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Abstract
We study theoretically the local density of states (DOS) in a topological Josephson junction. We show that the well-known 4π

Josephson effect originates from the interference effect between two Majorana fermions (MFs) that are localized at the Josephson

junction. In addition, the DOS for electrons (holes) shows the 4π interference information along each parity conserved energy spec-

trum. The DOS displays a 2π period oscillation when two trivial states interfere with each other. This means that the DOS informa-

tion may be used to distinguish the MFs from trivial localized states. We suggest that the interference effect and the DOS can be

detected by using two STM leads or two normal leads. A single side lead can only detect the Andreev reflection tunneling process

in the junction, which cannot reveal information about the interference effect in general. However, using two side leads, we can

reveal information about the interference effect of the MFs as well as the DOS by combining Andreev reflection with the electron

transmission process.
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Introduction
After Kitaev reported that Majorana fermions (MFs) can appear

as quasi-particle states at the ends of a one-dimensional (1D)

p-wave superconductor [1], the generation of MFs became a

popular goal in condensed matter physics [2]. Several methods

were suggested to fabricate and detect MFs in effective 1D

p-wave superconductor systems [3-11]. The use of a semicon-

ductor wire with Rashba spin–orbit coupling and proximity-in-

duced superconductivity appear to be the most promising

method [4]. Indeed, a semiconductor–superconductor nanowire

was manufactured to confirm the prediction of the theory [12-

14]. The second topological superconducting system that was

realized experimentally is related to ferromagnetic atomic

chains, which are put on a trivial superconductor [15]. It is

believed that MFs can generate a zero-bias conductance peak

(ZBP) in the conductance spectrum [16-19], and indeed the

signature of ZBPs has been observed in both systems in tunnel-

ing experiments. These advances accelerate the development of

nanotechnology [20-27]. Recently, a breakthrough was
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achieved in research groups led by Kouwenhoven and Marcus.

Both groups observed the integer ZBPs in a nanowire system

[28]. These are the most persuading results so far. However, all

these achievements relied on the observation of ZBPs, which

means that many other unique properties of MFs still require

further verification and investigation.

Apart from the ZBP, another significant feature of MFs is the

4π Josephson current. When two topological superconducting

wires are combined to form a topological Josephson junction

(Top-JJ), the period of the supercurrent is 4π if MFs exist at the

ends of both wires. This is different from the trivial case with-

out MFs. In the trivial case in which only Cooper pairs can

tunnel, the period is 2π. Since MFs have only half a degree of

usual fermions, half a degree of Cooper pairs can tunnel in the

Top-JJ when the two MFs combine. In this situation, the period

is doubled. Because the 4π Josephson effect is a unique trans-

port property of MFs, many groups attempt to observe it.

Indeed, Kouwenhoven’s and Marcus’ groups fabricated such a

junction and obtained some preliminary results. However, the

expected 4π period was not observed [23-25]. The 4π Josephson

effect needs a stringent condition that is known as the parity

conservation [29]. The evolution of the states is expected to

follow one fixed branch of the energy spectrum. It is particular-

ly susceptible at the degenerate point when the even and the odd

parity states intersect at zero energy for  = (2n + 1)π. The state

then changes from one parity to another because of quasipar-

ticle poisoning, the background and the thermal effect [30-34].

In this case, the 4π period will return to the conventional 2π.

Thus, to reveal the 4π nature of the MFs, it may be necessary to

observe more than just a supercurrent. Interestingly, several

groups have studied superconductor-topological insula-

tor–superconductor junctions that also display a 4π Josephson

current. However, the behavior of the 4π Josephson current is

not consistent with the theoretical prediction [35-41]. To distin-

guish the 4π information of MFs, it is necessary to reveal addi-

tional characteristic properties of such a Josephson junction.

