

It is important to note that in the 0D case (differently from the
1D case) topological states can be realized without spin—orbit

coupling. This is because topological states in the symmetry
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class D are enforced by the presence of the superconducting
coupling (particle-hole symmetry) and the Zeeman field (which
breaks the time-reversal symmetry). The gap opening, in this
case, is guaranteed in general by the gap induced by finite size
effects or eventually by interactions.

Josephson current—phase discontinuities

In our previous work [50], we have found the general relation
between the topological invariant of a 0D topological supercon-
ductor and the discontinuities of the Josephson current—phase
relation (CPR). The topological phase transition between the
trivial (P = 1, even fermion parity) and the nontrivial state
(P =—1, odd fermion parity) corresponds to the emergence of a
discontinuity in the Josephson CPR at zero temperature. In this
case, the current is proportional to the phase-derivative of the
total energy of the superconducting condensate [69,71], which
is given by the sum of the positive energy levels |E4| + |E)|.
Hence, the Josephson current is equal to —20,E, in the trivial
groundstate with energy Egs(@) = 2Ej, whereas it vanishes in
the nontrivial groundstate with energy Egs(9) = 2B (see Equa-
tion 20). The CPR at zero temperature is therefore given by

2 .
Iy =~(1+R,)d,E, =(1+P(P)F4S—Ef:q’. 3)
In the topologically trivial state (P = 1) at low fields |B| < Bpin,
the two energy levels £} and E| contribute equally to the
Josephson current and one has I, = —20,E,. However, when the
fermion parity changes, one of the energy level crosses the par-
ticle-hole gap, and its contribution to the current changes its

sign.

Therefore, in the topologically nontrivial state (P = —1) at high
fields |B| > Bpax the Josephson current in Equation 23 vanishes
since the contributions from the two energy levels £y and E|
cancel each other. Moreover, as one can see from Equation 23,
for intermediate fields Bpin < |B| < Bmax, (i.€., |A| < 1) the
CPR exhibits a discontinuity between the trivial state with
1= i2F25in(p*/[4Eq,*] to the nontrivial one with / = 0 at the
gapless points £¢ * which is equal to

T2

Al = 24
2|B|

>

which is a special case of Equation 3 of [50]. The discontinuity
is a consequence of the crossing at zero-energy of the lowest-
energy level with linear phase dispersion. The discontinuity in
Equation 24 can be also calculated directly using Equation 3 of

[50], which can be rewritten as
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A1::2|5¢Pf(7éﬂﬂTx)
|Pdet (Her )|

(25)

=p*

where pdet(H.gr) is the pseudodeterminant of the Hamiltonian
(the product of nonzero eigenvalues). The square root of the
pseudodeterminant is in this case just the product of the
positive eigenvalues (due to particle-hole symmetry). Since
the system has only two non-negative single-particle energy
levels |Ey| = |B + Eg+| and |E|| = |B — E+/, and one of these two
energy levels vanishes at gapless points £¢* since in this case
|B| = |Ey+|, the denominator of Equation 25 is equal to the
nonzero positive energy level given by |B| + |Ey+| = 2|B|, which
yields /| pdet(Hug) | = 2|Bl, which leads via Equation 25 to
Equation 24.

Figure 4a shows the CPR of the SC-QD-SC junction for differ-
ent choices of the Zeeman field B at zero temperature, calcu-
lated directly from Equation 23. At low fields |B| < Bp;p (i.e.,
A > 1) the system is topologically trivial (P = 1) and the CPR is
smoothly oscillating without any discontinuity. At large fields
|B| > Bmax (i.€., A < —1), the system is topologically nontrivial
(P =—1) and the Josephson current vanishes due to the oppo-
site contribution of the two Andreev levels. At intermediate
fields Byin < |B|] < Bmax instead (i.e., |A| < 1), discontinuities
appear at the transition points between the trivial and nontrivial
topological states (gapless points +¢*). The emergence of a
discontinuous drop coincides with a change of the fermion
parity and to the presence of zero-energy states closing the par-
ticle-hole gap. Since the energy levels of the system depends

(a)
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smoothly on the phase @, gapless points are the only points
where the CPR can be discontinuous. At finite temperatures,
CPR discontinuities are smoothed out by the effect of thermal
fluctuations. However, such discontinuities can be revealed,
e.g., by the presence of spikes in the phase-derivative of the
CPR at low temperatures [50].

Hence, if time-reversal symmetry is broken (B # 0), current
discontinuities correspond to the presence of zero-energy modes
and to a change in the topological invariant. These signatures
are topologically robust against small perturbations, such as
disorder. This means that these discontinuities and the associat-
ed zero-energy modes cannot be removed by the presence of,
e.g., disorder or interactions, if these perturbations are small
compared to the effective local pairing I and Zeeman energy B.
The only effect of these small perturbations is in fact to produce
a shift of the gapless point @*—@*+8A/v1-A2 where the
topological transition and zero-energy modes occurs. Disconti-
nuities in the Josephson CPR are still present in the interacting
case [65] at zero temperature. As shown in [50], the correspon-
dence between CPR discontinuities and fermion parity transi-
tions relies only on the presence of a broken time-reversal
symmetry that removes the spin degeneracy and on the fact that
in this case the closing of the particle—hole gap correspond to a
change of the topological invariant.

