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Abstract
Majorana modes emerge in non-trivial topological phases at the edges of specific materials such as proximitized semiconducting

nanowires under an external magnetic field. Ideally, they are non-local states that are charge-neutral superpositions of electrons and

holes. However, in nanowires of realistic length their wave functions overlap and acquire a finite charge that makes them suscep-

tible to interactions, specifically with the image charges that arise in the electrostatic environment. Considering a realistic three-

dimensional model of the dielectric surroundings, here we show that, under certain circumstances, these interactions lead to a

suppression of the Majorana oscillations predicted by simpler theoretical models, and to the formation of low-energy quantum-dot

states that interact with the Majorana modes. Both features are observed in recent experiments on the detection of Majoranas and

could thus help to properly characterize them.
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Introduction
Semiconducting nanowires with strong spin–orbit interaction,

such as InAs or InSb, are becoming ideal systems for the artifi-

cial generation of topological superconductivity [1-3]. In addi-

tion to its fundamental interest, such nanowires that may host

Majorana bound states (MBSs) at their ends or interfaces [4,5]

constitute promising platforms for Majorana-based quantum

computing devices [6-9]. Progress in fabrication techniques has

allowed to induce a hard superconducting gap in InAs [10] or

InSb [11] nanowires with epitaxially deposited Al layer. More-

over, last-generation devices exhibit a very low degree of

disorder, which allows them to almost reach the ballistic limit

[12-14].

In spite of these advances, the experimental signatures of MBSs

in the nanowire devices deviate significantly in several aspects

from the theoretical predictions of minimal models. This is the

case, for instance, regarding the behavior of the subgap conduc-

tance through the proximitized nanowire, which has been
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addressed in several experiments [10,12-19]. In a long wire (the

length of which is much greater than the induced coherence

length) the presence of MBSs manifests itself in the appearance

of a zero-bias conductance peak the width of which is con-

trolled by the normal-state conductance [20]. However, for

typical wire lengths explored in actual experiments, which are

of the order of a few micrometers, it is expected that the overlap

between MBSs located at both ends of the wire gives rise to

conventional Andreev bound states that deviate from zero

energy, leading to an oscillatory pattern in the low-bias conduc-

tance as a function of Zeeman field, chemical potential or wire

length [21-23]. Conspicuously, in most of the available experi-

mental data the emergence of a robust zero-bias conductance

peak is observed above some critical Zeeman field without the

expected oscillatory pattern [12,19,24,25]. Several mechanisms

have been proposed to account for the reduction or lack of

oscillations, such as smooth confinement [21,26-28], strong

spin–orbit coupling [29], position-dependent pairing [30],

orbital magnetic effects [31], Coulomb repulsion among the

carriers in the nanowire [22], or the presence of the normal

drain lead connected to the hybrid wire [32].

Another source of Majorana oscillation suppression was put

forward by some of us in a recent work [33]. The key realiza-

tion is that MBSs in a finite-length wire posses a finite charge,

typically distributed uniformly along the wire [34], which can

be susceptible to electrostatic interactions with the surrounding

medium. We considered the case of a grounded parent super-

conductor, thus avoiding the effect of a charging energy associ-

ated to the Cooper pairs, and showed that, in such case, a

residual effect of interactions may arise from the image charges

induced in the electrostatic environment of the nanowire. Using

a simple model for the induced potential we concluded that, in

typical experimental setups, interactions would lead to pinning

of the MBSs to zero energy around parity crossings and, thus, to

more robust zero-bias conductance peaks than predicted by the

non-interacting models.

The aim of the present work is to test the validity of the predic-

tions of [33] for the case of more realistic calculations of the in-

duced electrostatic potential, taking into account the actual

three-dimensional (3D) geometry as well as the effect of nearby

metallic leads. We consider the geometry depicted in Figure 1a,

where a nanowire of rectangular cross section lies on an insu-

lating substrate (typically SiO2) and is contacted to a thin super-

conducting (SC) layer on one of its faces and to two bulk

normal leads at both ends, separated by thin insulating barriers.