In this paper, we study a Top-JJ composed of two topological

superconductors as shown in Figure 1a. Unlike previous studies,

we focus on the density of states (DOS) for both the electron

part and the hole part. The essential property of the MFs is that

the wave function of the electron part must be conjugated with

the wave function of the hole part, which is known as the self-

Hermitian property of the MFs. More specifically, the self-

Hermitian property of the MFs can be demonstrated directly

from the DOS of the electron and of the hole part, which is a

basic assumption used in this paper. Since the DOS only shows

the steady information of the whole energy spectrum, it does

not relate to the parity-conserving problem, which is a problem

of dynamic evolution. Therefore, compared to the supercurrent,

Figure 1: (a) Schematic setup of an experiment in which two STM
leads or normal leads are connected to a Top-JJ that supports the
MFs. (b) Energy spectrum of the Top-JJ with chemical potential
μ = −2t, which lies in the topological region. The two MFs, which are
localized at the junction, interfere with each other and display a 4π
oscillation. (c) DOS for electron part of the coupled MFs in the Top-JJ.
Both even parity state and odd parity state show a parity-correlated 4π
oscillation. (d) Energy spectrum of the Top-JJ with chemical potential
μ = −2t + 5.7Δ, which lies in the trivial region, and the disorder strength
w = 0.13t. In this case, there does not exist any MF that is localized at
the junction. However, the trivial Andreev bound states occasionally
touch with each other in the presence of disorder. In such situation, the
trivial Andreev bound states behave like the Andreev bound states
formed by the two MFs in panel (b). (e) DOS of the trivial Andreev
bound states for the electron part. It is totally different from the DOS of
the nontrivial Andreev bound states in panel (c). The period of the
trivial state is 2π.

the DOS are easier to detect. We show that the two Andreev

bound states formed by the MFs exhibit a 4π period due to the

interference effect between the two MFs. Furthermore, the DOS

of both the electron and the hole part can also reveal the 4π

period. The electron (hole) DOS of the two Andreev bound

states are related: One is destructive, while the other is

constructive. However, the DOS of the trivial Andreev bound

states contains different information. In general, the interfer-

ence effects in the trivial Andreev bound states are unrelated,

and their period is 2π. Thus, it may be a way to distinguish them

using information contained in the DOS. We suggest that the

interference effect can be detected using two STM leads or two

normal leads. We show that a single side lead can only detect

the Andreev reflection tunneling process in the junction, which

cannot reveal information about the interference effect in



Beilstein J. Nanotechnol. 2018, 9, 520–529.

522

general. However, using the two side leads, we can display

information about the interference effect of the MFs by combin-

ing Andreev reflection and the electron-transmission process.

Model Hamiltonian and formula
A typical Top-JJ is composed of two topological supercon-

ducting wires that have different superconducting phases. Ac-

cording to [9,18], the tight-binding model of a superconducting

wire is:

(1)

Here, Hs,q1D is the Hamiltonian of the left (right) wire with

s = L (R). The only difference between the two wires is the

phase of the superconducting order  (here we set  = 

and  = 0). Furthermore, i denotes the lattice site, and d

denotes the two unit vectors dx and dy, which connect the

nearest neighbor sites in the x and y directions, respectively.

Moreover, α, β are the spin indices, t is the hopping amplitude,

μ is the chemical potential, UR is the Rashba coupling strength,

and Vx is the Zeeman energy caused by magnetic field along the

wire direction. Δ is the superconducting pairing amplitude and

Vimp(i) is the Gaussian impurity. Hc describes the coupling be-

tween the left and the right topological superconducting wires.

