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Abstract

Nanoparticles with their unique features have attracted researchers over the past decades. Heavy metals, upon release and emission,
may interact with different environmental components, which may lead to co-exposure to living organisms. Nanoscale titanium
dioxide (nano-TiO;) can adsorb heavy metals. The current idea is that nanoparticles (NPs) may act as carriers and facilitate the
entry of heavy metals into organisms. Thus, the present study reports nanoscale quantitative structure—activity relationship (nano-
QSAR) models, which are based on an ensemble learning approach, for predicting the cytotoxicity of heavy metals adsorbed on
nano-TiO; to human renal cortex proximal tubule epithelial (HK-2) cells. The ensemble learning approach implements gradient
boosting and bagging algorithms; that is, random forest, AdaBoost, Gradient Boost, and Extreme Gradient Boost were constructed
and utilized to establish statistically significant relationships between the structural properties of NPs and the cause of cytotoxicity.
To demonstrate the predictive ability of the developed nano-QSAR models, simple periodic table descriptors requiring low compu-
tational resources were utilized. The nano-QSAR models generated good R? values (0.99-0.89), Q2 values (0.64-0.77), and Q2F 1
values (0.99-0.71). Thus, the present work manifests that ML in conjunction with periodic table descriptors can be used to explore

the features and predict unknown compounds with similar properties.

Introduction
Nanoparticles (NPs) have gained much attention due to their  uninterrupted development of new NPs, engineered nanoparti-
widespread applications in different areas, and they are continu-  cles in the form of metal oxide nanoparticles are becoming a

ally designed to yield certain desired properties [1]. With the new area of research. Metal oxides have been used in different
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industries, and the market is developing rapidly [2]. According
to a recent analysis, approximately 1300 consumer products
containing NPs were marketed in 2012. As a common metal
oxide nanoparticle material, nanoscale titanium dioxide (nano-
TiO,) has been evaluated for diverse applications. TiO, has
been shown to be a promising material for practical applica-
tions because it is highly photoreactive, inexpensive, non-toxic,
chemically and biologically inert, and photostable. Also, nano-
TiO, exhibits high specific surface area and anti-corrosion and
photocatalytic properties [3]. It absorbs UV radiation and shows
self-cleaning ability. Nanoparticles have a susceptibility to
adsorb other substances to form a mixture leading to a shift of
toxicity to living organisms [4]. Hence, many studies have re-
ported cytotoxic characteristics of TiO, [5,6].

Some NPs are fatal to living cells, and their cytotoxicity may
inhibit cell growth cycles, leading to death of organisms.
Considering this fact, the cytotoxicity of TiO; in combination
with other pollutants has been evaluated. TiO; is the most com-
monly manufactured nanoparticle material. It is assumed that
because of the considerably high exposure TiO, NPs may enter
the food chain. Because of current industrialization processes,
organisms are also exposed to heavy metal pollutants [7].
Emitted NPs may interact with the pollutants, and this may
subsequently lead to bioaccumulation. The contamination of
water and soil with heavy metals has increased with anthro-
pogenic and industrial activities [8,9]. TiOp NPs commonly
co-exist with different heavy metals as they are released from
wastewater treatment facilities to freshwater bodies, affecting
the mode of action and the fate of the contamination. Studies
have reported the ability of TiO, NPs to adsorb heavy metals
and to increase their transport rate into hosts, increasing their
concentration in the cell. Hu et al. [10] investigated the joint
effect of TiO, NPs and humic acid (HA) on Cd®* bioaccumula-
tion in zebrafish. In another study, Yang et al. [11] showed that
TiO, NPs increased the accumulation of Cd2* in the ciliate
Tetrahymen thermophila. Further, Tan et al. [12] showed in-
creased uptake and retention of Cd2* and Zn2* adsorbed on
TiOy NPs in Daphnia magna. Heavy metal contamination
affects plant growth and indirectly affects human health via the
food chain. Heavy metals have become an important factor
limiting crop yields and, thus, threatening food security. There-
fore, to improve crop yields, heavy metals need to be removed.

The toxicity of single-substance NPs has been tested extensive-
ly; however, the combination of single-substance NPs with
other NPs or metals may cause co-exposure effects on living
organisms. The extensive use of heavy metals in areas such as
medicine and agriculture increased the negative impact of heavy
metals on environment and living organisms, raising the need

for risk assessment. Unlike other pollutants, heavy metals do
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not decompose, leading to bioaccumulation and biological
hazards [13]. Heavy metals enter the human body through the
consumption of fish and plants [14]. To date, heavy metals are
removed through various methods. Among all methods avail-
able for removing heavy metals and toxic pollutants from
waters, adsorption is the most widely used. Therefore, the joint
organismal toxicity should be assessed.

Recently, nanoscale quantitative structure—activity relationship
(nano-QSAR) models have been successfully applied to investi-
gate the toxicity of NPs. QSAR models for predicting the bio-
logical activity of 48 fullerene derivatives [15], 51 manufac-
tured nanoparticles with varying core metals, coatings, and sur-
face attachments [16], and 80 surface-modified multiwall car-
bon nanotubes have been reported. Another approach, namely
nano-read-across (nano-RA) [17], has been used to determine
the cytotoxicity of unknown nanomaterials based on structure
similarities with known substances. Materials with similar
structures are likely to produce similar toxicity through compa-
rable mechanisms. The development of machine learning (ML)
approaches, such as artificial neural networks (ANNS5), decision
trees, logistic regression (LR), support vector machines (SVM),
Naive Bayes (NB), random forest (RF), and k-nearest neighbor
(k-NN), can be used to construct models that simulate complex
relationships [18] and make predictions based on training data.

Using ensemble learning (EL) [19] methods, one can determine
the relationship between the response and the predictor as well
as solve regression problems. Additionally, such methods over-
come problems with weak predictors and can be used to reduce
the overfitting of the training data by averaging and incorporat-
ing multiple models. Ensemble learning is established with
multiple algorithms and is divided into bagging and boosting
algorithms. The boosting algorithm is an iterative algorithm that
uses a weak model to build a strong model. Both bagging and
boosting improve the prediction accuracy of weaker learners. A
boosting algorithm combines many models linearly, with each
new model depending on the previous one. In the bagging algo-
rithm, replica data sets are generated that minimize prediction
variance in machine learning. An iterative algorithm performs a
series of repeated steps to gradually improve the model’s per-
formance or to optimize a specific parameter. The algorithms
continue to update the model’s parameters based on the training
data until a certain stopping criterion is met, such as reaching an
optimal solution, or a predefined number of steps are complet-
ed. This process is performed during the training of the model,
where the model learns from the data by adjusting its parame-
ters to minimize a specific cost or error function. These algo-
rithms play a crucial role in training machine learning models
and are fundamental to many optimization and learning tech-

niques. Fine-tuning the model parameters through iterations
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helps to improve the model’s performance and makes it more

suitable for making accurate predictions for new, unseen data.

The boosting algorithm is an ensemble method that works
sequentially by adding predictors to an ensemble, each one
correcting its predecessors. In the boosting algorithm, at first, an
initial model is developed with the dataset and then the algo-
rithm tries to adjust the model parameters and again develops a
model that tries to correct or minimize errors present in the
previous model. This process is repeated until a satisfactory
model is obtained or the error function is significantly opti-
mized. Through this process, we get a strong learner or model
from several weak learners or models by sequentially mini-
mizing the error present in the predecessor models. Here, the
weak model represents the models that are developed at an
initial stage and contain a significant amount of error. The
strong model is indicated by the final model, which contains a
significantly low level of error and is able to predict new
unknown data more accurately. Bagging (or bootstrap aggre-
gating) is an ensemble method that generates a number of boot-
strap datasets by a method called random sampling with
replacement, and each dataset is used to train the models sepa-
rately. The final prediction is obtained by averaging the
outcome of each model (for regression models) or by majority
voting (for classification models).

The objective of the present study was to construct EL-based
regression models (RF, Gradient Boost, Extreme Gradient
Boost, and AdaBoost) with periodic table descriptors for
predicting the cytotoxicity, in terms of cell viability, of eight
heavy metals adsorbed on nano-TiO,. Also, the best algorithm
showing the most contributing features responsible for the tox-
icity to HK-2 (human kidney 2) cell has been determined. To
the best knowledge of the authors, this is the first work on ML
models using periodic table descriptors to successfully demon-
strate the high potential of the proposed modeling approaches.

Table 1: Different concentrations of heavy metal salt samples in pmol/L.

Sample CdCl, ZnClo CuSOy4 NiCly
1 10 60 30 100
2 20 90 60 200
3 30 120 90 300
4 40 150 120 400
5 50 180 150 500
6 60 210 180 600
7 70 240 210 700
8 80 270 240 800
9 90 300 270 900
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Methods and Materials
Dataset

The dataset was collected from previously published literature
[20]. A mixture of nano-TiO, powders was added to HK-2 cells
in Hyclone DMEM medium supplemented with 10% fetal
bovine serum (FBS) and 100 mg penicillin/streptomycin and
maintained at 37 °C in the presence of 5% carbon dioxide. Nine
concentrations of heavy metal salts were added to a constant
amount of nano-TiO; (25 umol/L). The details of heavy metal

concentrations are given in Table 1.

HK-2 cells were utilized to determine the toxicity in this study
using cell viability as the endpoint. HK-2 cells are a sensitive
model for examining renal cytotoxicity. They grow in mono-
layers and are suitable for studying the proximal tubular toxici-
ty of a variety of compounds [21]. The main advantage of HK-2
cells is that they retain the basic morphological and functional
properties of proximal tubular epithelial cells [22]. Cell viability
was measured by using Equation 1:

Aexp - Ablank
S=—"——. 1)
Acontrol - Ablank

Here, S stands for cell survival rate, Aexp is the absorbance
value of the experimental group, A¢onerol 1S the absorbance value
of the control group, and Apj,nk is the absorbance value of the

blank control group.

Descriptor calculation

Based on the characteristics of metals, we used easily calcu-
lable periodic table descriptors. Simple molecular information
was generated time-effectively and cost-effectively. The previ-
ously used descriptors by Kar et al. [23] are the metal electro-
negativity (x), the sum of metal electronegativity for an indi-
vidual metal oxide (¥x), the sum of metal electronegativity for

Pb (NO3)» MnCly SbCls CoCly
100 100 5 10
200 200 10 20
300 300 15 30
400 400 20 40
500 500 25 50
600 600 30 60
700 700 35 70
800 800 40 80
900 900 45 90
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an individual metal oxide divided by the number of oxygen
atoms present in that metal oxide (X x/NO), the number of metal
atoms (NMetal), the number of oxygen atoms (Noxygen), the
charge of the metal cation in a given oxide (xox), and the mo-
lecular weight (MW). These descriptors are termed “first-gener-
ation periodic table descriptors”. The newly introduced sixteen
descriptors are denoted as “second-generation periodic table
descriptors” [24]. The computed descriptors for all metals are
reported in the Excel file in Supporting Information File 1. In
addition to being computationally less demanding, periodic ta-
ble descriptors are size-independent.

Splitting of data set and hyperparameter
tuning

The dataset was split into training and test sets before building
the model. The training set was mainly used to fit the model,
and the test set was used to measure the generalization ability of
the developed model. Theoretically speaking, the dataset was
divided based on a sorted response-based approach using the

in-house dataset division tool (https://dtclab.webs.com/soft-

ware-tools). In this study, the size ratio was set at 3:1 (training

set/test set) for dataset division.

In almost any ML algorithm, different models are trained for a
dataset and the best-performing model is selected. However,
there may be room for improvement, and hyperparameter
tuning can significantly improve the model. Here, the optimal
values of the hyperparameters of the models were obtained with
the GridSearchCV algorithm using the hyperparameter opti-
mizer tool (https://sites.google.com/jadavpuruniversity.in/dtc-

lab-software/home/machine-learning-model-development-

guis?pli=1). GridSearchCV tests all combinations of values in
the dictionary and evaluates the model using the cross-valida-
tion method for each combination. Therefore, we choose the
hyperparameter combination with the best average MAE results
from the validation sets.

Feature selection with random forest

The goal of feature selection techniques is to find the best set of
features that allows one to build optimized models. Feature
selection using RF is an embedded method. Embedded methods
combine the benefits of filter and wrapper techniques. These
methods encompass the interaction of features while main-
taining reasonable computational cost. In embedded methods,
each iteration of the model training process is taken care of, and
a few features that contribute the most to the training process
are carefully extracted. More precisely, it is measured how
much impurity is reduced on averaging (weighted average)
through each tree nodes with the selected features. Here, each
node is equivalent to the number of training samples associated

with it. Through the RF algorithm, we have selected the most
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contributing eight periodic table descriptors, namely “conc”,
”Yx”, “atomic radius”, “IP_ActivM”, “Mol_Wt”, “x of metal”,
“D3_HeteroNonMetal”, and the total number of atoms in a mol-
ecule, from a pool of 43 periodic table descriptors by using the
features with the highest Gini importance [25]. The selected
first eight descriptors (most contributing features) were further
used for modeling using RF, AdaBoost, Gradient Boost, and

Extreme Gradient Boost algorithms.