In Figure 1a we indicate the characteristic dielectric constants of

each region, which are relevant for the calculation of the

induced potential through Poisson’s equation (discussed

below). Our aim is to solve this equation together with the

Bogoliubov–de Gennes equation for determining self-consis-

tently the charge density ρ(x) along the nanowire. For this

purpose we derive a generalized method of image charges that

allows us to calculate the induced potential under rather general

conditions, taking into account a 3D electrostatic environment

as the one shown in Figure 1a.

Figure 1: (a) Schematic representation of the setup analyzed in the
present work. A nanowire of rectangular cross section (green) lying on
an insulating substrate (grey) and in contact to a thin metallic layer in
one of its faces (light blue), corresponding to the parent supercon-
ductor, and two normal metal leads at its ends (orange) separated by
tunnel barriers (brown). Typical values for the dielectric constants for
each region are indicated. (b) Low-energy spectrum as a function of
the chemical potential μ for a wire of thickness W = 100 nm and
length L = 1 μm. Other parameters are the spin–orbit coupling
α = 20 nm·meV, the induced pairing energy Δ = 0.3 meV and the
Zeeman energy VZ = 2 meV. Electrostatic environment-induced zero-
energy pinned regions between Majorana oscillations are indicated in
red. Quantum-dot levels (in blue), occurring at the edges of the wire
due to the interaction with the bulk contacts, anticross with Majorana
levels and remove their zero-energy pinning.

We find two main effects coming from this interaction, which

are exemplified in Figure 1b. One is, as stated before, the

suppression of Majorana oscillations around parity crossings

(zero-energy crossings where the total fermion parity of the

wire changes), both as a function of the Zeeman energy VZ and

the chemical potential μ of the wire. This effect is produced

because, at each parity crossing, a finite Majorana charge QM

enters the wire from the reservoir in an abrupt fashion. If the

electrostatic screening is smaller inside the wire than in the

reservoirs, a repulsive interaction is produced between the in-

coming charge and its images, preventing its entrance. This
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translates into finite regions in parameter space (in red in

Figure 1b) where Majorana modes are pinned to zero energy

within a finite range of VZ or μ proportional to the Majorana

charge QM and the strength of the interaction. This was already

shown in [33] but for a simplified dielectric profile where the

presence of the superconducting shell had been ignored. We

here include it and find that the size of the pinned regions

decreases but the pinning effect is still present under certain

conditions that we discuss in detail below. Moreover, we

explain the incompressible behavior of the electron liquid

within these pinned regions in terms of the Majorana wave

functions and their charge.

Another important effect of the electrostatic environment unex-

plored before is the creation of deep potential wells at the ends

of the wire close to the bulk metallic electrodes. These wells,

obtained explicitly here through the self-consistent calculation,

are similar to the confinement potentials typical of quantum

dots. Localized quantum dot-like energy levels in these regions

disperse with magnetic field (or chemical potential) and appear

below the induced gap in the wire spectrum (in blue in

Figure 1b). In the topological regime, dot-like levels interact

with Majorana states, anticrossing them when they approach

zero energy. Similar phenomena were observed in some experi-

ments [14,19], and have been likely found on other occasions

but discarded by experimentalists looking for the simpler

picture. Interestingly, it has been shown that the shape of these

anticrossings can be used to quantify the degree of non-locality

of the Majorana wave functions [35,36], a prediction that has

been experimentally demonstrated recently [25]. Here, we show

that if the interaction between dots and Majorana levels occurs

in a pinning region, Majorana levels are forced to depart from

zero energy, revealing the existence of a finite wave function

overlap between them in spite of their zero energy. We analyze

this behavior again in terms of the wave functions of Majorana

state and dot and their charge.

The paper is organized as follows: in the following section we

provide insight into the theoretical model used to treat interac-

tions. In the next section we analyze the case in which the influ-

ence of the bulk normal leads can be neglected, recovering the

pinning effect found in [33] for a repulsive electrostatic envi-

ronment. However, we focus here on the electrostatic environ-

ment effects on the Majorana wave function, rather than on its

spectral properties. In the next section we study the effect of in-

cluding the bulk normal leads of Figure 1a, finding that they

give rise to the formation of quantum dot-like bound states. We

further analyze the interplay of such states with the MBSs.