To obtain the tunneling coefficient at the junction, we use the

recursive Green function method. We can then calculate the

scattering matrix of the system. The scattering matrix is related

to the Green functions via

(2)

Here,  is an element of the scattering matrix that denotes

the scattering amplitude of a β particle from the j-th lead to an α

particle in the i-th lead. Furthermore, i,j = 1 or 2, where 1 and 2

denote, respectively, the first and the second normal lead as

shown in Figure 1a.  denote the electron (e) or hole

(h) channels. In addition,

is the retarded Green function of the Josephson junction, and

 is the linewidth function of an α particle

in the i-th lead, where  is the retarded (advanced) self-

energy of the α particle for the i-th lead. In the following calcu-

lation we set  through wide-band approximation. The

physical meaning of the scattering matrix is:  means the

Andreev reflection coefficient TA in the i-th lead, and 

means the electron transmission coefficient Te from the i-th lead

to the j-th lead.

To match the experiment in [12], the parameters in the

tight-binding model were chosen as follows: Δ = 250 μeV,

t = 25Δ, UR = 2Δ, and the superconductor coherence length is

ξ = t/Δa = 500 nm with a being the lattice constant. In addition,

we set Vx = 2Δ such that the superconducting wire can support

the MF end states by tuning the chemical potential.

Results and Discussion
The following section is divided into three subsections. In the

first subsection, the 4π oscillation of the DOS is shown. In the

second subsection, the same oscillation information in a ring

structure is shown and in the third subsection, we discuss how

the information about the DOS is detected.

4π oscillation of the density of states
In this subsection, we consider the origin of the 4π Josephson

effect. Then, we show that the DOS for the electron (hole) part

can also exhibit the 4π interference effect. The well-known 4π

Josephson effect is directly related to the fractional nature of the

MFs. Because a single MF has only half a degree of a conven-

tional fermion, we can define a conventional fermion using

ψj = (γ2j−1 + iγ2j). For the Top-JJ in Figure 1a, there are two

pairs of the MFs, which are localized at the ends of the

superconductor. We assume that the length of the wire is suffi-

cient so that γ1 and γ2 (γ3 and γ4) are not coupled to each other.

In this case, only γ2 and γ3 can couple to each other at the junc-

tion, which is described in Equation 1. Because the phase of the

left wire is  and the phase of the right wire is 0, the Hamil-

tonian of the left wire can be transformed into the right one

using a unitary transformation . The

phase difference between γ2 and γ3 is /2. These two MFs will

interfere with each other and form two Andreev bound

states because of this phase difference. The effective Hamil-

tonian can be obtained by projecting the coupling of Equation 1

onto the subspace of the MFs using  and

[6]. Then, the low-energy effective Hamiltonian

is

(3)
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Here,  = ψ†ψ is the number operator and ψ = γ3 + iγ2. Then,

the occupation number has two values: Nv = 0,1, with Nv = 0

corresponding to the even parity state, and Nv = 1 correspond-

ing to the odd parity state. The Josephson current mediated by

the MFs can be given by ,

which displays the 4π oscillation. This is very different from the

case without the MFs. In such case, only Cooper pairs can

tunnel from one superconductor to another, and the period is 2π.

We show that the fractional Josephson effect can be attributed

to the interference effect between the two MFs. Next, we show

that the DOS of the electron and the hole part of the Andreev

bound states, which are formed by the MFs, also display the 4π

period. The MF is a particle that is its own antiparticle. For such

a particle, the wave function of the electron part must be conju-

gated with the wave function of the hole part, which is the self-

Hermitian property of the MF. Thus, the general wave function

of the MFs should be [42]:

Here,  is the wave function of the electron part, when the

phase of the superconducting order parameter is 0. In the Top-JJ

shown in Figure 1(a),

and

These two degenerate MFs will couple with each other to form

an Andreev bound state via ψ = (γ3 + iγ2), and the excited wave

function should be combined using the same rule:

(4)

From Equation 4 we can see that the DOS for the electron

part is , while the DOS for the hole is

. There are several unique properties of the

DOS for the Andreev bound states formed by the MFs: First,

the period along each energy spectrum is 4π. Second, it is parity

correlated. The DOS is  for the even parity state,

and the DOS is  for the odd parity state. Third, the

DOS of the hole part for the even parity state is the same as that

of the electron part for the odd parity state due to the self-

Hermitian property of the MFs. Because of these unique proper-

ties of the DOS, we may differentiate the 4π information using

the DOS of the electron (hole) part, which should provide

clearer distinctions than the trivial states.