Model development

This section introduces four classification models; all of them
are ensemble learning models. ML is a subset of artificial intel-
ligence where the machine learns from data and improves per-
formance from past experiences and makes a prediction based
on it [26]. In this study, along with RF, Gradient Boost,
Extreme Gradient Boost, and AdaBoost were also performed. In
the supervised learning approach, a model is trained on labeled
datasets. Regression analysis algorithms are trained and learned
from both input features and output labels. Regression analysis
seeks a mapping function from the input features for a continu-
ous output function. In this study, there is no intention to cate-
gorize the dataset, instead it is to be predicted quantitatively.
Hence, the supervised regression method is selected to map the
function of heavy metals and predict the cytotoxicity of these
metals on HK-2 cells with periodic table descriptors. For the
model development, after dataset division and feature selection,
different ML algorithms are performed. The overall workflow is

illustrated in Figure 1.

Random forest (RF)

In ensemble learning, RF is often used for its flexibility.
Whether it is regression or classification, RF is a versatile
learning method that can handle both. It works by building
several decision trees in the training phase and generates aver-
age forecasts of various decision trees involved. In other words,
it combines the results of different decision trees to make the
best possible decision. Though the goal variable in classifica-
tion-based issues is categorical, numerical values are present in
regression. One advantage of RF is its capacity to analyze large
datasets with great efficiency [27]. It can be regarded as a
dimensionality reduction method since it analyzes large input
data and finds all important variables. While handling RF
datasets, the model emphasizes the importance of parameters,
which is a highly helpful aspect [28].

Adaptive boosting (AdaBoost)

AdaBoost is one of the best boosting algorithms. It uses an en-
semble learning method. This approach of machine learning is
based on the idea of creating accurate prediction rules by com-
bining many relatively weaker and inaccurate rules and

assisting in alleviating overfitting issues. It is possible to make a
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Figure 1: Flowchart of the present work.

smarter learner by altering the training data intelligently and
constructing many submodels. It includes an unlimited amount
of decision trees for input data throughout the training stage.
During the creation of the first decision tree, incorrect data are
highlighted inside the primary model.

The identical data serve as input for a separate model. This pro-
cedure is repeated until a specific number of base learners is
generated. It uses a weighted average relying on the subsets to
determine whether it should be included in the finalized model.
In reality, some data may include linear predictions, and others
may not. Therefore, utilizing the ensemble AdaBoost allows us
to capture the nonlinear predictions and make a precise predic-
tion for such data [29].

Gradient Boost (GB)

In 2002, Friedman [30] suggested an ensemble learning algo-
rithm for both regression and classification. The GB method is
associated with each repetition of the randomly chosen training
data set with the fundamental model. Overfitting is inhibited by

Applicability domain
check

Mechanism explained

randomly subsampling the training set data; by doing so, the
execution time and model accuracy are also improved. Since
every repetition of the model must include small data (as a
training set) the regression becomes quicker. The GB approach
also requires modification or changes in a few parameters. That
is, n-trees should not be too small, and the shrinkage aspect,
also recognized as the learning rate, must not be kept too high
[31].

Extreme Gradient Boost (XGBoost)

In a similar manner as described in [32], another ensemble ML
algorithm, XGBoost of tree boosting, uses a gradient-boosting
framework for efficient and scalable implementation perfor-
mance. Ensemble learning uses multiple predictions that are
multiple models for gradient enhancement and yields good
adaptability to outliers and continuous variables. It is an effi-
cient tool for dealing both regression and classification prob-
lems. The basic idea is to build “N” regression trees to train
each subsequent tree using the residual from the previous tree.
Models are built recursively until there is no improvement in
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the results obtained. The new models predict the residuals of the
prior model and then collectively provide the final predictions
[33]. The gradient descent algorithm is used to minimize the
loss while adding new models. Then, these individual predic-
tors or classifications are combined to give more strong and
more precise predictions. The workflow of the ML algorithm is
represented in Figure 2. Tuning can be done using the grid
search method.

SHAP analysis

The feature importance in the model was determined using the
Shapley Additive exPlanation (SHAP) method, using SHAP
version 0.41.0. The SHAP framework takes into account the
calculation of Shapley values. These values are calculated from
the average marginal contribution of each feature from all

conceivable coalitions. First, the dataset is incorporated into the
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model, then the SHAP framework assigns a Shapley value to
each feature that contributes to the corresponding output of the
model. Therefore, SHAP helps to select the features based on a
ranking algorithm [34]. We have selected the features having
the highest Shapley values for the training set since the stan-
dard method tends to overestimate the continuous variables.

Model validation

A reliable model should pass the threshold values for different
internal and external validation metrics. Internal validation
generates the generalization ability and robustness of the model.
In contrast, external prediction is used to validate the model.
The most common metrics to measure internal quality are the
coefficient of determination (RZ and Q% o). Besides these, we
have also calculated the root mean square error (RMSE) of the
training set. The mean absolute error (MAEe)), the root mean

Decision Tree- 1

Training /

Set

Random Forest (RF) Algorithm

O

Decision Tree - 2 Decision Tree-n

}

Averaging

Data Set
Test
Set

Y

O

& @

) )

Feature selection by Hyper-parameter Machine Learning
Embedded method in Optimization Model development
RF ; |
Model Validation SHAP Analysis
S Hyper-parameter S o
* Feature Selected Optimization * Random Forest
based on feature ) + Gradient Boost
importance in random * Hyper-parameters are « Extreme Gradient * SHAP Plots are
forest method optimized by Boost generated to
GridSearchCV 008 determine Feature
method for respective * Adaboost importance
ML algorithms

N

Figure 2: Workflow of the ML algorithm.

N
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square error of prediction (RMSEP), Q?%Fy, and Q%F, were used
for external validation or for the test set. The evaluation criteria
included are as follows: Q%1 oo and Q?F, greater than 0.5,
RMSE between 0.2 and 0.5, and the closer the value of MAE is
to 0, the better [35].

Applicability domain (AD) analysis

After building the model, the applicability domain (AD) must
be considered. AD represents the domain that can be effec-
tively predicted by the model that is based on the training set
data. The samples within the domain of applicability can only
explain the reliability of the predicted values. A William’s plot
was used to determine the AD of the present work. The lever-
ages were calculated using the in-house Hi_Calculator-v1 Soft-

ware (https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home?pli=1). The distance between the X value of the

i-th observation and all X values is represented by the leverage
value. It generally considers 3k'/N as the critical value or the
standard value (h*). Here, k' represents the number of descrip-
tors plus 1, and N represents the number of compounds in the
training set. If the leverage value is higher than 4*, the corre-

sponding compound is outside the AD.

Results and Discussion

In this research, we have used four ML models, namely RF,
AdaBoost, Gradient Boost, and Extreme Gradient Boost to fore-
cast the toxicity of heavy metals adsorbed on nano-TiO, to
HK-2 cells using periodic table descriptors (Table 2). The ML

Table 2: Statistical parameters and selected features from the developed
Method R? Q%Loo) MAEyan RMSEg Q%
Random 0.96 0.72 0.13 0.2 0.94
Forest
Gradient 0.99 0.77 0.06 0.08 0.82
Boost
Extreme 0.94 0.46 0.16 0.26 0.83
Gradient
Boost
AdaBoost 0.88 0.64 0.31 0.37 0.72

Beilstein J. Nanotechnol. 2023, 14, 939-950.

models were built using the features selected by the RF algo-
rithm. Model specification and configuration were carried out
by optimization of the hyperparameters. The AD was also deter-
mined, and all compounds were found to be below the threshold
of h* = 0.42, as shown in the Williams plot in Figure 3. The AD
is the chemical space formed based on the descriptors of the
training set compounds. The compounds in the chemical space
are considered reliable for predictions, while those beyond the
AD would not guarantee accurate predictions. The AD plays an

important role in determining the uncertainty of the predictions

Williams Plot
Training set
3 Test set

0.1 0.2 0.3 0.4 05

STANDARDIZATION RESIDUAL

4
LEVERAGES I

Figure 3: Williams plot.

ML models.

Q% MAEist RMSEp Optimized

hyperparameters

0.94 0.14 0.19 'max_depth': none,
'min_samples_leaf" 1,
'min_samples_split": 2,
'n_estimators': 80,
max_features: 1.0,
bootstrap: true,

random_state: 0

'max_depth'": 6,
'min_samples_leaf": 4,
'min_samples_split': 4,
'n_estimators': 130,
max_features: none,
random_state: 0

'booster': 'gbtree’,
'colsample_bytree': 0.3,
'max_depth': none,
'min_child_weight": 1,
'n_estimators': 70,
'subsample': 0.5

'loss': 'linear’,
'n_estimators': 170,
random_state: none

0.81 0.2 0.34

0.83 0.25 0.32

0.71 0.33 0.41
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of specific molecules based on how close they are to the
training set compounds used to develop the model. AD is a
valuable tool for the characterization of interpolation spaces

based on the modeled descriptors and response functions.

The applicability domain developed here is based on the fea-
tures of some specific heavy metal salts, that is, CdCly, ZnCl,,
MnCl,, CoCly, CuSOy, NiCl,, Pb(NO3),, and SbCls. The de-
veloped model should be applicable to other closely related
heavy metal salts.

Diagnosis based on SHAP value

The goal of SHAP is to explain the prediction of an instance by
computing each feature of the prediction. First, the SHAP value
is used to calculate the magnitude of the contribution of
each feature and then ranked to obtain the importance ranking
of features. Features with large absolute Shapley values
are important. Here, we have used the kernel method to calcu-
late the SHAP values [36]. The SHAP analysis and hyperpara-
meter tuning (max_depth: “none” min_samples_leaf,
min_samples_split, n_estimators) revealed that concentration,
followed by atomic radius and IP_ActivM, ranked highest
among the eight features (conc, Yx, atomic radius, IP_ActivM,
Mol_Wt, x of metal, D3_HeteroNonMetal, and atoms in the

Beilstein J. Nanotechnol. 2023, 14, 939-950.

molecule) in the RF model. The hyperparameter setting n_esti-
mators was kept at a value of 80 for RF, while it was 130, 70,
and 170 for Gradient Boost, Extreme Gradient Boost, and
AdaBoost respectively. The relative importance of each
descriptor for all ML algorithms can be understood using the
SHAP analysis (Figure 4). The SHAP methodology identifies
the features contributing most to the model prediction. We can
find that the conc (concentration of the heavy metal) descriptor
contributes the most to the EL algorithms. The Shapley values
reflect the average marginal contribution of a feature value
across all possible feature coalitions, both in terms of magni-
tude and direction.

Results of model validation for all ML

methods

In order to determine if heavy metals and TiO, nanoparticles
had any cytotoxic effects, the selected eight important periodic
table-based features were used. The final models developed
with RF, AdaBoost, Gradient Boost, and Extreme Gradient
Boost were evaluated using MAE;,in, RMSE;4in, R?, and Q2
for the training set and MAE; ¢, MSE, RMSE,.;, Q%F|, Q*F,
metrics for the test set, and the results are shown in Table 1. Ac-
cording to the results, the MAE. (0.14) was found to be the
least for the test set in the RF method, followed by AdaBoost,

High High
conc s T N E R conc wieosm Bl botea st w .
p2¢ S atomic radius(pm) L g LE T ..,!.‘.
atomic radius(pm) - e rasde o Mol_wt e -t &
= S
= 3
IP_ActivM a3 g X i s
g ©
g
Mol_wt S} *2 IP_ActivM “ %
3 -
& o
x of m e x of m *"' -
dde
D3_HeteroNonMetals § total atom in molecule +4
w
total atom in molecule ol | D3_HeteroNonMetals op
Low |
- - Low
v SHAPOSI ('?-ho ct no; del IS t) v w2 =0 9.0 o gD
Value:impactonimodes.outpu SHAP value (impact on model output)
RF Ada boost
High High
conc DO £ 3 T2 S S 2 conc oo edthedocnude Jue
atomic radius(pm) P IP_ActivM TR
ool q0
X &' 5 g X g
IP_ActivM = K] Mol_wt =i g - 3
ae o
o g
Mol wt Sl 2.0 El atomic radius(pm) LR 2
e I3 @
b N “
xof m e = xofm 1
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Gradient Boost, and XGBoost. The XGBoost gives the highest
R2 (0.99) for the training set, while AdaBoost gives the lowest
R? (0.88) with the highest MAE ¢ (0.33). Cross-validation
(CV) statistics were obtained based through 20 times fivefold
repetitive CV along with 1000 times shuffle split CV (mean +
SEM) method. This is done to protect the model from overfit-
ting when the data is limited. The results of the CV indicate
clearly that the models do not memorize the correspondence be-
tween the descriptors since the outcome of R? is highest and the
MAE value is lowest for the RF model after the repetitive CV
method. This suggests the superiority of the RF model to other
models. Figure 5 presents the cross-validation statistics based
on 20 times fivefold repetitive CV and 1000 times shuffle split
CV on R? and MAE for the developed ML model.