Finally, we present the conclusions of our work. The robust-

ness of the pinning effect is analyzed in detail in Section 4 of

Supporting Information File 1.

Model and Theoretical Approach
We model the electronic states along the proximitized Rashba

nanowire of length L using the following single-channel Hamil-

tonian [4,5]

(1)

where  is a Nambu bi-spinor, ψ↑,↓(x) are

electron annihilation operators, and σ and τ are the Pauli

matrices in spin and Nambu space, respectively. The model is

defined by setting the parameters m*, μ, α, VZ and Δ, corre-

sponding to the effective mass, the chemical potential, the

spin–orbit coupling, the Zeeman energy caused by an external

magnetic field, and the induced SC pairing potential, respective-

ly.

In Equation 1, we also include the electrostatic potential 

felt by charges in the nanowire, which can be decomposed as

, where  is the potential that arises

from the free charges inside the nanowire, while  corre-

sponds to the potential created by bound charges that emerge in

the electrostatic environment. We compute the electrostatic

potential using Poisson’s equation

(2)

where  is the non-homogeneous dielectrical permittivity of

the entire system and  is the quantum and thermal aver-

age of the charge density of the nanowire obtained with Equa-

tion 1. The intrinsic part  of the potential satisfies an

analogous equation with a uniform ε equal to that of the nano-

wire. The geometry depicted in Figure 1a is taken into account

through a piecewise  function where each material is char-

acterized by a different dielectric constant, so that  changes

abruptly at the interfaces. Then, assuming that the charge densi-

ty in the nanowire is located along its symmetry axis (x-axis),

we obtain the electrostatic potential  using the method of

image charges, as explained in detail in Section 1 of Supporting

Information File 1. More precisely,  is given by

where Vb(x,x′) is a kernel determined in order to satisfy the

proper boundary conditions. We find analytical expressions
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for Vb(x,x′). They are simple but rather lengthy and are given in

Supporting Information File 1 for two different cases:

neglecting the effect of the bulk normal leads at the wire ends

and including it. The results for these two cases are analyzed in

the following sections.

The obtained potential  on the nanowire axis should

be  p lugged  back  in to  Equat ion  1 .  The  combined

Poisson–Schrödinger problem must then be iterated until it

achieves self-consistency. As shown in [33], the  part of

the electrostatic solution (i.e., the intrinsic electron–electron

interaction part of the problem), treated at the Hartree–Fock

level, has a negligible effect on the low-energy spectrum in the

topological regime. We may therefore concentrate only on the

self-consistency with . In Section 2 of Supporting Infor-

mation File 1 we explain in detail the self-consistent numerical

method used to compute the electrostatic potential profile as

well as the eigenvalues and eigenvectors of Equation 1. For

completeness, in Section 3 of Supporting Information File 1 we

also show the effect of including the intrinsic interaction from

, proving that its effect is small and that the main contri-

bution stems from .

