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Abstract
The adhesive contact between a rough brush-like structure and an elastic half-space is numerically simulated using the fast Fourier

transform (FFT)-based boundary element method and the mesh-dependent detachment criterion of Pohrt and Popov. The problem is

of interest in light of the discussion of the role of contact splitting in the adhesion strength of gecko feet and structured biomimetic

materials. For rigid brushes, the contact splitting does not enhance adhesion even if all pillars of the brush are positioned at the

same height. Introducing statistical scatter of height leads to a further decrease of the maximum adhesive strength. At the same

time, the pull-off force becomes dependent on the previously applied compression force and disappears completely at some critical

roughness. For roughness with a subcritical value, the pressure dependence of the pull-off force qualitatively follows the known

theory of Fuller and Tabor with moderate modification due to finite size effect of the brush.

2405

Introduction
The study of adhesive contacts has been largely enhanced by

studies of the extremely effective adhesion pads of geckos [1].

For example, the adhesion can be optimized by controlling the

size and shape of the fiber cap [2,3]; this mushroom-shaped

microstructure can provide a stronger adhesive performance

than the flat punch [4,5]. The compliant fiber is known to

increase the strength of adhesion [6,7]. Almost all works in this

field are based on the idea that contact splitting is the sole

reason for the enhanced adhesion [8,9]. In a previous work, we

shared a contrary opinion [10]: the contact splitting alone does

not lead to enhancement of adhesion. The physical reason for

this is the macroscopic (on the scale of the whole system) con-

centration of stress in the vicinity of the boundary of the

“apparent contact”. In the present paper we extend the previous

work by considering “rough brushes”. Related problems have

been studied using a number of purely statistical models, which

did not consider the elastic interactions between asperities.

Zhuravlev proposed a model (originally published in 1940,

whereby the work was later translated into English) consisting

of asperities in the form of elastic spheres having the same

radius but placed at various heights [11]. Kragelsky presented

(originally in 1948) an alternative model of a rough surface as a

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:qiang.li@tu-berlin.de
mailto:v.popov@tu-berlin.de
https://doi.org/10.3762%2Fbjnano.9.225


Beilstein J. Nanotechnol. 2018, 9, 2405–2412.

2406

Figure 2: The scheme of indenting and pull-off stages of an adhesive contact of exponentially distributed pillars.

collection of elastic rods and assumed that the rod heights have

a Gaussian distribution [12]. In the classical work of Green-

wood and Williamson in 1966, they considered both the expo-

nential and Gaussian distribution of asperity heights [13]. A

detailed review of hierarchical models of rough surfaces can be

found in [14]. A very similar problem was studied by Fuller and

Tabor [15] as early as in 1975.

Contrary to the above mentioned works, we consider the numer-

ically exact solution of the adhesive contact problem using the

boundary element method as described in [16] using the mesh-

dependent detachment criterion [17], which later was extended

to power-law-graded media [18] and extensively tested and

validated experimentally in [19]. In this work, we find the de-

pendence of the adhesive force on the size of the brush, the fill

factor of pillars and the statistical distribution of the pillar

heights (simulating the relative roughness of surfaces in con-

tact). We will show that the adhesion of statistical brushes can

be described by a small number of simple analytical dependen-

cies based both on Kendall’s theory of flat-ended stamps [20]

and the Fuller and Tabor theory of adhesive contacts [15].

Modeling
Model description and main governing
parameters
We consider a square brush – a rigid body consisting of a large

number of cylindrical pillars filling a square area of A0 = L × L

in contact with an elastic half-space with an example shown in

Figure 1. All pillars had the same radius, α = 0.01L. The brush

is shown in blue while the green color map shows the surface

deformation of the elastic half-space during pull-off.