General mechanism of toxicity

In the process of screening all descriptors from different ML
methods, some common descriptors for heavy metals were
discovered that are clear indicators of their importance
regarding toxicity to HK-2 cells. We found that the concentra-
tion of the heavy metal (conc), the atomic radius of the metal,

the electronegativity, and the molecular weight of the heavy
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metal influence the survival rate of the HK-2 cells. It was ob-
served that conc, mol wt, atomic radius, and the total number of
atoms in the molecule were of high importance in all the
models. The increase of conc, mol_wt, and total atoms in a mol-
ecule is believed to increase toxicity. The toxicity of the heavy
metals is also time- and dose-dependent. Among many other
factors, the valence state plays an important role in toxicoki-
netics and toxicodynamics. Many studies have shown that an in-
creased concentration of heavy metals is correlated with the
severity of hepatotoxicity and nephrotoxicity [37]. Lead causes
toxicity through an ionic mechanism followed by the genera-
tion of reactive oxygen species (ROS). Another, biomarker for
ROS is lipid peroxidation [38] as free radicals cause lipid
peroxidation inside the cell membrane. The catalytic properties
of the metals are also responsible for an increased toxicity of
manufactured nanoparticles [39] (Figure 6). Electronegativity
and atomic radius influence the catalytic properties of the metal.
Metal cations also catalyze the lipid peroxidation process [40]
through enhancement of endocytosis and the intrinsic proper-
ties of the heavy metal. The toxicity is associated with internal-
ization and bioaccumulation in the HK-2 cells. The increase in

the concentration of heavy metals and their adsorption to nano-
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Figure 5: Cross-validation statistics based on 20 times fivefold repetitive CV and 1000 times shuffle split CV method (mean + SEM).
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Figure 6: General mechanism of toxicity to HK-2 cell by heavy metals.

TiO, induces toxicity by increasing the generation of ROS in
the HK-2 cells.

Comparison with the previous work

The present work describes the development of a model for
heavy metals with different concentrations through simple peri-
odic table descriptors using various ML methods. The results
obtained from the ML method suggest that the models have
better predictivity than the models developed previously by
Sang et al. [20] as shown in Table 3. Sang et al. [20] applied the
random forest algorithm and the AdaBoost algorithm for QSAR
modeling using quantum mechanical descriptors. In contrast,
the present study involved the random forest algorithm, the
AdaBoost algorithm along with Gradient Boost and XGBoost
algorithms using simple periodic table descriptors that are easy
to interpret and can be calculated quickly without the involve-
ment of expert personnel. These descriptors simplify the nano-
structure property calculation and determine the nanoscale
interactions without much computational intervention. The use
of such descriptors saves time; the descriptors are also cost-
effective and have a clear and straightforward physical

Table 3: Comparison of the current work with the previous study.

Descriptors Method  R? Q%Loo)  MAEain
periodic table-based random 0.96 0.72 0.13
(current study) forest

quantum mechanical  random 0.85 0.70 —
(Sang et al.) forest

/

@

l&tomic radiu /\ Elek
- g

= I E

onegativity

Bioaccumulation

Concentration
of heavy metal

meaning, which facilitates the mechanical interpretation of the
QSAR models. A direct comparison was not possible due to dif-
ferent dataset division and descriptors but the results obtained in
the present work for the RF method was superior to that of the

previous work.

Conclusion

We have performed cytotoxicity modeling of eight heavy metal
compounds adsorbed on nanoscale TiO, regarding HK-2 cells
and explored the features responsible for the toxicity mecha-
nism. Many studies have examined the co-exposure of metal
and metalloid mixtures with heavy metals. The co-exposure
may also be affected by dose variations at the biomarker level.
Also, co-exposure in humans was found to lead to more
profound renal damage than exposure to each of the elements
alone. Hence, to elucidate the features responsible for the toxic-
ity, in the present study, ML algorithms were applied along with
periodic table descriptors for QSAR modeling. Experiment-in-
dependent periodic table descriptors produced better results
than quantum chemical descriptors in previous studies. The
periodic table descriptors used in QSAR models have strong

RMSEc Q% Q% MAEist RMSEp
0.2 0.94 0.94 0.14 0.19
0.06 0.86 0.85 — 0.10
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theoretical guidance, which can help scientists design new enti-
ties with expected properties. As a part of the model develop-
ment process, periodic table descriptors can be used in conjunc-
tion with other descriptors that are compatible with them. The
periodic table descriptors are not only less computationally
demanding but also independent of the size of the particles. The
ML algorithm with periodic table descriptors has helped to
evaluate the cell survival rate of HK-2 cells in less time and at
less cost than using expensive quantum chemical descriptors
and experimental descriptors. Among all algorithms, the
random forest model shows the best prediction ability with
0?%F1 = 0. 94 and MAE,., = 0.14 for the test set. Hence, a good
feature selection method reduced the computation time re-
quired to train a model. The SHAP analysis also emphasized the
most significant features contributing to the model. We have
proposed also a generalized mechanism for the most impactful
features generated by the model. As a result, periodic table
descriptors and machine learning can be used together to deci-
pher features of unknown compounds and predict compounds
that are similar.
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Abstract

In the realm of food industry, the choice of non-consumable materials used plays a crucial role in ensuring consumer safety and
product quality. Aluminum is widely used in food packaging and food processing applications, including dairy products. However,
the interaction between aluminum and milk content requires further investigation to understand its implications. In this work, we
present the results of multiscale modelling of the interaction between various surfaces, that is (100), (110), and (111), of fcc alumi-
num with the most abundant milk proteins and lactose. Our approach combines atomistic molecular dynamics, a coarse-grained
model of protein adsorption, and kinetic Monte Carlo simulations to predict the protein corona composition in the deposited milk
layer on aluminum surfaces. We consider a simplified model of milk, which is composed of the six most abundant milk proteins
found in natural cow milk and lactose, which is the most abundant sugar found in dairy. Through our study, we ranked selected pro-
teins and lactose adsorption affinities based on their corresponding interaction strength with aluminum surfaces and predicted the
content of the naturally forming biomolecular corona. Our comprehensive investigation sheds light on the implications of alumi-
num in food processing and packaging, particularly concerning its interaction with the most abundant milk proteins and lactose. By
employing a multiscale modelling approach, we simulated the interaction between metallic aluminum surfaces and the proteins and
lactose, considering different crystallographic orientations. The results of our study provide valuable insights into the mechanisms

of lactose and protein deposition on aluminum surfaces, which can aid in the general understanding of protein corona formation.

Introduction
The interface between biological systems and engineered mate- and environmental science [1,2]. This interface plays a crucial
rials has gained significant attention in recent years because of  role in ensuring the safety and quality of processed and pack-

its wide range of applications, spanning from food to medicine  aged products. The selection of packaging materials and their
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interaction with biological components have emerged as criti-
cal determinants impacting the preservation, shelf life, and
overall acceptability of dairy products [3]. Consequently, the
interface between biologically relevant molecules and nano-
scale materials, such as aluminum, has become an increasingly
important and intriguing area of research [4]. For long-term
storage and preservation of prepared food, the choice of
containers and utensils made from specific materials is essen-
tial [5]. For example, it was shown that ripened cheese and
cheese spreads acquire a higher aluminum content as compared
to other milk products [6]. Aside from wrapping and container
packaging, aluminum has found a wide popularity in other ap-
plications, such as manufacturing of kitchen utensils, cosmetics,
and components for medical and scientific equipment [7].
Figure 1 presents a schematic contamination cycle of dairy
products, showcasing potential sources and pathways of
aluminum pollution. It illustrates the journey of milk from a
cow grazing on grass contaminated with heavy metals, high-
lighting the crucial role of metallic containers, metal-based
equipment, and kitchen utensils in maintaining product
integrity. The figure further demonstrates the potential to intro-

duce heavy metal contamination, including iron and aluminum,

Beilstein J. Nanotechnol. 2024, 15, 215-229.

during processing and emphasizes the formation of a milk layer
in form of a protein/lactose corona at the outer surface of
macroscropic and micro- and nano-sized particulate after pack-
aging. It also highlights the dynamic interactions at the bionano
interface associated with potential human health hazards.
Through biomolecule adsorption, change of conformation, and
surface chemistry, foreign materials engage in a complex
interplay of dynamic physicochemical interactions, kinetics,
and thermodynamic exchanges that can lead to undesirable

outcomes [1,8-10].

In a more general context, the importance in understanding the
mechanism of bionano interactions arises from the increasing
awareness and concerns regarding the safety of nanoparticles
(NPs) in relation to human and animal health. The toxicity of
NPs is closely linked to their chemical aggressiveness and
varies with their physicochemical properties, including surface
area, charge, and reactivity. Understanding the intricate inter-
play between these properties and the biological systems is vital
for assessing and mitigating any potential adverse effects asso-
ciated with exposure to NPs [11]. To advance in this field, it is

crucial to comprehend the underlying forces and molecular
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Figure 1: Schematic representation of the life cycle of dairy products, showcasing potential sources and pathways of contamination. It features the
stages of grazing, collection, processing, and packaging. The relevant processes include surface fouling and milk contamination during food transfor-
mation as well as the formation of a protein corona on surfaces and nanoparticles after packaging. The figure was created with BioRender.com,

https://biorender.com/. This content is not subject to CC BY 4.0.
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constituents that govern the interactions between biomolecules
and metals. However, traditional safety assessment methods can
be costly, time-consuming, and often involve animal studies. In
this regard, in silico modelling offers a promising alternative
that can predict the interactions of NPs with living organisms.
By leveraging computational approaches, in silico modelling
provides a humane and cost-effective means of obtaining the
necessary information, thus aiding in the evaluation of NP
safety and reducing reliance on animal experimentation [12-14].
Data-driven methods that rely on statistical analysis are em-
ployed for this purpose, particularly when sufficient data are
available. These methods leverage the power of large datasets to
identify patterns, trends, and correlations between metal proper-
ties and their interactions with biomolecules [15-18]. In recent
years, researchers have focused on using physics-based models
to understand the mechanisms underlying the formation of NP
protein corona, a complex layer of biomolecules that surrounds
NPs upon their exposure to biological fluids [19,20]. It is
widely recognized that composition and configuration of the
protein corona play a crucial role in determining the biochem-
ical reactivity, sensitivity of NPs, as well as their cellular uptake
and systemic transfer [21]. However, in order to develop predic-
tive models, a deeper understanding of the interactions at the
bionano interface and their relationship to material and protein
properties is necessary. Gathering more information on these

intricate interactions will facilitate the development of accurate

Shape

Functional groups

Porosity

Surface charges

Bionano interface

Presence of molecules

Ionic Strength
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predictive models, thereby advancing our ability to assess the
behavior and potential implications of NPs in biological
systems. The bionano interface can be broken down into three
interconnected components: (i) the surface of the NP, which is
influenced by its physicochemical composition, (ii) the inter-
face between the solid NP and the surrounding liquid environ-
ment, where notable changes occur upon interaction, and
(iii) the contact zone between the solid—liquid interface and bio-

logical substrates (Figure 2) [22].

In this work, we study bionano interactions involving metallic
aluminum and common dairy biomolecules, namely lactose and
the six most abundant milk proteins [23]. The main objective of
our analysis is to computationally quantify the relative binding
of these proteins on zero-valent aluminum surfaces based on
their energy of adsorption and orientation. We employ a three-
level multiscale method (as shown in Figure 3) to calculate the
energies of adsorption and the content of the corona for these
proteins on the selected surfaces. In the section “Results and
Discussion”, we provide a detailed explanation of the theoreti-
cal model developed to study the interaction between protein
and lactose with metals, as well as the rationale behind the para-
meterization scheme used. Subsequently, we discuss the simula-
tion results and analyze the individual adsorption affinities pre-
dicted for molecules representing the biological aspect of the

interface, including amino acids (AAs), milk proteins, and

Protein

Natural organic material

Ligand

Temperature

Surrounding Medium

Figure 2: A chart of the main factors determining the structure of the bionano interface. The quantitative model comprises three essential aspects,
that is, surface properties of the nanomaterial, the characteristics of the surrounding medium, and the biological factors at play.
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carbohydrates. Additionally, we examine the preferred orienta-
tions of these molecules upon adsorption and investigate the
kinetics of competitive adsorption among the proteins and
lactose, aiming to understand the process of protein deposition
on metallic surfaces. Finally, the key insights gained from this
study are summarized, highlighting the implications and poten-
tial applications of the findings.