In the following calculations, we consider the dielectric con-

stants shown in Figure 1a. For the dielectrics materials, i.e., the

wire, the substrate and the surrounding medium, we use typical

values [37] of ε = 17.7, εd = 3.9 and εa ≈ 1, respectively. For the

metallic leads we assume that, because they are bulky, they

screen external electric fields perfectly, i.e., εM→∞). This may

not be the case for the SC shell, the capability of which for

screening external electric fields may be weaker due to its small

thickness and the unavoidable presence of disorder [38]. If this

is the case, it is then characterized by a finite effective dielec-

tric permittivity which depends on the SC shell width as well as

its composition, as we show in Section 1 of Supporting Infor-

mation File 1. Some experiments [39] have reported that for

ultrathin metallic layers (ca. 5–10 nm) it is of the order of

εSC ≈ 100. For these values, as we show in the next section, we

find a repulsive environment, i.e., an environment the effective

permittivity of which is smaller than that of the wire so that the

bound charges that arise at the interfaces have on average the

same sign as the free charges. We consider in Section 4 of Sup-

porting Information File 1 the generality of our results as a

function of the dielectric constant of the SC and the location of

the charge density within the nanowire section. Below, in

Figure 4c we show that, when the charge density is fixed at the

center of the wire, as εSC becomes larger the dielectric environ-

ment turns into an attractive one and the pinning effect is even-

tually lost. This, however, strongly depends on the location of

the charge density. If, as pointed out in [40], it happens to be

close to the SC shell, the screening effect is larger and the

Figure 2: Majorana nanowire subject to interactions from the electro-
static environment (ignoring the influence of the bulk normal leads at
its ends). (a) Schematic of the dispersion relation of the nanowire in
the absence and in the presence of a Zeeman field. (b) Self-consistent
induced potential energy  along the length of the wire for in-
creasing values of the Zeeman splitting. Wire parameters as in
Figure 1b and with μ = 0.5 meV. (c) Energy difference between the
Fermi level and the band bottom at the center of the nanowire, VZ + μ
− (L/2), and (d) total charge Qtot of the nanowire as a function of VZ
for the non-interacting (dashed) and interacting (solid line) cases. Red
curves highlight parameter regions for which there is interaction-in-
duced zero-energy pinning in the spectrum.

pinning is suppressed. Nevertheless, as we analyze below in

Figure 4e, even if εSC→∞, the pinning effect remains when the

wave function is located further away from the SC.

Results and Discussion
Results without bulk normal leads
It is convenient to start by analyzing the simpler case in which

we neglect the effect of the bulk normal leads in the induced

potential . As an example we consider a nanowire of width W

= 100 nm, length L = 1 μm and the following choice of realistic

parameters: m* = 0.015me, α = 20 nm·meV, Δ = 0.3 meV,

μ = 0.5 meV and T = 10 mK. These could correspond, for ex-

ample, to an InSb nanowire in contact to an Al superconducting

shell [14], but similar results are obtained for InAs wire param-

eters [19]. For an infinite wire, a schematic representation of the

energy bands is shown in Figure 2a in the absence and in the

presence of a Zeeman field. At zero temperature, the occupied

states below the Fermi level are those between the horizontal

dashed line and the band bottom. Apart from a small contribu-

tion coming from the spin–orbit energy, the position of the band

bottom is controlled by the chemical potential of the wire μ, the

Zeeman energy VZ and the induced potential energy . The

magnetic field lowers the band bottom, charging the wire,

whereas the induced potential energy, coming from electro-

static repulsion, tends to compensate that trend. In the finite-
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Figure 3: Majorana wave functions in the non-interacting case: Energy levels (a) and the absolute value of the Majorana charge QM (b) as functions
of the Zeeman energy. Panels (c–f) show the wave-function probability profiles of the two lowest-energy states in the Majorana basis at selected
values of the Zeeman field within the topological region. When the splitting is maximum (green circles and yellow triangles) the left and right Majorana
wave-function oscillations are out of phase, whereas when the splitting is zero (orange square) they are in phase.

length wire, the evolution of the induced potential profile along

the nanowire length (x-axis) for different Zeeman fields is

shown in Figure 2b. As can be observed, the induced potential

tends to expel charge from the center of the wire, where it is

positive, while it bends downwards at its ends. On the other

hand, the evolution of the potential with Zeeman field exhibits a

step-like behavior with regions where it increases linearly with

VZ (red curves), screening the magnetic field effects, and

regions where it remains almost constant as VZ increases

(grey curves). This causes the electron fluid to behave in an

incompressible or compressible manner, respectively. This

different behavior can be clearly seen in Figure 2c where the

electrochemical potential at the center of the wire, given by

VZ + μ − (L/2), is plotted as a function of the Zeeman split-

ting, both in the presence and absence of interactions.

The effect of this peculiar evolution of the electrostatic poten-

tial has direct consequences on the spectral properties of the

wire, as we analyze below in Figure 4, but for comparison, let

us first see what happens in the non-interacting case. The spec-

trum of the wire is shown in Figure 3a. There we can observe

the emergence of low-energy subgap states for ,

corresponding roughly to the critical field for the bulk topolog-

ical transition. We also obtain the typical energy oscillations

produced by overlapping Majorana wave functions due to the

finite length of the wire [21-23]. More insight can be obtained

by analyzing the evolution of the total charge of the wire

 as well as the Majorana charge QM, the

absolute value of which is given by

(3)