It is known that in the approximation of independent asperities,

adhesion can be described in a most general and elegant way if

the distribution of asperity heights is described by the exponen-

tial probability density,

Figure 1: Simulated surface of a rough brush (blue) in adhesive con-
tact with an elastic half-space (green). Along the boundary of the
square, one can see the pillars, whose heights are statistically distri-
buted. The elastic half-space is represented only by its surface. At the
location of the highest pillars, one can see the “spikes”, which stem
from pillars which are strongly pressed into the elastic half-space. At
lower pillar heights (see the side of the contact) one can see the
“negative spikes” which stem from the not-yet-destroyed adhesive
contacts of individual pillars loaded in tension.

(1)

where l is the characteristic “roughness”, and z the height of an

individual pillar.  is the probability of finding a pillar

with the height between z and z + dz. For easier comparison

with existing theoretical predictions, we used this probability

distribution throughout the paper.

We simulated the following experiment: The brush was first

pressed against the elastic half-space with the normal force, Fp

(Figure 2a) and then pulled off as shown in Figure 2b up to

complete loss of contact.



Beilstein J. Nanotechnol. 2018, 9, 2405–2412.

2407

The numeric experiment was carried out under conditions of

displacement control. If the surface exhibits macroscopic adhe-

sion, the normal force at the moment of complete detachment

will be negative; its absolute value is called the force of adhe-

sion, FA. Let us introduce some characteristic quantities which

can be used for comparison with results for brushes:

1. A natural reference force to compare with is the adhesion

force of a complete flat-ended square indenter with the size

L × L. In [19], it was argued analytically and confirmed numeri-

cally that it can be well-approximated with Kendall’s equations

for a cylindrical stamp [20]:

(2)

where E* = E / (1 − ν2) is the effective elastic modulus, E is

Young’s modulus, ν is Poisson’s ratio, γ is the work of separa-

tion (work of adhesion) per unit area, and

(3)

is an effective radius of the square, defined so that the area of a

cylinder with the radius a0 is equal to the area of the square.

Note that the maximum adhesive force for a flat-ended square

indenter is slightly larger than that predicted by Equation 2.

2. As shown already in [19] and confirmed by detailed simula-

tions in [10], the detachment of a flat brush structure (without

height distribution), occurs very similar to that of a continuous

square, while the force of adhesion can be approximated by

(4)

and the fill factor,

(5)

is defined as the ratio of the area filled by pillars to the total

apparent area of the square. Equation 4 has a simple physical

meaning: it just says that in the case of the not-completely-filled

square, the work of adhesion has to be replaced through the

effective work of adhesion, γρ. The force of adhesion of a flat

brush is a natural reference for comparison with rough brushes.

3. For characterization of the role of the statistical distribution

of the pillar height, we consider the critical separation, the point

at which the adhesive contact of one single pillar with the radius

a is lost. This critical separation has been obtained by Kendall

[20] as

(6)

It is clear that if the roughness, l, of the brush is much smaller

than dcrit, then the brush can be considered as being smooth,

while in the opposite case of l >> dcrit, the adhesion will be

practically completely destroyed by the roughness. We thus an-

ticipate that the parameter l / dcrit will essentially govern the

adhesive properties of the rough brush.

Contact with homogeneous elastic half-space
Figure 3 shows an example of the whole loading cycle starting

with indenting the brush into the half-space and following pull-

off. The quantities which we are interested in, and which will be

presented in the following diagrams, are solely the maximum

force during the indentation stage, Fp, and the force of adhe-

sion, FA, defined as the absolute value of the minimum (nega-

tive) value of the normal force during the pull-off stage.

In the case of a rough brush, it is clear that the number of pillars

that will come into contact with the counter-body depends on

the applied normal force, Fp. Correspondingly, the force of

adhesion will depend on the preliminary applied normal force.

This dependence of the force of adhesion on the applied force is

the main characteristic of the brush. An example of such depen-

dence is shown in Figure 4a for the case of a very small rough-

ness parameter l / dcrit = 0.084. In this case, the number of

pillars in contact does increase until all pillars are in contact.