Our numerical results provide direct evidence for this conclu-

sion. We use the tight-binding model in Equation 1. The length

of each wire is Nxa = 4μm and tc = 0.4t. Figure 1b shows the

energy spectrum as a function of the flux  with the chemical

potential μ = −2t, which lies in the topological region. The red

solid line is the energy spectrum for the odd parity state, while

the blue solid line is the energy spectrum for the even parity

state. We can see that both of them oscillate with a period of 4π.

Next, we study the information of the DOS more closely.

Figure 1(c) shows the information of the local DOS for the elec-

tron part  along the fixed even parity state (blue solid

line) and the odd parity state (red solid line). Here,  is the

electron part wave-function localized at the junction, which can

be extracted through diagonalization of the lattice Hamiltonian

in Equation 1. The DOS of the electron oscillates with a period

of 4π and the interference pattern is correlated with the parity.

Furthermore, this relation is still valid in the presence of moder-

ate disorder. Figure 1b and Figure 1c are calculated for the

Gaussian disorder of w = 0.06t. We can see that the relation still

holds.

Interestingly, when the two trivial fermion states interfere with

each other, the situation is very different. Though an analytic

result cannot be obtained, our numerical simulation suggest that

the general formula for the DOS for the electron (hole) part

should be , with a and b being real constants. This

can be understood as follows: For the trivial case, only Cooper

pairs can tunnel through the junction. Thus, the DOS must be a

function of cos( ) instead of cos( /2). From our numerical

results, we know there are several differences to the nontrivial

case. First, the period is 2π. Second, there is no corresponding

parity-correlated interference effect for the trivial case. Third,

the maximum (minimum) value of the DOS is at  = (2n + 1)π

for the trivial case and at 2nπ for the nontrivial case. In

Figure 1d, we show the energy spectrum as a function of the

flux under strong disorder, w = 0.13t with μ = −2t + 5.7Δ. It is

typical that the two trivial Andreev bound states are acciden-

tally in contact with each other for the strong disorder. From

Figure 1b and Figure 1d, we can see that the energy spectra are

very similar between the trivial case without the MFs and the

nontrivial case with the MFs. In this situation, it is difficult to

distinguish the trivial Andreev bound states from the Andreev

bound states formed by the MFs. Even though the period of the

Josephson current is still 2π, it may be changed into 4π via a

Landau–Zener transition [43]. Thus, the Josephson current

cannot distinguish the trivial Andreev bound states and the
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nontrivial Andreev bound states formed by the MFs. Figure 1e

displays the information of the DOS for the electron part for the

two trivial Andreev bound states. We can see that the DOS is

described by , which is distinct from the nontrivial

case shown in Figure 1(c). Therefore, the DOS are clearly

distinct.

Interference effect in a ring structure
Another typical Josephson junction is the ring structure shown

in Figure 2a. In such a ring structure, when a magnetic flux

threads the ring, the two MFs interfere with each other due to

the phase difference. In Figure 2b, we show the energy spec-

trum as a function of the flux. The Andreev bound states formed

by the two MFs show the same behavior as for the Top-JJ

shown in Figure 2b. Furthermore, the DOS of the electron part

in Figure 2c also contains the same interference information as

the one shown in Figure 2c. They are parity correlated with a 4π

period. Thus, we can see that the fractional Josephson effect

originates from the interference effect between the two MFs.

Figure 2: Interference effect in a typical Top-JJ of a ring structure.
(a) Schematic setup of the experiment. (b) Energy spectrum of the
Top-JJ with the chemical potential μ = −2t which lies at the topological
region. The two MFs which are localized at the junction interfere with
each other and display the 4π oscillation. (c) DOS for the electron part
of the coupled MFs in the Top-JJ. Both the even parity and the odd
parity states show parity correlated 4π oscillation.