Here, Q±1 are the charges corresponding to the even/odd

lowest-energy eigenstates ψ±1, and uL,R are the electron compo-

nents of the Majorana wave functions γL = ψ+1 + ψ−1 and

γR = −i(ψ+1 − ψ−1). The total charge increases in general with

magnetic field but, for finite length wires, it does so by jumping

abruptly a quantity equal or smaller than e at each parity

crossing (where the Majorana oscillations cross zero energy and

the electron parity of the wire changes from even to odd or vice

versa), as shown in Figure 2d, dashed curve. This abrupt change

in charge is actually injected into the fermion state created by

the two overlapping Majoranas and is given by |QM| at the

parity crossings. The (oscillatory) evolution of |QM| with the

magnetic field is given in Figure 3b. Strikingly, |QM| is

maximum at the parity crossing, where the energy is zero, and

goes to zero at the oscillation cusps. As the length of the wire

approaches to infinity, QM approaches zero (not shown).

Indeed, the finite value of QM at the parity crossings is a direct

measurement of the Majorana overlap, as shown in [33]. Note

that the Majorana overlap is defined similarly to the right-hand

side of Equation 3, but with the absolute value inside the inte-

gral.

The behavior of the Majorana wave functions is illustrated in

Figure 3c–f. The probability density for the left and right Majo-

rana wave functions exhibits an overall decay towards the
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Figure 4: Same as Figure 3 but for the interacting case (without leads). In the pinned regions the Majorana wave functions remain in-phase as a func-
tion of the Zeeman field and the Majorana charge (b) freezes at its local maximum value (in red), instead of continuing the oscillation as in the non-
interacting case (dashed curve).

center of the wire controlled by the length  and an

oscillatory pattern controlled by λF[41,42]. Moreover, the num-

ber of oscillations that fit in L increases by one with Zeeman

field at each parity crossing. Interestingly, we observe that the

left–right oscillatory patterns are out of phase for the cases

where the splitting of the MBSs is maximum (Figure 3c,e. This

minimizes the left–right wave function overlap and the Majo-

rana charge goes to zero. On the other hand, the oscillations are

in phase (Figure 3d) when the energy splitting is zero, at the

parity crossings, producing a maximum in |QM| and overlap. Al-

though the Majorana wave functions are more strongly located

at the wire edges, we note that the charge density of this fermi-

onic state is uniform across the wire [34] and, thus, it is

uniformly affected by the interaction with the environment

when this is present.

When interactions with the image charges occur, the single-

point parity crossings as a function of VZ in the spectrum are

replaced by extended regions where the subgap states remain

pinned at zero energy, indicated by the red lines in Figure 4a.

The abrupt jumps in Qtot in the non-interacting case are

replaced by a linear increase with increasing values of VZ at

which zero-energy pinning occurs, see Figure 2d. This is a

consequence of the repulsive environment that inhibits the

entrance of charge in the wire where the electron liquid behaves

in an incompressible manner. On the other hand, the Majorana

charge remains basically constant at the pinning plateaus, as

shown in Figure 4b. The finite value of QM in these regions in-

dicates that zero-energy does not imply absence of overlap be-

tween the left and right Majorana states. This is actually a

common misconception that we would like to point out here.

The Majorana overlap, which is a measurement of the degree of

non-locality of the two Majorana wave functions, mostly

depends on the length of the nanowire (and to a lesser extent on

other parameters, such as the induced superconductor gap and

the Rashba coupling), but it is not necessarily correlated to the

Majorana energy splitting. Different mechanisms can reduce

this splitting, such as interactions with the environment as

studied here, smooth potential or gap profiles [21,26-28,30], or

orbital magnetic effects [31], and still leave the Majorana

overlap unaffected. The behavior of the Majorana wave func-

tions in this case is illustrated in Figure 4c–f. In the pinning

regions the Majorana wave functions remain practically frozen

and in phase. This in turn explains why |QM| is maximum in

these regions.

The generality of these results is analyzed in Section 4 of Sup-

porting Information File 1. There we show how the width of the

pinning plateau evolves with VZ when we change the chemical

potential, the dielectric permittivity or the width of the SC shell,

and the aspect ratio of the nanowire section. We find that

pinning remains for any chemical potential, while it vanishes

when the attractive contribution of the SC shell becomes domi-

nant over the dielectric repulsion.