Results and Discussion

Here, we aim to predict the content of a biomolecular corona on
a metallic aluminum surface. At the largest scale, our methodol-
ogy employs a coarse-grained (CG) kinetic Monte Carlo (KMC)
method [16] to simulate competitive adsorption of biomole-
cules onto the aluminum surface. To achieve this, we evaluate
individual binding energies at various orientations (represented
by heatmaps) for each selected protein immobilized on differ-
ent fcc planes of the aluminum surface. These heatmaps for
individual proteins are acquired through UnitedAtom (UA)
simulations [24,25]. While the UA method has been parameter-
ized for a range of rigid surfaces, including metals (Ag, Au,
Cu, and Fe), oxides (TiO,, SiO,, and Fe,03), carbonaceous NPs
(graphene, carbon nanotubes, and carbon black), semiconduc-
tors (CdSe) [26], and polymers [27], it lacks the set of short-
range potentials required for calculating milk protein-alumi-
num adsorption energies. Here, we compute potentials of mean
force (PMF) for Al surfaces derived from explicit all-atom mo-
lecular dynamics simulations utilizing a previously established
scheme [2,24,28]. These PMFs provide the input required to de-

All-Atom model
Building AA-NM system

Atomistic minimisation
Amino acid ff and topology

Nanomaterial ff and topology Atomistic equilibration
istic equilibrati

Atomistic metadynamics

United Atom model
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termine the adsorption energies between milk proteins and alu-
minum surfaces by using multiscale UA CG model, spanning
from the atomistic level of description to the complete
mesoscale model of the corona. Figure 3 shows the parameteri-
zation and simulation workflow, outlining different stages and
components involved in the study.

All-atoms short-range interaction modelling

results

All-atom metadynamics simulations were conducted using
GROMACS-2018.6 and PLUMED (PLUMED2-2.5.1.conda.5)
software packages [29-31]. CHARMM-GUI/Nanomaterial
Modeler was employed to construct the topology and force
fields of three fcc surfaces of Al: (100), (110), and (111) [32].
The General Amber Force Field (GAFF) was utilized to model
side-chains analogues (SCA) within the system [33,34]. The
AMBER force field is a widely recognized and extensively vali-
dated force field that provides accurate descriptions of molecu-
lar systems [35]. We evaluated the short-range PMFs between
22 SCAs and an Al slab in a solvent environment comprising
water and salt ions. The system’s pH value was maintained at a
neutral level, and the NaCl salt concentration was set to
150 mM, mimicking the overall ionic strength of milk and
equivalent to one salt molecule per 10 nm?. The system under-
went equilibration for 1.0 ns under constant pressure conditions
at 1.0 bar and a temperature of 300 K, following the NPT en-
semble, employing Berendsen weak coupling method [36].

Subsequently, a pre-equilibration phase was conducted for

Amino acid PMFs
(Short range potential)

Long range potential

Electrostatic potential

Physiochemical property

I-TASSER
Protein sequence
secondary structure

3D PDB structure

Primary coarse graining

Adsorption energy heatmap
Average adsorption energy

KMC model

Ultra corse graining

Protein concentration
Protein corona concentration

prediction
Hard sphere model

Comptetive adsorption

Figure 3: A dataflow scheme of the multiscale modelling approach implemented in this study, including an all-atom model of surface and AAs, a CG
UnitedAtom model for the entire protein-surface interaction, and a CG competitive adsorption model. The figure provides an overview of input and

output data at each scale.
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10 nanoseconds within the NVT ensemble. For the short-range
interactions, the cut-off distance was defined as 1.0 nm. In the
adaptive well-tempered metadynamics (AWT-MetaD) simula-
tions, the adsorption energy was calculated at a temperature of
300 K, a pressure of 1.0 bar, and a neutral pH within the NVT
ensemble. Additionally, we measured the interaction energy as
a function of surface separation distance (SSD) as a collective
variable, enabling a comprehensive analysis of the AA-NP
interactions. For a detailed explanation of the method used in
this study, please refer to previous reports [2,24,28] where
the method has been described in depth. Figure 4 and dataset
[37] show the obtained free energy of adsorption in units of
kBT.

Beilstein J. Nanotechnol. 2024, 15, 215-229.

The water density profiles obtained from MD simulations for
the slab—water system in the context of Al surfaces revealed
characteristics that were previously observed for other simu-
lated metallic surfaces [2,28]. The profiles exhibited two
distinct regions with elevated water density located approxi-
mately 0.15-0.18 nm and 0.42-0.48 nm away from the alumi-
num surface. These regions corresponded to the first and second
water layers adjacent to the metal surface, respectively (as
depicted in Supporting Information File 1, Figure S1). Further
examination of the ion density profiles indicated the presence of
sodium ions within a range of 0.55-0.60 nm and chloride ions
within a range of 0.42-0.46 nm from the Al surface. Notably,
the positions of the chloride ions align closely with the second
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Figure 4: Adsorption free energy profiles of SCAs on three aluminum fcc slabs as a function of the surface separation distance (SSD). These profiles
were calculated using all-atom AWT-MetaD. The vertical lines indicate the positions of water and ion layers. (a) Al(100), (b) Al(110), and (c) Al(111).
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water layer, while sodium ions are located past this layer, as
marked by the blue and purple vertical dashed lines in Figure 4.
This alignment suggests that the chloride ions integrate into the
network of water molecules comprising the second adlayer. Ad-
ditionally, the analysis of the PMFs revealed a significant
minimum at a distance of 0.21-0.25 nm. Figure 5 shows the
minimum energy values obtained for each AA on different
facets of the aluminum surface (100, 110, and 111) in a bar
chart.

A comparison of the adsorption energies on aluminum and iron
surfaces reveals distinct preferences for different AAs. On alu-
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minum surfaces, ARG, PRO, TRP, TYR AAs show the
strongest attraction (—63.32kgT to —41.46kgT), followed by
HIE, GLN, PHE, GAN (-43.86kgT to —20.85kgT). VAL, THR,
SER, CYS, ALA exhibit the weakest attraction (—19.51kgT to
—1.76kgT). On iron surfaces, charged and aromatic PRO,
TYR, ARG, HIS AAs are strongly adsorbed (=91.29kgT to
—43.34kgT), while hydrophobic VAL, LEU, ALA AAs show a
weaker adhesion (=21.70kgT to 2.86kgT) [2]. We also show the
PMF for glucose with aluminum surfaces, used as the basis for
a model of lactose, a sugar highly present in milk, as discussed

later, computed using the PMFPredictor software in Figure 6
[38].
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Figure 5: Minimum energy of adsorption (kgT) for each SCA on three Al fcc slabs obtained through all-atom simulations: (a) Al(100), (b) Al(110), and
(c) Al(111). Notably, Al(111) exhibits a stronger binding affinity than Al(100) and Al(110).
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Figure 6: The interaction potential of glucose with the three Al sur-
faces predicted using the PMFPredictor Toolkit. The solid lines give the
ensemble average of ten versions of the model while the shaded
regions indicate the 95% confidence intervals.

Protein—NP interactions

To further understand the adsorption energy and orientation of
each individual protein, a primary coarse-graining step was per-
formed. In this part, we use the UA model to predict the pro-
tein—NP binding energies. This model takes into account
various factors, such as the material’s chemical composition,
size, shape, surface roughness, charge, functionalization, and
hydrophobicity, when constructing CG models for the bionano
interface. The UA model simplifies the protein—-NP interactions
by representing proteins as rigid structures composed of 20 AA
types, each represented by a single bead. This interaction is de-
scribed through a short-range surface non-bonded potential
(Usnb) (including van der Waals (vdW) repulsion and solvent

effects), a long-range core vdW potential (U}" aw

), and an elec-
trostatic potential (U®!). Through interaction potentials for spe-
cific AAs with the NP, the overall interaction potential between
the NP and the complete protein (Up-Np) is expressed in a pair-

wise additive manner:

Up-Np = NZA:A Uz' (dz' (9,(1)))
- fo\ Uf (d;(6,9))+ Nf U (d;(0.0)) (1)

i=l1

S0 (4 0.0).

i=l1

The potential U,-np depends on the distance d; between the
centers of mass of the NP and each AA in the protein. This dis-

tance is determined by the protein’s orientation with respect to
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the NP’s surface, which is defined by two rotational angles
(¢, 0) relative to the protein’s initial orientation. This initial ori-
entation is set by performing a principle axis transformation
such that the axis associated with the smallest moment of inertia
is aligned to the z axis and the second smallest to the y axis, that
is, the z axis is now typically associated with the greatest extent
of the protein. Since this does not uniquely specify the orienta-
tion, further rotations of 180° are then applied if necessary such
that the electric dipole moment is positive along these two axes.
This produces a convenient reference state by which other
orientations are defined. The specific orientation (¢, 0) is gener-
ated by applying a rotation of —¢ around the z axis followed by
a rotation of 180° — 0 around the y axis. The short-range sur-
face non-bonded potentials are extracted from AWT-MetaD
simulations, which were described in the section “All-atoms
short-range interaction modelling results”. The Hamaker tech-
nique is used to approximate the long-range term that results
from the vdW forces working through the aqueous medium be-
tween the NP core and the i-th AA. The electrostatic interaction
between the NP and AA is represented by the screened
Coulomb potential. More comprehensive information about the
theoretical aspects of the UA model can be found in our
previous publications [2,25,28,39,40]. The output of the UA
simulations contains a collection of rotational configurations
and their corresponding E(0y,¢;) values. By employing Boltz-
mann averaging and weighting factors based on the potential
energy as a function of distance for each angle, we calculate the
average adsorption energy of these configurations. Using this
approach, we evaluate the adsorption energies of the entire pro-
teins on aluminum surfaces. To predict the three-dimensional
(3D) structures of proteins, we utilize the I-TASSER (Iterative
Threading ASSEmbly Refinement) 5.1 software [41], which

uses the protein’s AA sequences as an input.

For this study, we have chosen six representative cow milk pro-
teins and lactose, which constitute most of the non-fat milk
solids. Table 1 displays properties of the chosen compounds. It
includes their UniProt IDs, molecular weights, charges, and the
number of AAs in each protein. The charge data was deter-
mined through the PROPKA method [42,43] at a pH of 7.0. We
model the lactose molecule as a pair of glucose beads; it does
not possess a UniProt ID or a count of AA residues. We esti-
mated the concentration of each protein and lactose based on
their weight fraction in milk and considering the fact that cow
milk has 30-39 g/L of protein and 45-55 g/L of lactose in total.
The molar mass of each protein was taken from AlphaFold
database [44]. Following this, all proteins underwent a 50 ns
equilibration in water using NVT and NPT ensembles.

The UA computations were conducted using nine different Al
NPs with varying radii, namely 2, 5, 10, 20, 30, 40, 50, 80, and
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Table 1: Characteristics of the selected milk proteins and lactose.

Abbreviation UniProt ID Compound name  MW?2, Da
AS1C P02662 as1-casein 24528.00
AS2C P02663 as2-casein 26018.69
BC P02666 B-casein 25107.33
ALAC P00711 a-lactalbumin 16246.61
BLAC P02754 B-lactoglobulin 19883.25
bovine serum

BSA P02769 albumin 69293.41
LAC — lactose 342.3

Beilstein J. Nanotechnol. 2024, 15, 215-229.

Charge, e ResP CC[10™4, mollL  Rg4[A]
-85 214 4 20.05
45 222 1 40.81
-4.5 224 4 22.53
-5 142 0.9 15.01
-6 178 2 15.50
-4.5 607 0.1 27.69
0 — 1300 4.28

aMolecular weight, PNumber of residues, *Concentrations [mol/L] of the molecules in milk that were used in KMC calculations, 9Radius of gyration of

the biomolecules in Angstrom.

100 nm, to investigate the influence of size and curvature on the
adsorption energies. The results and detailed information on the
calculation can be found in Supporting Information File 1,
Figure S2 and Figure S3, which illustrate the variations in
adsorption energies as a function of NP size. Within the range
of 2-20 nm the binding energies of ALAC, BLAC, BC, and
BSA show an initial increase on all surfaces, followed by a
stabilization at larger NP sizes. In contrast, AS1C and AS2C ex-
hibit a continuous rise in binding energy across the entire size
spectrum, ranging from —48.0kg7 at 2 nm to —281.09kgT at
100 nm for AS1C and —15.26kgT at 2 nm to —275.60kgT at
100 nm for AS2C, with AS2C exhibiting the most dramatic
changes in binding energy as a function of size. This strong size
dependence in binding energy for AS2C can be attributed to its
rod-like 3D structure and the rigidity assumption in our model.
As the size of the NP increases, AS2C can make more exten-
sive contact with the surface. This increased contact area leads
to enhanced binding affinity, resulting in the observed stronger
binding across the size range. This is not the case for other pro-
teins on the list as they are more compact and, therefore, reach
the maximum number of contacts at relatively small NP sizes.
Regarding the binding affinity rankings, for the smallest NPs
(2 nm), the order from weakest to strongest is observed as
AS2C, BSA, ALAC, BLAC, ASI1C, and BC on Al(100), with
similar rankings observed on Al(110) and Al(111) surfaces.
However, for the largest (flattest) NPs (100 nm), the binding
affinity ranking changes to ALAC, BLAC, BSA, BC, AS2C,
and AS1C on Al(100), BC, ALAC, BLAC, BSA, AS2C, and
AS1C on Al(110), and BLAC, ALAC, BC, BSA, AS2C, and
AS1C on Al(111) (see Supporting Information File 1, Figure
S2). In reality, protein structures are not rigid, allowing them to
adapt to the surfaces upon immobilisation. This can potentially
affect their binding behavior. This can be especially significant
for caseins, as they belong to the group of flexible milk pro-
teins with no tertiary structure. Globular milk proteins
(lactoglobulin and lactalbumin) are expected to be less prone to

this shortcoming of the UA model.