Although the two different structures show the same informa-

tion for the interference effect, we can say that they are qualita-

tively different. The parity in the ring structure will not be de-

stroyed when the parity of the whole system is conserved. How-

ever, the parity in the junction, as shown in Figure 1a, will be

destroyed even if the total parity is conserved. This is attributed

to the fact that there are two pairs of MFs in the system of

Figure 1a, while there is only one pair of MFs in the ring struc-

ture shown in Figure 2a. If there are two pairs of MFs, the effect

from the other MFs must be considered. For example, in the

Josephson junction shown in Figure 1a, γ1 will couple with γ2,

Figure 3: (a) For the Top-JJ shown in Figure 1a, when we consider
the energy splitting induced by the finite length of the wire, the parity
will be destroyed. The dashed line shows the energy spectrum versus
the phase difference with L1 = L2 =100a. A small gap δEM can be ob-
served due to the finite-length effect. (b) Energy spectrum as a func-
tion of the flux in the ring structure with μ = −2t + 0.4Δ and Nx = 50a.
Here, EM = 0.05Δ and Γeff = 0.1Δ. We can see that the gap is not
opened and the 4π period persists. (c) Energy spectrum as a function
of the flux in the ring structure with μ = −2t + 0.8Δ and Nx = 50a. Here,
EM = −0.12Δ > Γeff. We can see that the two states of different parity
are separated in energy space. (d) An energy spectrum that is beyond
the superconducting gap in the ring structure and also oscillates with
the 4π period. (e) Flux-dependent DOS of the electron part (red solid
line) and the hole part (blue solid line) along the odd parity state
energy spectrum in panel (c). They are correlated with each other.
(f) Flux-dependent DOS of the electron part (red solid line) and the
hole part (blue solid line) along the energy spectrum in panel (d). They
are not correlated with each other.

and γ3 will couple with γ4. The effective coupling Hamiltonian

should be HM = EM1iγ1γ2 + EM2iγ3γ4, where EM1(2) represents

the energy splitting between the two MFs in the left (right)

superconducting wire. EM1(2) decreases exponentially with the

length L1(2) of the left (right) wire: 

with ξ being the coherence length of the superconducting wire

[42,44,45]. When effective coupling is considered in the Hamil-

tonian in Equation 3, the Andreev bound states would not inter-

sect at  = π. In Figure 3a the red (blue) solid line shows the

energy spectrum for the even (odd) parity state of the Andreev

bound states formed by the MFs. Here, the wire length is infi-

nite. Therefore, γ1 and γ4 will not destroy the parity of the

Andreev bound states. When the wire length is finite (e.g.,

L1 = L2 = 100a), we can see from the dashed line that a band

gap δEM exists at  = π. Thus, the parity is destroyed, and the

Josephson current has a 2π period. There is no 4π fractional

Josephson Effect in the junction shown in Figure 1a.
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While there are only two MFs, the parity of states will not be

destroyed even if we consider the effective coupling induced by

the finite length of the wire. In this case, the total low-energy

effective Hamiltonian can be described as follows:

(5)