Effect of bulk normal leads
In this section we analyze the effect of including the bulk

normal leads in the calculation of the induced potential .

Figure 5a illustrates the evolution of  with increasing Zeeman

field for the same set of parameters as in the previous section
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but including the normal contacts. While in the central region of

the wire a similar repulsive step-like evolution with VZ is found

(corresponding to compressible/incompressible electron fluid

behavior), significant attractive regions appear at the wire ends

produced by the metallic character (εM→∞) of the adjacent

leads. As we discuss below, these attractive regions give rise to

the formation of quantum-dot (QD)-like bound states that may

interact with the low energy subgap states of the Majorana wire.

Figure 5: Majorana nanowire subject to interactions from the electro-
static environment (including the influence of the bulk normal leads at
its ends). (a) Self-consistent induced potential energy  along the
length of the wire for increasing values of the Zeeman splitting. The
same wire parameters as in Figure 2 were used. Note that the main
effect of the bulk normal leads is to create confining potential wells at
the wire edges. (b) Barrier-like potential energy profile used to mimic
the self-consistent solution. Spectra of the Majorana nanowire as a
function of VZ in the (c) interacting case and in the (d) non-interacting
case but using the potential profile model of (b). (e, f) Evolution of the
total charge Qtot with Zeeman splitting for the two previous cases, re-
spectively. Red color indicates incompressible electron fluid behavior
as before, while blue color indicates QD-like behavior due to the
metallic contacts.

The evolution of the spectral properties and of the total charge

Qtot in this case are shown in Figure 5c and Figure 5e. On one

hand, we observe that the pinning plateaus around each parity

crossing (in red) are still present although with a smaller width.

On the other hand, the main effect of the presence of the attrac-

tive potential regions is the appearance of four additional

energy levels (two per contact, in blue) that approach zero

energy for a value of VZ of about 2.5–3.0 meV. At the same

time we observe a rather abrupt decrease in the total wire charge

(of roughly 2e), see Figure 5e. We can associate these addition-

al levels with QD-like bound states arising in the attractive

regions of the induced potential that anticross with the Majo-

rana levels when their energies are on resonance [35,36,43,44].

To demonstrate the validity of this interpretation we show in

Figure 5d and Figure 5f, respectively, the spectral properties

and the total charge evolution for an isolated wire with a simple

double potential well taken to mimic the effect of the electro-

static environment, shown in Figure 5b. Notice that in this case

we do not attempt a self-consistent calculation but rather

include the Zeeman field as a rigid shift of the two spin bands

(like in the non-interacting case but with an inhomogeneous

potential profile). Although the zero-energy pinning is not

captured by this model, one can clearly observe the presence of

four levels coming down towards zero energy for a value of VZ

of about 2.5–3.0 meV, as in the interacting case. The presence

of these states is a consequence of the renormalization of the

topological phase transition due to the electrostatic potential

(either  or ):

(4)

which is not constant along the wire because  (or )

depend on x. For the shown values of VZ, only the central part

of the wire is in the topological regime ( ), correspond-

ing to an effectively shorter Majorana wire, whereas the outer

parts are trivial ( ), corresponding to two effective QDs

attached to it. Specific details of how QD levels interact with

Majorana nanowire ones can be found in [35,36,43-45].