Figure 7 shows the output of the UA model for the selected
milk proteins on aluminum NPs with a surface size of 80 nm
with zeta potential =5 mV at pH 7.0. The heatmaps display the
adsorption energies for all values of 0 and ¢. Blue areas with
lower energies indicate more favorable orientations of the pro-
teins. Each heatmap is accompanied by a 3D representation of
the protein on the NP surface, with the AAs closest to the NP’s
surface marked. The AAs that are most likely to make contact
with the metal surfaces, according to analysis, are LYS, TYR,
PHE, GLU, ARG, and ASP.

The rankings of protein adsorption on each aluminum surface
are shown in Table 2, highlighting the variations in adsorption
energies (E,qs/kgT) and the particular protein—surface interac-
tions (0 and ¢ in degrees). Moreover, the minimum distance
(rmin in nm) indicates the closest approach of the protein to the
aluminum surface during the adsorption process.

The ranking of adsorption energies highlights the distinct
adsorption behaviors of various proteins on different metal fcc
surfaces. We can see that AS1C exhibits the highest adsorption
energy on AI(100) and AI(111) surfaces, while on Al(110),
AS1C, and AS2C show similar adsorption energies. In contrast,
on metallic iron, AS1C consistently demonstrates the highest
adsorption energy on Fe(100), Fe(110), and Fe(111) surfaces.
This result reflects the size and shape of the AS1C protein,
which allows it to make the largest number of contacts with the
metal as compared to the other proteins. Regarding the most
weakly bound proteins, on aluminum surfaces, ALAC consis-
tently exhibits the lowest adsorption energy across all three sur-
faces, while BLAC shows slightly higher adsorption energies.
In contrast, on iron surfaces, ALAC and BLAC demonstrate
comparable adsorption energies, with ALAC exhibiting slightly
lower energies on Fe(110) and Fe(111) surfaces [2]. We note
that generally the binding of proteins to aluminum is weaker
than to iron, which may be caused by the smaller lattice con-

stant of fcc iron and higher density of surface atoms.
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Figure 7: Adsorption energy heatmaps obtained from the UnitedAtom model and corresponding 3D representations of the interactions of (a) AS1C,
(b) AS2C, (c) BC, (d) BLAC, (e) ALAC, and (f) BSA with Al(110) in the preferred orientations. The figure highlights the closest AAs to the surface of

the material.

Supporting Information File 2, Table S2 reports the preferred
orientations of all 820 milk proteins based on the lowest energy
from the UnitedAtom output. In our investigation of these pro-
teins, we focused on identifying the most strongly adsorbing
proteins when exposed to Fe and Al. These proteins, including
P19660, A6QP30, G3X745, FIMMI6, EIBBY7, A6QLY7, and
QI9N2I2, demonstrated remarkable similarity in their binding
behavior towards Fe(100) and Al(100) surfaces, EIBGJ4,
AS5D7M6, FIMMI6, A6QP30, G3X745, and FINIC7 on
Fe(110) and Al(110) surfaces, and FIMMI6 and E1B748 and
A6QP30 on Fe(111) and AI(111) surfaces.

In the subsequent step, we predicted the composition of the

milk protein layer at the aluminum surfaces. For this analysis,

we consider the Al surface as a spherical NP with the protein
layer uniformly adsorbed on its entire surface, forming the pro-

tein corona.

Competitive adsorption and biomolecular

corona

Kinetic Monte Carlo (KMC) simulations as implemented in the
CoronaKMC tool [26] were employed to investigate competi-
tive adsorption and to determine the composition of the protein
corona. This method models adsorbates as hard spheres, which
adsorb and desorb to the surface of the NPs, with different
orientations of each protein treated as different potential adsor-
bates to allow for a more physically realistic model of corona
formation for anisotropic proteins. In brief, a standard kinetic
Monte Carlo routine is used to advance the simulation from one
event, collision of an incoming adsorbate with the NP or de-
sorption of an adsorbed species, to the next, with events occur-
ring with a probability proportional to their rate. In the initial
form of the model, adsorption is assumed to occur with unit
probability if the incoming species does not overlap with any
currently adsorbed species and fails to take place otherwise. We
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Table 2: Comparison of milk proteins’ binding affinities and orienta-
tions on Al(100), Al(110), and Al(111) with NP radius of 80 nm, derived
from the UnitedAtom model and ordered by the binding strength on
each surface.

Individual protein adsorption description on Al(100)

Protein, Eags/ksT  ,° ,° Imin, NM
AS1C -145.65 175 100 0.19
BC -108.13 305 40 0.13
AS2C -96.12 315 95 0.05
BSA -91.11 45 60 0.11
BLAC -67.35 65 90 0.19
ALAC -49.12 125 35 0.20

Individual protein adsorption description on Al(110)

Protein, Eags/kgT  ,° 6,° Fmin, NM
AS1C -278.37 175 100 0.32
AS2C -224.01 345 90 0.10
BSA -173.77 40 60 0.23
BLAC -157.70 50 95 0.28
ALAC -155.17 70 90 0.29
BC -132.52 0 70 0.20

Individual protein adsorption description on Al(111)

Protein, Eags/ksT  ,° 0,° Imin, NM
AS1C -242.93 175 100 0.15
AS2C -181.65 330 90 0.11
BSA -137.46 45 60 0.13
BC -131.93 140 110 0.15
ALAC -125.76 75 90 0.17
BLAC -113.39 45 75 0.20

parameterize this model using adsorption and desorption rate
constants extracted from UnitedAtom results as described previ-
ously [16,45]. In brief, each potential adsorbate (e.g., a small
molecule or a particular orientation of a protein) is projected
onto the surface of the NP and a convex hull procedure used to
estimate the area of the NP occupied by that adsorbate, A;. The
adsorbate is then assigned an effective radius R; such that a
sphere projected onto the NP would produce the same radius
[16]. The per-site adsorption rates are calculated using kinetic
theory for the rate of collisions between two spheres in solution,

normalized by the number of binding sites for that protein,

A
k, = L 4nDN, (Ryp + R ) |,
a 4nR§P[ A( NP z)] 2
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where Ryp is the radius of the NP, N is Avogadro’s number,
R is the effective adsorbate radius, D is the pair diffusion coef-

ficient given by

knT [ _ _
D=-2— (RN}""'RAI)’ 3)
on

taking the viscosity n = 8.9 x 107 Pa-s. We employ SI units in
the above calculation, noting that k, must then be multiplied by
1000 to convert from units m3-mol~! to L-mol~!. Desorption
rates are found by requiring that ky =k, xlmTleeEadS/kBT,
where E,qs is the value obtained for that orientation using
UnitedAtom [45]. A concentration is then assigned to the adsor-
bate based on the bulk concentration of that adsorbate, weighted
by the relative abundance of that orientation of the adsorbate if
necessary. This means that for protein i with a bulk concentra-
tion of C; and a set of orientations 6, an orientation 6; is
assigned a concentration

c c sin(%)j
by izksinek “)

to ensure that orientations are correctly weighted and the total
concentration summed over orientations is correctly repro-
duced. Scripts to automate this parameterization based on UA
output and adsorbate structure files are available as part of the
UnitedAtom repository [26].

We further analyze the results for adsorption of milk compo-
nents obtained from KMC simulations, specifically focusing
on the mean absolute and relative abundance of proteins
(1073 nm?) adsorbed on Al surfaces per unit area (nm?2). Table 3
shows the abundances of proteins and lactose on Al surfaces.

The simulations were performed using NPs with a radius of
80 nm, and the results are collected in Table 3. It presents the
number concentration and mass abundance of proteins adsorbed
on three different Al surfaces, namely AI(100), Al(110), and
Al(111). Each protein’s adsorption behavior is quantified in
terms of its number concentration (expressed in units of
1073 nm™2) and mass abundance (represented as a percentage of
the total adsorbed mass). These calculations were performed
utilizing the most recent KMC method modifications, including
an alternative mode in which the acceptance-rejection criteria
for incoming adsorbates are altered to allow replacement of pre-
existing adsorbates. We should note that Al(111) has the lowest
energy of all three surfaces, according to the Materials Project
data, so we expect the adsorption profile in real systems to be
similar to that predicted for Al(111).
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Table 3: Mean amounts of proteins adsorbed on Al surfaces per unit area: number concentration (per nm?) and mass abundance obtained from KMC
simulations with NPs of radius 80 nm. These calculations have been done using the KMC method with displacements.

Al(100) Al(100) Al(110) Al(110) Al(111) Al(111)
Protein Nags [1073, nm=2] Map, % Nags [1073, nm=2] Map, % Nags [1073, nm=2] Map, %
AS1C 12.26 57.16 16.70 67.82 27.21 83.19
BC 4.45 21.24 3.38 14.07 1.91 5.84
BLAC 2.91 10.99 2.97 9.79 1.00 2.43
LAC 96.59 6.28 89.13 5.05 84.50 3.62
ALAC 1.14 3.51 1.13 3.05 1.84 3.60
AS2C 0.1 0.55 0.04 0.16 3.00 1.09
BSA 0.02 0.25 0.00 0.05 0.02 0.21

We also compared the protein composition in the corona on alu-
minum and iron [2], obtained in our previous work using the
original KMC approach without molecular displacements. This
comparison is shown in Figure 8. AS1C exhibited the highest
abundance on both iron and aluminum among the studied pro-
teins, indicating a strong affinity for both metals with both
KMC methods as well as its high number concentration in solu-
tion. The following AS1C, BC, BLAC, and ALAC also showed
fairly equal abundances on the surfaces of iron and aluminum.
In contrast, BSA displayed the lowest abundance on both metals
because of its larger size and the relatively low molar fraction in
milk as compared with other proteins. Figure 8 shows the mass
abundance of each protein on both aluminum (A1(100), Al(110),
and Al(111)) and iron (Fe(100), Fe(110), and Fe(111)) surfaces.

We can also observe that AS1C, BLAC, and ALAC display sig-
nificantly enhanced presence on Fe surfaces in contrast to Al.
Conversely, AS2C shows greater adsorption on Al surfaces as
compared to Fe. Overall, we expect a somewhat different
corona formed on these metallic surfaces.

Real-life organic media do not consist only of proteins, but they
also include many other molecules, for example, sugars and
other organic compounds that may bind to NPs along with pro-
teins. It can reasonably be assumed that these molecules may
alter both the kinetics and equilibrium state of the corona and,
moreover, may play a role in biological outcomes. Thus, it is of
interest to include these small molecules in the corona simula-
tion to not only gain further insight into this particular case of
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Figure 8: Mass abundance of proteins on Al and Fe surfaces (100, 110, and 111) using the original KMC approach without molecular displacements

and a NP radius of 80 nm.
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aluminum in milk, but also to establish a methodology by which
more general molecules can be included in these simulations.
We choose lactose as a prototypical example of a small mole-
cule capable of binding to NPs, since it is present at a high con-
centration in milk. We model the lactose molecule as a pair of
glucose beads separated by a distance determined by the equi-
librium structure of lactose. Although this is not completely
rigorous, it demonstrates how the UnitedAtom software can be
adapted to model larger molecules other than proteins using the
same fragment-based approach. To avoid the need to run a
time-consuming parameterization protocol based on metady-
namics simulations, we produce PMFs for the glucose bead
using a machine-learning technique (PMFPredictor) trained on
previous metadynamics results [38]. For the lactose molecule,
each constituent glucose bead is assigned a charge of 0, and the
Hamaker term is neglected because of the small size of these
beads. Following this parameterization, the coarse-grained
lactose molecule is processed identically to proteins using the
same automated pipeline, that is, UnitedAtom is run to produce
a table of orientation-specific binding energies. These are
mapped to rate constants for adsorption and desorption. We
stress that this procedure is sufficiently generic that essentially
arbitrary organic molecules can be included in the simulation by
performing a fragment-based decomposition, generating PMFs
via traditional or machine-learning approaches, and construct-
ing a coarse-grained representation for input to UA. To simplify
this procedure for more complex molecules, we have de-
veloped a Python script (MolToFragments.py) employing
RDKit [46] to automate splitting larger molecules into suitable
fragments and producing coarse-grained input files suitable for
UnitedAtom and included it in this repository [26].