Here, Γeff is the effective coupling between the two MFs at the

junction and EM is the energy splitting between the two MFs

due to the finite length of the ring shown in Figure 2a. We can

see that EM only shifts the energy of the even (odd) parity state

but does not destroy the parity. In Figure 3b, we show the

energy spectrum for a varying flux with μ = −2t + 0.4Δ and

tc = 0.4t. Here, EM = 0.05Δ and Γeff = 0.1Δ. The two energy

spectra cross over without destroying the parity of the Andreev

bound states. When we consider the case of EM > Γeff, the two

states are separated. The energy spectra of the Andreev bound

states shown in Figure 3c are separated and show the 4π oscilla-

tion for the ground state. In this case, we can ignore the parity

conservation problem. Here, EM = −0.12Δ when the parameters

are L = 50a, tc = 0.4t and μ = −2t + 0.8Δ. The analysis above in-

dicates there are qualitative differences between one pair of

MFs and two pairs of MFs. If there are two pairs of MFs, the

parity of the Andreev bound states formed by the two MFs can

be affected by coupling with the other MFs. However, if there is

only one pair of MFs, coupling only affects the effective cou-

pling between the two MFs but it does not destroy the parity of

states. In fact, coupling induced by the finite-length effect can

cause the same interference effect as in the Top-JJ of the ring

structure. Both of them originate from the interference effect

between the MFs.

We have shown that the 4π Josephson Effect can appear in the

mesoscopic ring structure without the need to consider the

parity-conserving problem. However, in this case, an unex-

pected coherent single electron tunneling process would occur

in the mesoscopic ring structure, which is similar to the persis-

tent current in the mesoscopic ring. It will occur in the conduc-

tion band, which lies above the superconducting gap. Figure 3d

shows the energy spectrum that lies above the superconducting

gap. It also oscillates with a 4π period. It is difficult to derive

these two cases from the period. Here, we show that the DOS

can distinguish the two different cases. The DOS caused by the

MFs is parity related and has a 4π period, whereas the DOS

caused by the coherent tunneling does not exhibit a parity-

related oscillation. Figure 3e shows the DOS of the electron part

(red solid line) and the hole part (blue solid line) of the odd

parity state, respectively. We can see that they show the parity

related interference pattern, where one is constructive and the

other is destructive. Although the total DOS is not conserved

due to the splitting of the MFs, it is qualitatively different from

the DOS of the energy spectrum above the superconducting gap

(Figure 3f). The DOS in Figure 3f is not parity related and

shows very different oscillation behavior between the DOS of

the electron part and the hole part. Thus, they can be well distin-

guished by considering the DOS.

Detecting the 4π oscillation through two STM
leads
In the last section, we have shown that the main features of the

DOS for the nontrivial Andreev bound states are parity-corre-

lated with a 4π period, which is very different from the trivial

case. Next, we describe how the parity-correlated 4π period of

the DOS can be detected. The intuitive approach would be to

put a STM lead (normal lead) to detect the local DOS. Howev-

er, this does not work. In our previous paper [46], we studied

the conductance at the junction with a single STM lead. A

butterfly-pattern conductance caused by nontrivial Andreev

bound states would be observed as we vary the flux, which is

distinct from the conductance of a single impurity state local-

ized at the junction. Hence, the butterfly pattern can be regarded

as a unique property of the nontrivial Andreev bound states.

Figure 4a shows the same butterfly-pattern conductance. How-

ever, the peak value of the butterfly for each parity-conserved

energy spectrum has a 2π period instead of a 4π period. The

reason for this is that a single STM lead can only read the infor-

mation of the local DOS via Andreev reflection. Although the

numerical results in Figure 4 and Figure 5 are calculated using

recursive Greens function methods, the relation between

Andreev reflection and DOS can be obtained using a simplified

effective model. These two methods are consistent with each

other. The calculation of the Andreev reflection coefficient

through the effective model can be found in the appendix or in

[47], and can be expressed simply as

Here, Γe,eff is the effective self-energy of the electron part of the

leads, Γh,eff is the effective self-energy of the hole part of the

leads, and EM is the coupling energy of the two MFs.