Due to the small roughness parameter, the adhesive strength in

this final state is practically the same as that of a flat brush. The

characteristic parts of the curve observed in this case are

common for all other cases: The adhesive force first increases

linearly with applied force (due to the increasing number of

pillars coming into contact). In Figure 4a, we denote this part as

region I. Under further increase of the compression force, the

force of adhesion finally achieves a plateau, labeled as region

III in Figure 4a. Between these regions there is of course some

transition, region II. Within the two characteristic regions, the

dependence of the adhesion force on the applied force can be

written in the form

(7)

(8)

With an increasing roughness, the slope of the linear part of de-

pendence (in region I) becomes smaller and the maximum
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Figure 3: An example of a pillar structure in compression and pull-off contact: (a) load–distance relation; (b) load–contact area relation. Parameters
used in this simulation were: Number of pillars: 1000, filling factor: ρ = 0.3, normalized roughness: l / dcrit = 0.42. (a) also provides the exact definition
of the preliminary compression force, Fp, and the force of adhesion, FA.

Figure 4: (a) Relation between the compressive force and adhesive force; (b) relation for different values of l / dcrit.

achievable force of adhesion (value at the plateau) decreases

and finally vanishes completely (Figure 4b).

In region I, a pressure sensitive adhesion must be considered. In

this region, the force of adhesion is proportional to the applied

normal force and is uniquely determined by the proportionality

coefficient, c, which sometimes is called the adhesion coeffi-

cient [21,22]. The numerically found dependency of the adhe-

sion coefficient on the normalized roughness is shown in

Figure 5a. In the approximation of elastically independent

pillars, the value of the coefficient of adhesion was found in

[21] (see Problem 5 in Chapter 7) to be c = FA / Fp = dcrit / l −1.

In analogy with this equation, we can try to approximate the nu-

merical result by the equation

(9)

The best fit is achieved with the coefficients A = 0.6222,

B = 0.5758 and C = 1.1. Note that dependency of the adhesion

coefficient on the dimensionless roughness do not depend on

the fill factor (simulation points corresponding to the fill factors

0.1 and 0.3 are fitted by the same curve).

The second important adhesion property of the brush is the

maximum adhesion force at the plateau. The dependence of the

maximum adhesion force on the normalized roughness is shown
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Figure 5: (a) Dependence of the coefficient C on the characteristic length in region I (Figure 4); (b) the maximum value of the adhesive force at the
plateau (region III, Figure 4).

in Figure 5b. It also decreases with increasing l / dcrit and practi-

cally vanishes at roughness values larger than approximately

l / dcrit > 1.1. Again, in a dimensionless presentation, the depen-

dence is only very weakly sensitive to the fill factor and can be

considered, to a good approximation, as universal “master

curves”. The results by Johnson in 1974 for an exponential dis-

tribution of asperity heights (solid black line) [23], and the

results by Fuller and Tabor for a Gaussian asperity height distri-

bution (green dashed line) [15] are added in Figure 5b for com-

parison, where the relative pull-off forces P / npc and Pm / Npc

are plotted against σ / δc, where P is the tensile force per unit

area, n the number of asperities per unit area, N the asperity

density, pc the critical adhesive force of an individual sphere, σ

the standard deviation of the distribution of asperity heights,

and δc the critical separation similar to Equation 6 but for spher-

ical asperity.

Contact with power-law-graded media
In the previous sections, we considered the adhesive contact of

brushes that were placed in contact with a homogeneous linear

elastic medium. Many biological materials such as skin, bones

or bamboo trees are, however, non-homogeneous. This may

have a significant impact on the adhesive properties as a softer

surface layer may help create an intimate contact with rough

surfaces, while the stiffer interior supports a higher final adhe-

sive strength. In this way, properties can be achieved which are

not possible for homogeneous materials [24,25].

In the present section, we only consider materials whose elastic

coefficient is a function of the normal coordinate E = E(z). This

dependence can be either stepwise (as, e.g., in layered or coated

materials) or continuous (functionally graded material). For

simplicity, we confine ourselves to the model case of materials

with a power-law dependence of the elastic modulus on depth,

such as

(10)

where E0 is a characteristic elastic modulus and c0 is a charac-

teristic length. We additionally assume that the Poisson’s ratio

of the graded medium is constant and consider only a positive k,

which means that the material is softer at the surface and stiffer

in deeper regions. We also assume the Poisson’s ratio to be con-

stant at ν = 0.3.