The addition of lactose (or other small molecules) to the corona
simulation poses a challenge for the form of the CoronaKMC
algorithm previously employed because of the high concentra-
tion and very small binding area of this small molecule relative
to proteins [16,45]. As a consequence of these factors, the orig-
inal form of the algorithm results in rapid coverage of the NPs
with a very large quantity of lactose. This greatly increases the
required computational time, which scales as O (N?) for N
adsorbed particles. Moreover, in this original form of the model,
a single adsorbed lactose molecule inhibits the adsorption of a
large protein, no matter how strongly the protein may adsorb.
To counteract these issues, the following features were added to
the new version of the CoronaKMC software. First, we imple-
mented a method to accelerate the simulation by adjusting rate
constants for quasi-equilibriated processes (e.g., the adsorption
of lactose) according to the methodology of Dybeck and
co-workers [47]. Second, we added an optional mode in which
the acceptance—rejection criteria for an incoming adsorbate are

modified such that an incoming adsorbate is no longer immedi-
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ately rejected if it overlaps with a pre-existing adsorbate.
Instead, the incoming adsorbate is accepted with a probability p

given by,

exp[-AE/kgT |

= > 5
P(AE) 1+ exp[-AE/kgT | ®

where AE is the difference in energy between the two states,
AE:Eads—%:Ej, ©

where j is the set of all adsorbed particles that would overlap
with this particle, taking AE = E, 4 if no overlaps are found. If
the adsorbate is accepted, then all the overlapping particles are
removed from the NP. We note that this breaks the principle of
detailed balance in that it allows for the replacement of a set of
adsorbates by a single molecule, but does not allow for the
converse in which a set of incoming molecules can displace an
adsorbate. We justify this neglect on the basis that the required
event of multiple simultaneous collisions on a single target
would occur so rarely that it would essentially not be sampled
in the course of a simulation. The probabilistic acceptance to
regions of the NP without explicit adsorbates present effec-
tively multiplies the adsorption rate by a factor of p(E,qs). Thus,
to maintain the same equilibrium constant, we must multiply the
desorption rate by this same factor, noting that this correction is
only significant for very weakly adsorbing particles with
E.4s 2 —3kgT. This methodology does not treat adsorption of
water to the NP explicitly. Instead, it is assumed that all binding
energies are defined relative to the adsorption of water, which is
assigned an affinity E,q; = Okg7T, and that the concentration of
water is sufficiently high such that any region of the NP with-
out an explicit adsorbate can be assumed to be covered in water.

The results of simulations obtained with the updated Coron-
aKMC (i.e., including the molecule displacement) are shown in
Table 3, and they suggest a notable variation in the abundances
of proteins and lactose among different Al crystallographic
orientations. Notably, on all surfaces studied, AS1C and BC
consistently exhibited the highest protein abundances, while
BLAC, LAC, and ALAC demonstrated moderate adsorption
levels. In contrast, AS2C and BSA consistently displayed the
lowest adsorption among the proteins considered in our simula-
tions. Furthermore, when considering different Al facets, it is
evident that the (110) surface consistently exhibited the weakest
average adsorption across all proteins. When the displacement
is allowed, AS1C gains much more space in the corona by
replacing other proteins, mostly BLAC, ALAC, and AS2C.
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Figure 9 presents a comparison between the protein abun-
dances in the corona on Al and Fe obtained using the enhanced
version of the KMC algorithm with molecular displacements.
As discussed earlier, this improved algorithm addresses compu-
tational efficiency concerns and more accurately represents
long-term scenarios during protein corona formation. As shown
in the Figure, these algorithmic improvements have a profound
impact on the mass concentration of milk proteins on metallic
surfaces, particularly on iron. In the original algorithm
(Figure 8), proteins showed comparable mass abundances
on both metals. However, the enhanced algorithm reveals a
distinct change in the adsorption behavior of the AS1C
protein on Fe and Al surfaces, characterized by a substantial
increase in mass concentration compared to other proteins.
The data in Table 3 show that in terms of mass abundance
lactose ranks fourth among the corona components (see Sup-
porting Information File 1, Figure S3). As compared to the
algorithm without displacement [2], the protein abundance
ranking on iron (NP radius 80 nm) surfaces changes to AS1C >
BC =2 BLAC = ALAC > AS2C =~ BSA. A comparable affinity
ranking is also now observed for aluminum surfaces (80 nm)
studied in current work: AS1C » BC = BLAC > ALAC >
AS2C = BSA.

Conclusion

In this work, we applied a multiscale computational model to
study the adsorption of milk solids on the metallic surfaces of
aluminum, widely used in food processing/packaging. The milk
model contained the six most common milk proteins and
lactose. To account for the size differences of selected milk
constituents, we used an improved competitive adsorption algo-
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rithm that can potentially achieve a realistic description of
biocorona formation processes with diverse adsorbates (e.g., for

predicting an eco-corona).

Our computational model predicts strong binding of milk pro-
teins to pure aluminum surfaces, which is in agreement with our
previous observations for metallic iron surfaces [2]. For alumi-
num, we also found that AS1C and AS2C exhibited the
strongest binding to the metal, followed by BSA, BC, BLAC,
and ALAC, which displayed weaker adsorption. We also found
similar protein abundances in the corona for the two metals
demonstrated by KMC simulation results. AS1C dominates the
adsorption as the most abundant protein on aluminum surfaces,
with BSA being the least abundant. We found a small differ-
ence in the predicted corona content between the two metals:
BC and BLAC prefer Al(100) and Al(110) to iron, while AS1C
prefers Fe(100) and Fe(110) over aluminum.

Although the adsorption energy regulates the interaction
strength between proteins and surfaces, the mass concentration
of proteins in the solution has a major effect on the amount of
protein adsorbed onto the surface. Expanding the milk model by
adding lactose into the mix did not alter the ranking of protein
abundance in the corona. Despite the high concentration in the
milk, lactose does not exceed the mass abundance of specific
proteins such as AS1C due to its small size. In our model, it

essentially forms a thin monolayer on the surface.

Overall, our freely accessible multiscale computational model
[26] allows us to make predictions of the binding strength,
preferred orientations, and relative abundance of the specified
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Fe Mass Abundance (100)
= 70+ B Al Mass Abundance (110)
= 60 Fe Mass Abundance (110)
o] B Al Mass Abundance (111)
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Figure 9: Mass abundance of proteins on Al and Fe surfaces (100, 110, and 111) using the KMC model with molecule displacement and a NP radius

of 80 nm.
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molecules on the specified material surfaces or NPs and, thus,
gives an insight into the mechanisms of bionano interaction. We
can compare different materials in terms of the protein binding
affinity and corona content and optimize the processes in food
and chemical industry. The presented methodology can be
easily extended to other molecules, materials, and contexts in-
volving the bionano interface such as environmental safety,

health, medical devices, or toxicology.
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Abstract

A comprehensive knowledge of the physical and chemical properties of nanomaterials (NMs) is necessary to design them effec-
tively for regulated use. Although NMs are utilized in therapeutics, their cytotoxicity has attracted great attention. Nanoscale quan-
titative structure—property relationship (nano-QSPR) models can help in understanding the relationship between NMs and the bio-
logical environment and provide new ways for modeling the structural properties and bio-toxic effects of NMs. The goal of the
study is to construct fully validated property-based models to extract relevant features for estimating and influencing the zeta poten-
tial and obtaining the toxicity profile regarding cell damage in the treatment of cancer cells. To achieve this, QSPR modeling was
first performed with 18 metal oxide (MeOx) NMs to measure their materials properties using periodic table-based descriptors. The
features obtained were later applied for zeta potential calculation (imputation for sparse data) for MeOx NMs that lack such infor-
mation. To further clarify the influence of the zeta potential on cell damage, a QSPR model was developed with 132 MeOx NMs to
understand the possible mechanisms of cell damage. The results showed that zeta potential, along with seven other descriptors, had
the potential to influence oxidative damage through free radical accumulation, which could lead to changes in the survival rate of
cancerous cells. The developed QSPR and quantitative structure—activity relationship models also give hints regarding safer design

and toxicity assessment of MeOx NMs.

Introduction
Engineered nanoparticles have become an integral part of our  tion of nanomaterials (NMs) is hindered because of potential

daily lives in consumable products and commercial goods. adverse effects. It is believed that small particles can enter the

Their versatile tunable properties have made nanomaterials a

center of innovation in different areas [1]. However, the innova-

body through inhalation, ingestion, and skin penetration and

have the potency to interact with macromolecules for a long
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period. Many studies have demonstrated that metal oxide nano-
particles (MeOx NPs) are toxic and tend to have adverse effects
on living organisms and the environment [2-6]. The toxicity of
NPs depends on various structural (intrinsic) [7] and extrinsic
properties. Depending on the dispersing environment, nanopar-
ticles can easily agglomerate into particles with larger diameter.
Upon intake by organisms, depending on the pH value, these
agglomerations disintegrate again becoming a source for toxins
in the body [8]. The formation of agglomerated NPs depends
upon the surface charge of the NPs, which is believed to stabi-
lize and prevent agglomeration of NPs. As no experimental
techniques are available to measure the surface charge directly,
its value is measured through the zeta potential () in a given
medium [9]. Zeta potential is the electrostatic potential at the
electrical double layer surrounding the NPs in solution. It is
closely related to suspension stability and morphology. In
metals, the zeta potential can be altered by altering pH, concen-
tration, and conductivity of the components of NPs [10]. Zeta
potential can provide information regarding the fate, behavior,
and toxicity of NPs in the environment as well as in biological
systems. Since the cell membrane is negatively charged, the
interaction between NPs and cell membrane or organelles can
be highly influenced by the zeta potential. There is an increased
interest in integrating data on metal oxides in the field of nano-
toxicology that would be able to predict toxicity based on
measured properties. Indeed, there are several studies related to
the zeta potential and its behavior in solutions and biological
systems [11]. Comparable zeta potential measurements across
various studies may allow one to find correlations regarding the
behavior of different types of NMs. These correlations can then
enable the prediction of the behavior of novel NMs based on
their properties. As the zeta potential is a system-dependent
extrinsic property, it depends on both particle and medium. The
behavior of NPs can also change depending on the formation of
a protein corona. The formation of a protein corona on the sur-
face of NPs, which influences the interaction with cell mem-
branes or proteins, is also associated with zeta potential and sur-
face charge. Very limited studies have reported the influence of
zeta potential, surface charge, hydrophobicity, and biocompati-
bility on NP toxicity. These properties of NPs determine their
toxicity and interaction with the cell membrane damaging
human health and the environment [12]. The toxic effect of NPs
can be used as a medical treatment for diseases at the cellular
level, that is, targeting and destroying cancerous cells. To date,
few studies have reported on the mechanism of apoptosis of
cancerous cells after metal oxide treatment, which still remains
unclear. Traditional approaches are very costly, time-consum-
ing, involve a lot of resources and lead to ethical implications;
also, they are inadequate in addressing the safety concerns
regarding new NPs in this rapidly growing field. Therefore,

computational-based approaches are effective methods in risk
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assessment. Among them, quantitative structure—property rela-
tionship (QSPR) models seem to be the most promising method
[13]. However, the physicochemical and structural diversity of
metal oxide nanoparticles (MeOx NPs) poses significant chal-
lenges in determining their toxic effect on living cells [14,15].
Works related to nanoscale toxicity modeling have been
published [16-20] to predict the toxicity profile of MeOx NPs
on various cell lines and species. The most important criterion
to improve nanoscale toxicity models is the selection of the
appropriate structural descriptors of NPs. Periodic table-based
descriptors have been a promising tool in predicting toxicity
profiles and risk assessment of MeOx NPs with high predic-
tivity and interpretability [21-25]. This type of descriptors can
indicate relevant features and mend the mechanism interpreta-
tion. Some properties (size, zeta potential, molecular weight,
mass percentage of metal elements, and cation charge) are in-
vestigated to have a better understanding of the structure of NPs
and its influence on toxicity.

Methods and Materials

Dataset

The study is based on two datasets, that is, dataset I (zeta poten-
tial) and dataset II (cell membrane damage). Dataset I consists
of 18 metal oxide nanoparticles (MeOx NPs) with stoichiome-
tries of MO, MO,, MO3, M503, and M30,. This data was ob-
tained from Cao et al. [26], where the zeta potential of MeOx
NPs was measured in a cell culture of 20% fetal bovine com-
plete medium. Dataset II was taken from Toropova et al. [27],
where cell damage measurement was performed based on the
uptake of propidium iodide (PI). The dataset is related to four
doses (50, 100, 150, and 200 ug/mL) and exposure times
ranging from 1 to 7 h, which results in 132 MeOx NPs data
points. The detailed dataset is provided in Supporting Informa-
tion File 2, Section S1.