 =  is proportional to the DOS of the

electron part, and  =  is proportional

to the DOS of the hole part. Thus, the Andreev reflection

reveals the combined DOS of the electron and the hole parts,

which is a 2π period. It cannot reveal the DOS of the electron

(hole) part separately. In addition, we can see that if the two

MFs are decoupled from each other, |u±|2 = |υ±|2 and TA shows

the well-known resonant Andreev reflection caused by the MFs.
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Figure 4: Two STM leads (or weak coupled normal leads) localized at
the junction can read the putative 4π period through the differential
conductance. (a) Contour plot of the Andreev reflection coefficient TA
of a STM lead as a function of the flux  and the incident energy E.
(b) Contour plot of the electron tunneling coefficient Te from the STM
lead 1 to the STM lead 2 as function of the flux  and the incident
energy E. (c) The ratio between the peak value of Te and the peak
value of T, here T = (Te + TA)/2. They show similar information of the
DOS (see Figure 1c). The DOS of one energy spectrum exhibits a 4π
period. However, when both spectra are considered, the period returns
to 2π. In this situation, we can distinguish by the even–odd cross point
as indicated by dashed circle. The parameters are Nx = 200a, μ = −2t,
and Vx = 2Δ.

To detect the local DOS of the electron part or the hole part, we

need additional information beyond the Andreev reflection

process. Thus, it is necessary to add another STM lead to detect

the electron transmission or the crossed Andreev reflection be-

tween the two leads [47,48]. This can directly reveal the infor-

mation of the DOS. During this process, the electron tunneling

coefficient between the two leads is

Here,  =  is the effective elec-

tron part self-energy of the STM lead L(R), which is propor-

tional to the local DOS for the electron part. In Figure 4b, we

show the contour plot of Te as a function of the flux  and the

incident energy E. We can see that the peak value of the tunnel-

ing coefficient Te is proportional to , i.e., the

square of the DOS of the electron part. In addition, there is a

sharp peak located at  = (2n + 1)π. The peak appears due to

the overlap between the two energy spectra at the position

 = (2n + 1)π. This is a main feature of nontrivial Andreev

Figure 5: The case for two accidentally touching Andreev bound
states. (a) Contour plot of the Andreev Reflection coefficient TA as a
function of flux  and the incident energy E. (b) Contour plot of the
electron tunneling coefficient Te from the STM lead 1 to the STM lead
2 as a funciton of the flux  and the incident energy E. For both cases,
the period is 2π. (c) The ratio between the peak value of Te and the
peak value of T, here T = (Te + TA)/2. They yield similar information as
the DOS for the trivial states. The obvious characteristic is that they
will intersect an even number of times or not at all in a 2π period as in-
dicated by dashed circles. The parameters are Nx = 200a,
μ = −2t + 5.7Δ, and Vx = 2Δ.

bound states: The two energy spectra intersect with each other.

A better way to distinguish the information of DOS is to com-

bine both the Andreev reflection and the electron transmission.

In Figure 4c, we plot the ratio between the peak value of Te and

the peak value of T. Here T = (Te + TA)/2 is the average tunnel-

ing coefficient of the Andreev reflection and electron transmis-

sion. We can see that this ratio is very similar to the DOS. One

spectrum is proportional to , while the other one is

proportional to . Thus, combining the electron

transmission and the Andreev reflection process can reveal the

parity-correlated 4π oscillation of the DOS.

The tunneling coefficients show a very different behavior when

we use two normal leads to detect the trivial Andreev bound

states. Figure 5a shows the Andreev reflection coefficient as a

function of the flux , while Figure 5b displays the evolution of

the electron transmission coefficient with varying . The

obvious 2π period can be easily distinguished using the tunnel-

ing coefficient of electron transmission. However, the trivial

Andreev bound states are susceptible to the external circum-

stance. When the two leads are attached to the junction, the two

accidently touched trivial states will not overlap. In addition,

the DOS will also be affected by the lead contact. The DOS will

show a small variance when the coupling strength of the leads
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changes. As shown in Figure 5c, the ratio Te/T changes a little

compared to the DOS of trivial Andreev bound states. However,

two properties are preserved: First, the period is still 2π and can

be described as a + bcos( ); second, both electron DOS and

hole DOS are generally unrelated, which strongly indicates that

the two Andreev bound states are not clearly correlated with

each other. Thus, the nontrivial Andreev bound states can be

distinguished from the trivial Andreev bound states by combin-

ing both the electron transmission process and the Andreev

reflection process.