As in the previous section, we normalize the roughness to the

maximum elongation at the moment of detachment in the con-

tact of a single pillar [26,27]

(11)

and the adhesive force for that of the flat brush as

(12)
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Figure 6: (a) Dependence of adhesion coefficient on the normalized roughness in region I (Figure 4) for different exponents k; (b) the maximum value
of adhesive force at the plateau (region III, Figure 4) for different exponents k.

where α and β are

(13)

(14)

and Γ is the gamma function . We carried out

simulations for three gradient materials: with the exponent

k = 0.3, 0.5, and 0.7 and c0 = 10a. All qualitative features found

in the case of the contact of a brush with homogeneous materi-

als remain valid also for gradient media. In particular, the force

of adhesion increases linearly with the compression force at

small forces and achieves a plateau at larger compression

forces. Thus, Equations 7–9 are also valid in these cases. The

adhesion coefficient in the linear region and the plateau values

are shown in Figure 6 for different exponents k and fill factors.

From Figure 6a it can be seen that the adhesion coefficient is in-

dependent of fill factor, and the corresponding universal values

of constants are listed in Table 1. However, for large k, the re-

quired adhesive force for separation increases. However, in the

plateau region, the adhesive force decreases with the power k

and fill factor ρ (Figure 6b). Here one should note that the FA0

in the normalization is different for different exponents k.

Discussion
Simulations show that the roughness of a brush has two main

effects: (1) the pull-off force becomes pressure-dependent and

Table 1: Values of the coefficient A, B and C in the linear region.

k = 0 k = 0.3 k = 0.5 k = 0.7

A 0.6222 2.06 4.399 8.999
B 0.5758 0.5785 0.816 0.8918
C 1.1 3.5 5.4 10.1

(2) the maximum achievable adhesion force decreases with

roughness. Furthermore, there exists a critical roughness at

which the macroscopic adhesion disappears completely. In the

initial region of pressure-dependent adhesion, the force of adhe-

sion can be characterized by the adhesion coefficient in Equa-

tion 9, and the force of adhesion can be easily written in an

explicit form:

(15)

The factors determining the force of adhesion are thus: elastic

modulus E*, work of adhesion γ, size of the contact a0 and

normalized roughness l / dcrit.

In the case of power-law-graded materials, the situation may

change significantly. The main qualitative difference can be ob-

served in the critical roughness, at which the macroscopic adhe-

sion disappears completely. While for the homogeneous materi-

al, adhesion vanishes when the roughness is of the order of the

critical length dcrit for single pillar; for the medium with k = 0.7,

the critical roughness becomes ten times larger than the critical
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length dcrit. Interestingly, while the maximum normalized force

of adhesion in the case of graded media clearly depends on the

fill factor, the critical roughness at which the adhesion vanishes

seems not to depend on the fill factor and is universally deter-

mined by the grading exponent k.

Thus, we conclude that material gradients with a positive

grading exponent k strongly enhance adhesion to very rough

surfaces.

Conclusion
Numerical simulations of finite brushes using the boundary ele-

ment method show that the earlier simplified analysis by Fuller

and Tabor can still be used if corrected by multiplicative factors

of the order of unity. These factors have been determined

numerically. Unlike the statistical models developed previously,

the elastic interactions between the pillars were taken into

account in this study using a numerically exact solution with the

boundary element method.

We found that for weak compression, the adhesive force is

proportional to the applied load and becomes constant at larger

normal forces. Adhesion completely vanishes if the roughness

is larger than the critical length of detachment for a single pillar

of the brush. Similar regularities are valid for graded materials.

However, the critical value of roughness may now strongly

exceed the critical detachment length for one pillar.
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