Descriptor calculation

Selecting the appropriate descriptors is crucial for property and
toxicity modeling. Quantitative values of chemical features
(descriptors) play a significant role in determining the target
endpoint. Therefore, in this study, we have calculated periodic
table-based descriptors (PT descriptors) for calculating the rele-
vant features contributing to the respective property and toxici-
ty endpoint. Physicochemical features encoding the informa-
tion of MeOx NPs into PT descriptors were used to build
prediction models for zeta potential and cytotoxicity (cell
damage). The basic information of MeOx NPs was directly
taken from the periodic table and some were calculated with the
Elemental Descriptor Calculator software available from
(https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/

other-dtc-lab-tools?authuser=0), termed first-generation peri-

odic table descriptors. Also, second-generation PT descriptors
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were calculated using relevant formulas [28]. These descriptors
were calculated without any expert intervention and are inde-

pendent of size variations.

Splitting of the data sets

Splitting of the datasets into training sets and test sets is essen-
tial for developing statistically robust nano-QSPR models. Each
of the datasets, that is, the zeta potential dataset and cell damage
dataset, was divided into training and test sets with a ratio of 7:3
using the dataset division software in the DTC lab software
suite (http://teqip.jdvu.ac.in/QSAR_Tools/). Accordingly, thir-
teen compounds were in the training set and five compounds in

the test set for the zeta potential dataset; for the cell damage
dataset, 111 compounds were present in the training set, and the
remaining 21 compounds were in the test set. The training set
compounds were used for feature selection and model develop-
ment; the test set was utilized for assessing the predictivity of
the developed model.

Model development

Zeta potential QSPR model

To develop the property-based QSPR model, the training set
was utilized for model development. The training set of 13
compounds was processed through feature selection via step-
wise regression and genetic algorithm (GA) [29]. After feature
selection, the training set was utilized for model development
through stepwise regression using the MINITAB software
(Minitab Inc., USA, https://www.minitab.com). A multiple

linear regression (MLR) model was obtained with three descrip-
tors keeping the F' values to enter and remove 4 and 3.9, respec-
tively. Finally, a PLS (partial least squares) model was de-
veloped with the selected features from the MLR model. The
developed PLS model consisted of 1 LV (latent variable), which
was also developed in the MINITAB software.

Cell damage QSPR model

The previously developed QSPR model (dataset 1) was utilized
to calculate the zeta potential of the MeOx NPs in the cell
damage dataset (dataset IT), which lacks the zeta potential infor-
mation (imputation of sparse data). The zeta potential was used
as a descriptor in the model development along with the PT
descriptors. Although the solvents used for testing metal oxides
in both datasets differ, the work involves correlating the zeta
potential data (experimental or computed) with the cell damage
model as a descriptor. Cao et al. [26] also used zeta potential as
one of the determinants for the modeled endpoint. The zeta
potential of all data points was determined in the same solvent,
and this does not contribute to the variations in zeta potential
values due to solvents. This work is similar to imputation in
quantitative structure—activity relationship (QSAR) modeling,

where a missing value is replaced by a predicted value from
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another model [30]. The training set with 111 MeOx NPs after
feature selection through GA was further used for model devel-
opment. The model development was performed with stepwise
regression using the MINITAB software followed by the best
subset selection method. Further, to enhance the quality of
predictions for the test set, we have performed a chemical read-
across approach for the developed MLR model with eight

descriptors.

Model validation

The validation procedure is the prerequisite for the application
of nano-QSPR models. Rigorous validation of the developed
models was performed following principles of the Organization
for Economic Cooperation and Development [31]. Validation
of the model includes both internal and external validation.
Internal validation indicates the robustness and fit of the de-
veloped model applying the training set, whereas the test set in-
dicates the predictivity of the developed model for new NMs.
Common internal validation methods include the leave-one-out
cross-validation (Q(ZLOO)) algorithm and the Y-randomization
test [32,33]. The model fit ability is expressed by the determina-
tion coefficient (R%) and mean absolute error (MAE). For
judging the external predictivity for the test set, we chose the
Q}l and Q}z metrics. According to Golbraikh and Tropsha
[34], R? should be greater than 0.6 and Q2 should be greater
than 0.5 to meet the standard requirements of external valida-
tion. A true external set was also used to evaluate the predicting
power of the model. This was done using the prediction relia-
bility indicator (PRI) tool available from the DTC lab software
tools (http://teqip.jdvu.ac.in/fQSAR_Tools/). To further validate
model 2 for the similarity-based prediction, we have performed

chemical read-across analysis.

Prediction reliability indicator (PRI) tool

Ensuring the reliability of predictions for a new set of data is a
vital task. By making robust predictions based on molecular
features, we can estimate the external set accurately. In this
study, we used the Prediction Reliability Indicator tool [35]
(http://teqip.jdvu.ac.in/fQSAR_Tools/) to predict the response of

a true external set comprising 49 MeOx NPs. The tool catego-
rizes the prediction quality as good, moderate, or bad, based on
certain scoring rules. To assess the predictive power of the de-
veloped QSPR models, we used the QSPR model (model 1 with
zeta potential endpoint) to predict the response of the external
set. Figure 1 shows the overall workflow of the present work,

highlighting our confident approach to the study.

Read-across analysis
The read-across technique is a reliable and scientifically proven
method to predict the endpoint of a new compound, also known

as the target compound. This technique involves utilizing data
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Figure 1: Workflow for developing QSPR (model 1) and QSAR (model 2)

from similar substances that have a regular pattern resulting
in structural similarity and similar physicochemical, toxicoki-
netic, toxicodynamic, and ecotoxicological properties [36].
Therefore, after selecting the appropriate descriptors from the
PLS model (model 2), we have applied the Quantitative Read-
Across v4.0 tool available from our laboratory website (https://
sites.google.com/jadavpuruniversity.in/dtc-lab-software/home).

This tool uses a similarity-based approach based on Euclidean
distance, Gaussian kernel function, and Laplacian kernel
function. The method requires optimization of the hyperparame-
ters (sigma and gamma values, distance, and similarity thresh-
olds). To ensure the best results, we used dataset 2, which we
divided into a 70% training set and a 30% test set. We further
divided the training set into a sub-training and sub-test set to
fine-tune the hyperparameters by changing the default setting.
Finally, we used the best hyperparameters to predict the
external set and achieved the best possible results through a
rigorous process.

Applicability domain
A nano-QSPR model should have a clear range of applicability

domains [37]. Robustness and predictivity regarding new com-

Training set ——88 ™

for some MeOx NPs that lack such

information

Genetic algorithm
Model development 3 .
Stepwise regression

(BsS

Model 2 (QSTR)
PLS model
(QSTR)

Read across
(RA)prediction

Read —Across v4.1

Euclidean distance based
prediction

Optimization of
hyper-parameters

Gaussian kernel function
prediction

Laplacian kernel function
prediction

models.

pounds are based on the similar physicochemical properties of
the compounds in the training set, depending on which, the
model chemical space is developed. In the present study, the
commonly used Williams plot [38] method was employed to
determine whether the compound is within the chemical domain
of the model or outside. The vertical axis represents cross-vali-
dated standardized residuals whereas the horizontal axis repre-
sents leverage values (). This index measures the similarity be-
tween the new chemicals and the ones in the training set. The
compound prediction is said to be reliable if /4 is less than the
critical value (h*). Here, h* is the warning leverage in the
Williams plot or applicability domain; compounds lying above
this critical value are considered as outliers. The critical
leverage h* is calculated as h* = 3p/n, where p stands for the
number of modeled variables plus one and n stands for the data
size of the training set used in model development. Compounds
with a cross-validation standardized residual greater than three
standard deviations can be considered as Y-outliers.

Results and Discussion
To explore the physiochemical properties influencing the zeta

potential of the MeOx NPs, property-based modeling was
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performed considering the zeta potential as the Y-response
(model 1). Model 1 was developed with basic periodic table-
based descriptors. The different validation metrics showed the
models to be robust and of good predictivity. Furthermore, tox-
icity-based modeling (model 2) was conducted to illustrate the
impact of zeta potential on BEAS-2B cell damage. The
modeling aimed to create robust and predictive property- and
toxicity-based models capable of predicting novel MeOx NPs
with enhanced features. Figure 2 shows the bubble plots for
both dataset 1 and dataset 2. The green and red colors indicate
the positive and negative coefficients of the respective descrip-

Beilstein J. Nanotechnol. 2024, 15, 297-309.

tors. The size of the bubble represents the importance of the
descriptors; smaller bubbles indicate less contribution to the
respective endpoints than larger bubbles. The Y-randomization
plot and loading plot are also reported in Supporting Informa-
tion File 1 and Supporting Information File 2, Figure S1 and
Figure S2. The Williams plot in Figure 3 shows that three com-
pounds were outliers in the cell damage dataset. According to
the PRI tool estimation on a true external set, out of 49 MeOx
NPs, we confidently predicted 39 with good accuracy using this
simple tool. This means that we were able to make predictions
for untested metal oxides with great confidence.

Bubble plot Bubble plot

(Dataset 1) (Dataset 2)
0.6 15

Sq_sum_epsilong=
0.4 1.0
D1 _metal
02 Totalir»riétalialpha 0.5
0.0 0.0 @
i 3 )
f 1 2 3 t Valence Time70f exposure
0.2 Valence ectron potential 10X 0.5
Electron active
-0.4 -1.0
Zy/nO Metal aplha

-0.6 =15

Figure 2: Bubble plot for dataset 1 (model 1) and dataset 2 (model 2).
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Figure 3: Williams plot for cell damage endpoint (model 2).
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QSPR model for zeta potential

The zeta potential is the key parameter from the regulatory
point and can directly affect the NPs’ behavior in solution and
their interaction with biological organisms (Figure 4). 18 MeOx
NPs were modeled against the zeta potential endpoint to obtain
the partial least squares (PLS) model with one latent variable
(LV).

Model 1 (PLS)

£ =35.9157-8.4317y0x +2.0002tot_metal alpha

—0.1854 valence electron potential

Nigain =13; R = 0.80; 0 00 =0.67: Nyogy =5: 07, =0.68; (D

07, =0.67;LV =1; F = 44.20; p =0.002

Model 1 considers three descriptors to evaluate the influence of
the zeta potential based on basic attributes. Here, Nyain and Nieg
stand for the number of training and test set compounds, respec-
tively. R? is the determination coefficient; Q(ZLOO) is the leave-
one-out cross validation determination coefficient. Again, Q}]
and Q}z were calculated for external data predictions. The
model parameters suggest the good predictive ability of the de-
veloped model as it passes various statistical criteria [34]. The
descriptors depicted in the model also interpret the influence of

the zeta potential as discussed below.

The descriptor “xox” pertains to the oxidation number of the
metal, which represents the hypothetical charges within an

Stern layer

mVY NM surface

potential

Distance from NM surface

Diffusion layer
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atom. The zeta potential decreases as the oxidation number
increases, as indicated by the negative coefficient of the
descriptor. A lower (negative) oxidation number indicates a
higher electronegativity of the metal, which determines the elec-
tron distribution in a molecule. The metal’s electronegativity
also influences the catalytic property of the cationic form and
the surface charge formed around the metal oxide surface. The
highly electronegative surface of MeOx NPs [39] affects their
behavior and stability, thus determining the net charge of ions
in a given medium. Certain MeOx NPs are unstable and tend to
agglomerate. NPs attract negative or positive ions from the me-
dium to build a diffusion double layer. The electronegativity of
the NPs also depends on the pH value of the medium [40]. In
colloidal solutions, negatively charged metal oxides decrease
the zeta potential, which reflects stability based on the aggrega-
tion phenomenon. This is well observed in MeOx NPs, where
an increase in the oxidation number (xox) decreases the zeta
potential. In WO3 NPs, the xox value is 6 and the zeta potential
value is =23 mV; for NiO NPs, the xox value is 2, and the zeta
potential value is 34.4 mV.

The “valence electron potential” (—eV) determines the elements’
reactivity and is based on the charge of the valence electrons
and the ionic radius:

—eV =kn/r.
Here, k is a proportionality factor expressing the energy of the

valence electrons in electronvolts. n is the valence, and r is the
ionic radius.

---------- : - -
e _ =
* 1
% _ =1
o = =
ok Tonic radius =
- i
---------- — 1 valence ev @

Easy formation of EDL

Figure 4: Zeta potential formation and influence phenomenon in respect to the modeled descriptors.
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This descriptor negatively contributes to the zeta potential
suggesting that with the increase of the valence electron poten-
tial of the metal, there will be a decrease in zeta potential value.
This has been observed in Mn,O3 NPs, which have a valence
electron potential value of 220eV and a zeta potential of
—15.9 mV. Co303 NPs show the opposite result; the decrease in
the valence electron potential value (38¢V) shows an increase in
zeta potential value (22.6 mV). MeOx NPs with large ionic
radius tend to have low valence electron potential, as it is
inversely proportional to the ionic radius of the NPs. NPs with
lower valence potential allow for an easier formation of the
electrostatic double layer (EDL). If the solution with NPs shifts
to lower ionic strength, then the zeta potential increases as the
EDL expands to balance the electrostatic force, thus allowing

for the dispersion of NPs.