Finally, we want to point out that the actual period in Figure 4c

returns to 2π when both parity states are considered. However,

we can still distinguish the trivial Andreev bound states and the

nontrivial Andreev bound states by the DOS. As shown in

Figure 4c, the DOS of nontrivial Andreev bound states is

 for an even parity state and  for an

odd parity state. The plots of the DOS for different parity states

would overlap once (see the dashed circle in Figure 4c). While

the DOS of the trivial Andreev bound states is a + bcos( ), the

plot of the DOS for trivial states would overlap with zero or

even times in a 2π period as indicated by dashed circle in

Figure 5(c). This is decided by the functional properties of

cos( ) and cos( /2). This kind of even–odd crossing would not

be affected by a small variance of the DOS. Thus, in general,

we can still distinguish the trivial states and nontrivial states

through the even–odd crossing of the DOS in a 2π period.

Conclusion
We have studied the interference effect of two MFs in a topo-

logical Josephson junction and a ring structure system. We

show that the 4π Josephson effect originates from the interfer-

ence between the two MFs, and so does the DOS of the

nontrivial Andreev bound states. Thus, detecting the behavior of

the DOS can directly reveal the nature of the fractional

Josephson effect. The trivial states, which behave like the

nontrivial Andreev bound states, are considered in the paper.

Although it is difficult to distinguish the two cases through the

supercurrent and the energy spectrum, it can be well separated

through the DOS. We suggest that the DOS can be detected

using two normal leads, i.e., STM leads. With the two leads, we

can obtain the electron transmission process beyond the

Andreev tunneling process. Then, the information of the DOS

can be derived by combining the two processes.

Appendix
Effective Hamiltonian and effective current
formula
In the main text we calculate the tunneling coefficients using

the recursive Green function method. To better understanding

the numerical results, we obtain the analytical results using the

effective Hamiltonian and scattering matrices. The effective

Hamiltonian Heff = HN + HM + HT can be formulated as

follows:

(6)

Here, HN is the Hamiltonian of the left and right normal leads;

ψL(R) denotes a fermion operator of the left (right) normal lead,

and vf is the corresponding Fermi velocity of the leads. HM de-

scribes the two coupled MFs, where EM is the coupling strength

between the two MF end states γ1 and γ2. The coupling be-

tween the leads and the MFs is described by HT, where the cou-

pling strengths are represented by  and , respectively.

To calculate the scattering matrix of the system, we perform a

transformation first. Considering that a single MF is just half of

an ordinary fermion state, we can change the MF representa-

tion into the fermion representation γ1 = d + d†, γ2 = i(d − d†).

Then, HM and HT are changed to:

(7)

Next, we can formulate the scattering matrix in a model-inde-

pendent form,

(8)

with W the matrix that describes the coupling between the scat-

tering region and the leads:
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In general, we can write the approximation as:

Here, Γl,α is the self-energy of the α part of the lead l, which is

renormalized by the local DOS of the two coupled MFs.

Furthermore, it is proportional to the local DOS of the α part of

the two coupled MFs. Thus, using the scattering matrix we can

find the information of the local DOS. However, only a single

tunneling process cannot provide all information. We need

more tunneling processes, and the two leads are necessary here.

There are three tunneling processes in such a two-lead setup:

the Andreev reflection, the crossed Andreev reflection, and the

electron transmission. We consider a symmetric connection

case and simplify the result. For this condition, the coefficient

of the Andreev reflection is the same as the coefficient of the

crossed Andreev reflection. Then, the current for lead 1 is

I1 = (2TA × V1 + (TA + Te)(V1 − V2))e/h and the current for lead

2 is I2 = (−2TA × V2 + (Te − TA)(V1 − V2))e/h. Thus, Te and TA

can be obtained using the current relation.
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