On the other hand, if time-reversal symmetry is unbroken, cur-
rent discontinuities are still present if B=¢ =0 (where A =1). In
this case, the CPR exhibits a single discontinuous drop Al =T/2
at the gapless point ¢* = &, according to Equation 24. This case
reproduces the well-known current—phase discontinuity of a

0.5
0.4
= 0.3
~
0.2
0.1

r
B €

Figure 4: (a) Josephson CPR of the SC-QD-SC junction for different choices of the Zeeman field B in the limit T—0 (Equation 23) in units of the criti-
cal current of the trivial branch. We take € = 2I'/3. Depending on the Zeeman field, different regimes are realized: At small fields |B| < Bmn (i.e, A> 1,
dotted line) the current is smoothly oscillating as a function of the phase ¢ and the system is topologically trivial (P = 1). At large fields |B| > Bpyax (i.€.,
A < -1, not shown) the current vanishes and the system is topologically nontrivial (P = -1). At intermediate fields By, < |B| < Bmax (i-€., |\| <1, solid
lines), discontinuous drops appear at the transition points between the trivial and nontrivial topological states. Current discontinuities correspond to
the variations of the fermion parity and to the presence of zero energy modes. (b) Critical current of the SC—QD-SC junction as a function of the
Zeeman field at zero temperature (solid line) with € = 2I/3. (c) Critical current of the SC-QD-SC junction as a function of the electric gate € at zero
temperature (solid line) with B = 4I'/3. In both cases, the critical current drops from a finite value in the trivial state (P =1 and A > 1) to zero in the
nontrivial state (P = -1 and A < —1). In the transition regions Bmi, < B < Bmax (b) and B2 —T'2 < |¢] <|B] (c), the trivial and nontrivial states alternate at
different phases @. As one can see, when the system approaches its nontrivial state P = —1, the critical current coincides with the magnitude of the

discontinuous drop A/ (green dots) given in Equation 24.
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quantum point contact [71]. However, in this case the disconti-

nuity does not correspond to a topological transition.

The presence of a small Coulomb interaction does not affect the
Josephson current at zero temperature in the trivial and non-
trivial branches of the CPR, since the energy shift U/2 of the
Andreev levels do not depend on the phase o.

Critical current

The topological transition can be probed also by a measure of
the critical current of the junction. The critical current is defined
as the maximum current of the junction up to the phase /., = max
Iy. In the trivial state at low fields |B| < By, (i.e., A > 1) the
critical current is finite. Since the CPR is continuous in this
case, the maximum of the current coincides with the local
maximum of the current where its phase-derivative vanishes
0Oply = 0. In the limits e—0 and e—=I" for example, the current
reaches its maximum at ¢ =7 or at ¢ =t/ 2, which gives criti-
cal currents of [, = I'/2 and I, =T2/(4ye? +T2/2), respec-
tively. In the nontrivial state at large fields |B| > B,y instead
(A < —1) the current vanishes and one has /. = 0. However, at
intermediate fields Bpyi, < |B| < Bmax (i-€., [A| < 1) trivial and
nontrivial states alternate in the interval ¢ €[—m, ], and the
CPR has discontinuities. Because the CPR is not continuous,
the maximum of the current may coincide either with the local
maximum Iq, of the current where 0/, = 0, or with the current
at the discontinuity /,+ = Al. More precisely, the critical current
coincides with the maximum between these two values
I, = max(| I |, Al'|). The case I, = |Al| occurs, for instance,
when the system approaches its nontrivial state at large fields
|B|—=Bmax- Therefore for fields |B| < Byax the critical current
coincides with the current discontinuity /., = Al. This regime can
be obtained either by a measure of the critical current by
varying the magnetic field, or by varying, e.g., the energy level
€ in a constant field B.

Figure 4b shows the critical current of the junction as a func-
tion of the Zeeman field. As one can see, the critical current is
finite in the trivial P = 1 state when |B| < By, (i.e., A > 1), and
drops to zero in the nontrivial P = —1 state when |B| > Bpax
(i.e., L < —1) state. The drop of the critical current is smooth in
the intermediate region where By < |B| < Bmax (1-€., | < 1).
Analogously, Figure 4c shows the critical current of the
junction as a function of the electric gate ¢ at constant field B.
The smooth transition is obtained for intermediate values
JB%2-T? < ¢ < |B| the Zeeman field varies in the range
Bmin < |B] < Bmax, where we remind that B, = |¢| and
Biax = Je? + T2 . In the intermediate region, when the system
approaches its nontrivial state, the critical current coincides with
the magnitude of the discontinuous drop /. = |Al] (dots in the

figures). Hence, a measure of the critical current at low temper-
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ature can be used to indirectly probe the magnitude of the
discontinuous drop and the existence of topological phase tran-
sitions and zero-energy modes even when a direct measure of
the CPR is not accessible [72]. It is reasonable to speculate that
the current discontinuities may indicate a topological transition
also in the interacting case.

Conclusion

We have shown that a quantum dot coupled with two supercon-
ducting leads can realize a 0D topological superconductor with
broken time-reversal symmetry. In this system, topological
phase transitions between trivial and nontrivial states corre-
spond to discontinuities in the Josephson CPR at low tempera-
tures and to the presence of zero-energy modes. This simple
model, which can be treated analytically, fully confirms the
results obtained in a more general model in [50].

The topological phase transitions and the ensuing current
discontinuities are robust, in the sense that cannot be removed
by small perturbations. A direct measure of the CPR [71,73-75]
or of the Josephson radiation [38,76,77] at low temperatures can
reveal the presence of such discontinuities. Moreover, the pres-
ence of the topological transition can be probed indirectly by a
measure of the critical current of the junction as a function of
the Zeeman field or gate voltage.
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