Further information about the nature of the low-energy states at

VZ≈ 3 meV is provided in Figure 6 where we plot the wave-

function probability profiles (in the Majorana basis) of the low-

energy states around the QD–Majorana levels anticrossing. For

simplicity, we consider only the case of the potential barrier

model. At the anticrossing, the Majorana and dot states merge

and cannot be really told apart, but we will refer to the two

lowest in energy as Majorana levels and to the other two as dot

levels. As can be observed, at the anticrossing the Majorana

levels (green circle) leak into the QD regions leaving the central

(topological) part practically void. Conversely, the two dot-like

states (immediately above in energy, orange squares) penetrate

and delocalize along the wire. When the Zeeman field increases

and the QD and Majorana levels are detuned, the dot states

depart from low energy (pink rhombus) and from the topolog-

ical part of the wire, whereas the usual overlapping behavior of

the MBSs is recovered but with the Majoranas bound to the

effective topological edges (yellow triangle). The absolute value

of the Majorana charge as a function of VZ is shown in
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Figure 6: Evolution with Zeeman field of the spectrum (a) and the absolute value of the Majorana charge QM (b) for the barrier-like potential model of
Figure 5b. Panels (c) and (e) show the wave-function probability profile (in the Majorana basis) of the two lowest-energy states at the VZ values indi-
cated in (a). Panels (d) and (f) show the same but for the second and third energy states (QD-like states). At the QD–Majorana levels anticrossing, the
Majorana wave function leaks into the dot regions leaving the topological region of the wire practically void. This is manifested in |QM| by two consecu-
tive zeros, one per dot level (around VZ = 2.5 meV).

Figure 6b, calculated considering only the two lowest-energy

states (as before). At the anticrossing the Majorana charge oscil-

lation is distorted, see blue region, but the area below the curve

is conserved. The missing charge in Figure 5b does not come

from the Majorana states, but from the dot states. At the anti-

crossing region, the two QD states (one per potential well) that

were occupied (below the Fermi level) move upwards in energy

as the Zeeman field increases and cross the Fermi level,

emptying themselves. This is why in the blue regions of

Figure 5e,f the total charge of the wire does not increase at the

corresponding parity crossing, but instead decreases loosing

effectively twice the charge of an electron e.

Finally, we would like to point out that, when the dot levels

anticross the Majorana levels in a pinning region, the Majorana

states detach from zero energy. This can be seen in Figure 5c

and Figure 1b. The reason is that, although in the pinning

regions the Majorana energy is zero, their wave function

overlap is not. It is actually maximum, as explained when

discussing Figure 4. Each QD acts as a local probe (one couples

to the left topological region of the wire, the other to the right).

If the length of teh wire were large (much bigger than the coher-

ence length), left and right Majoranas would be disconnected

from each other, and a local probe coupled to one of them

would not be able to change its energy or perturb it. This is

actually the core manifestation of their topological protection.

However, when the length of the wire is finite and the Majo-

ranas overlap, each QD couples to both Majoranas at either end

and their energies are modified. The typical shapes of the anti-

crossing were recently analyzed and can be used to quantify the

degree of Majorana non-locality [35,36].

Conclusion
In this work we have studied the low-energy characteristics of

Majorana nanowires while including their interaction with a

realistic 3D electrostatic environment. This is done by solving

self-consistently the Bogoliubov–de Gennes equation together

with the Poisson’s equation. Typically, the total charge of the

wire in equilibrium with the reservoirs increases with magnetic

field (or the chemical potential of the wire). However, if the

electrostatic screening is smaller inside the wire than at the

contacts, a repulsive interaction arises that leads to zero-energy

pinning around parity crossings in the spectrum of the wire.

While the screening due to the parent SC shell tends, in general,

to reduce this pinning effect, we find that it still persists

depending on the quality of the SC layer and the location of the

charge density within the nanowire. The pinning mechanism

could help explain the precise shape of the Majorana oscilla-

tions (or lack thereof) observed in some dI/dV experiments,

which exhibit substantial deviations from the predictions of

simple models for finite length wires.

On the other hand, and more importantly, the self-consistent

solution of the electrostatic potential varies nonhomogeneously

along the wire. It is relatively flat in the central region but, due

to the screening from the left/right metallic contacts, it becomes
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strongly negative at the edges. This creates potential wells that

confine QD-like states at the ends of the wire, which appear in

the spectrum as discrete states within the induced gap that

disperse with Zeeman energy or chemical potential. These QD

levels interact with the Majorana states in a specific way which

is strongly dependent on the Majorana wave function, and par-

ticularly on its degree of spatial non-locality. The pinning

mechanism and the coupling to QD-like states compete against

each other, so that the pinned zero-energy plateaus may become

lifted at resonance with the dot states, thus revealing their elec-

trostatic origin (as opposed to true wave function non-locality).

Supporting Information
Supporting Information File 1
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