The descriptor “tot_metal_alpha” defines the core environment
of the metal. It also defines the molecular bulk of the metal
oxide. This descriptor has vital characteristics that are heavily
influenced by the number of metals present in the metal oxide.
Furthermore, the electronegativity of the metal is a crucial
factor in determining the surface charge and stability of the NPs
in the solution. The positive regression coefficient suggests that
an increase in the surface charge of the metal helps the NPs
to remain dispersed in the media and thus avoids flocculation.
This phenomenon is observable in Yb,O3 NPs with a high
tot_metal_alpha value (13.6) and the highest zeta potential
(46 mV); in contrast, SnO, NPs with a descriptor value of 2.88
have a zeta potential value of —20.5 mV.

QSPR model for cell damage
Model 2 (PLS)

SAsum, .
cell damage = 1681~ 1.112% 4 0,295 - epsilon
nO N
+0.318 D1, ¢, — 0.263 Metal alpha

+0.035 time of exposure + 0.00057 zeta potential
+0.0057 Electrons 5 .4jvem — 0.079 valence

2 2 P 2
Ntrain =1 10,R = 062’Q(LOO) = 054, rm{ oo = 0389’

Armi oo =0246; Ny =21;07) =0.653; 07, =0.652;

mf oo =0.532;Arm? oo =0.183; LV = 7;
MAE, =0.206; F =19.87

Model 2 utilizes eight descriptors to evaluate crucial attributes
that can impact cell damage. Equation 2 shows the number of
compounds used in the training and test sets represented by
Nirain and Nieg, respectively. Additionally, R? and Q(ZLOO), the

determination coefficient and leave-one-out (LOO) cross-vali-
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dation coefficient, were employed. Furthermore, external data
prediction calculations were made using Q%l and lerz The
model parameters demonstrate exceptional predictive ability,
meeting various statistical criteria [34]. The descriptors used in
the model were well interpreted and are comprehensively dis-
cussed in a later section. Note that the zeta potential has
appeared as a significant descriptor in defining the cell damage.
On removal of zeta potential as a descriptor, the model quality
decreases. Predictions from one model as a descriptor for
another model are made to fill the data gap or to determine the
missing values. This approach is similar to the imputation meth-
odology, which creates a model embedded within another
model. Instead of using dummy variables for quantitative
prediction, a useful imputation method can predict various types
of inputs. It is worth noting that many existing works utilize
imputation techniques [41]. In QSAR studies, it is not unusual
to use a model-derived prediction as a descriptor for the devel-
opment of other models or for prediction when the endpoint has
been tested under different experimental or varying conditions
(as in the case of interspecies modeling). This approach is reli-
able and aims to establish a correlation between different condi-

tions to fill the data gap.

Chemical read-across analysis

The developed QSPR (PLS) model for dataset 2 provided eight
descriptors that were utilized for read-across predictions. Three
similarity-based prediction methods, namely Euclidean dis-
tance (ED)-based, Gaussian kernel (GK) similarity-based, and
Laplacian kernel (LK) were employed. Upon optimizing the
dataset, it was concluded that the read-across based on the
Euclidean distance (RA-ED) function outperformed the others,
as shown in Table 1. The Read-Across v4.0 software [42] was
utilized for this work. After performing RA, the resultant Q%l
increased from 0.65 to 0.766.

Interpretation of the descriptors

The periodic table descriptor Lx/nO stands for the total metal
electronegativity in a specific metal oxide relative to the num-
ber of oxygen atoms. This descriptor takes into account the
crucial role of oxygen atoms in causing cell damage. With
regard to the cell damage endpoint, this descriptor has a nega-
tive effect, indicating that an increase in the number of oxygen
atoms compared to the electronegativity sum results in a lower
ratio of the descriptor. Thus, a high concentration of oxygen
atoms in the metal oxide can expedite the oxidative damage
process, leading to the production of more reactive oxygen
species (ROS) and causing more cell damage. CoO NPs show
that a high Yx/nO value (1.88) leads to less cell damage
(—4.38), whereas a low value (Lx/nO = 0.77) leads to more cell
damage (—2.50) as observed for TiO, NPs. The production of

ROS can enhance the catalytic activity of Fenton/Fenton-like
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Table 1: Results for read across prediction using different similarity-based approaches.

Feature combinations Hypothesis  Hyper parameters

Statistical parameters

o Y Distance ~ Similarity g2 Q2 MAE RMSEP
threshold threshold ” f2
Model 2 RA-ED 1.75 1.75 1 0 0.766 0.765 0.177 0.252
gsZ M??X NPs) RA-GK 0.764 0.763 0.178 0.254
escriptors
P RA-LK 0724 0724 04195 0274

(7 LVs)

reactions, but can also result in cellular damage [16]. ROS can
break down the basic components of the cell, including DNA,
proteins, and lipids. ROS can cause double-strand breaks in
DNA by converting guanine to 8-oxoguanine. This conversion
can lead to mispairing with adenine, resulting in transversion
mutations. Proteins can also be damaged when their amino acid
side chains are oxidized by ROS. Exposure of lipids to ROS can
result in lipid peroxidation, which can cause cell damage and

generate reactive by-products that further damage the cell.

The second-generation periodic table-based descriptor
“sq_sum_epsilon/N” (Le/N)? stands for the sum of electronega-
tivity of the atoms of the metal oxide, which is calculated based
on the electronegativity count (¥e) of the oxides, scaled by the
number of atoms:

Z € = €metal * Vmetal + €oxy * Noxy‘

Here, €meal and €oxy are the electronegativity count of metal
and oxygen atoms, respectively, and Nyeta; and Noxy are, re-
spectively, the number of metal and oxygen atoms. The posi-
tive coefficient of the descriptor in Equation 2 indicates that an
increase in electronegativity favors the rise in cell damage as in
CuO nanoparticles, where a high (Xe/N)? value (9.93) causes
more cell damage (—2.87), whereas SbyO3 nanoparticles with
low electronegativity ((Le/N)? = 0.018) are less toxic (—4.625).
Because of the high electronegativity, the atoms pull electrons
from their neighboring atoms or molecules, leading to the de-
velopment of an electrostatic bond with proteins in biological
systems. The high electronegativity also influences the forma-
tion of metal cations. The increase of catalytic properties of
metal cations enhances the toxicity through the generation of
ROS, causing damage to cell membranes [16]. The high electro-
negativity helps in removing electrons from molecules, produc-
ing free radicals. Free radicals are unstable and highly reactive.
These short-lived radicals are unable to leave the sub-cellular
location where they are generated without being reduced,
leading to oxidative damage [43]. The presence of high-electro-
negativity metals in the cellular membrane can lead to the

leakage of cellular content [22].

The “D1eal” descriptor signifies the total number of metal
atoms in the MeOx NP composition. An increase in the number
of metals can have a detrimental effect on cells by impacting
ROS generation. The positive coefficient of the D1e¢q
descriptor indicates that an increase in the metal fraction in
MeOx NPs causes more cell damage (—2.63) as observed in
Fe304 NPs (D1eta1 = 3). In contrast, CoO NPs with a low
metal fraction (D1yeta) = 1) nanoparticles cause less cell
damage (—4.375). Metal ions can generate reactive hydroxyl
radicals, resulting in oxidative damage to proteins. Moreover,
they can bind non-specifically to amino acid residues and
replace existing metal ions at active sites of enzymes, leading to
abnormal protein folding. Protein aggregation diseases are a
type of neurodegenerative diseases that occur when proteins
lose their structure and are deposited in the brain. These
diseases are the most common type of neurodegenerative
diseases. Many of these structures are highly toxic to cells [44].
The folding of proteins also causes damage to the immune
system, because certain structures do not induce the production
of antibodies [45].

The descriptor “Metal alpha” (ayyetq)) defines the core environ-
ment of the metal. This descriptor represents the ratio of the
number of core electrons to the number of valence electrons.
The Metal alpha descriptor describes the electron density of the
metal. This descriptor is calculated using Equation 3:

A metal = A 3

Here, A is (Zmetal = Zvmetal)/Zymetal and p i 1/(PNpeta1), Where
Zmetal 18 the atomic number, Zymeta) Stands for the valence elec-
trons of the metal, and PN ¢, stands for the periodic number in
the periodic table. The negative coefficient of the descriptor
signifies the low electron affinity of the metal oxide to accept
electrons. This means that the metal has a propensity of having
a cationic charge, which leads to the catalytic power of metal
cations. For example, in WO3, the metal alpha value is 7.2 and
cell damage is —4.57. In contrast, Al,O3 with a metal alpha
value of 1.66 causes higher damage to cells (-2.8). Metal

cations are more harmful than normal nanoparticles. This is
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because their electropositivity and inherent toxicity increase
significantly with atomic weight. In addition, the formation of
metal-ligand bonds has a direct impact on the metal’s toxicity.
Furthermore, it is a well-established fact that each metal has an
affinity constant for various ligands, which means that most
metal cations can form stable complexes with a wide variety of
ligands, further increasing their potential toxicity.

In the field of physical chemistry, the zeta potential is a crucial
parameter that measures the surface charge of particles relative
to their size. In colloidal systems, the zeta potential is widely
used as an indicator to reflect the stability. It is important to
note that NPs with higher positive charges can be more harmful
than those with higher negative charges. Moreover, positively
charged NPs interact more significantly with cells, leading to
greater cell damage. Another crucial factor to consider is that
NPs with a higher zeta potential, regardless of their charge, are
more easily absorbed by cells due to the electrostatic interac-
tion between dispersed particles and the effective electric
charge on the surface of the NPs [40]. This feature is particular-
ly relevant to their biological activity, especially their ability to
bind to and be absorbed by cell membranes. For instance,
Cr;03 NPs have a high zeta potential (2130 mV) and a high cell
damage propensity, whereas Y,0O3 NPs with a low zeta poten-
tial (—23 mV) cause less damage to cells (—4.5). The increase in
zeta potential enhances the accumulation of nanoparticles on the
surface of cells. The intensity of accumulation determines the
toxicity of the nanoparticles. The concept of zeta potential plays
a vital role in adhesion to the hydro—water interface and solid
surfaces, providing an idea about the viability and permeability
of the cell membrane under stress. As most of the cell surface
carries a negative charge, metals with higher zeta potential can
easily enter the cell and increase the production of ROS. Also,
they can have a mechanical effect on the membrane, leading to
depolarization of the membrane and cell damage.

The “Electron Active M” descriptor is a representation of the
number of electrons that an active metal possesses. Active
metals are known for their quick and robust reactions owing to
the electron arrangement in their structure. These metals contain
free electrons in their outermost shell that can readily create a
cation by interacting with other atoms and initiating a chemical
reaction. The delocalized electrons can easily interact with
macroproteins, leading to the acceleration of damage to the bio-
logical membrane. A positive coefficient of Electron Active M
indicates more oxidative stress and more damage to the cell due
to an increase in free radicals. WO3 has a high descriptor value
of 74 resulting in high cell damage (—2.8), while CryO3 NP has
a low descriptor value of 24 leading to low cellular damage
(—4). Transition metals are capable of forming coordinate com-

plexes with the imidazolyl group of histidine. These metal ions
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are redox-active and can play a crucial role in the production of
ROS within the cell. The reduced forms of these redox-active
metal ions are involved in the Fenton reaction, which generates
hydroxyl radicals from hydrogen peroxide. Similarly, the
Haber—Weiss reaction involves the oxidized forms of redox-
active metal ions and superoxide anions, which generate the
reduced form of the metal ion. This reduced form can then be
coupled to Fenton chemistry to produce hydroxyl radicals. ROS

further accelerate the damage of the cell.

“Valence” (V) is a factor that contributes to cell damage. It indi-
cates the number of electrons in the outermost shell of an atom
that are available for chemical bonding and is similar to other
descriptors that provide information about free electrons. The
insights obtained from the developed model 2 strongly suggest
that an increase in valence (7) leads to a decrease in cell damage
(—3), as observed in MnO3 NPs. This is supported by the nega-
tive regression coefficient of the descriptor. Conversely, a low
valence (2) leads to greater cell damage (—2), as seen in ZnO
NPs. Atoms with fewer electrons in their outer shell tend to lose
them and become metal cations, which can damage cells [16].
Cations aid in the transportation of metal ions across the cell
surface by interacting with its negatively charged surface.
Unfortunately, this interaction can lead to DNA damage
through processes such as delocalization, redox chemistry, and
the generation of ROS.

Our research aimed to examine how the time of exposure to
metal oxide affects cell damage, regardless of other physio-
chemical properties of MeOx NPs. Our findings indicate that
exposure time plays a crucial role in cell damage. Prolonged
exposure times increase the damaging potential. For instance,
exposing cells to WO3 NP for 7 h resulted in a cell damage
score of —2.75. In contrast, exposure to Yb,O3 for only 1 h
resulted in a score of —3.5. These results demonstrate the signif-
icance of considering exposure time when evaluating the poten-
tial risks of metal oxide exposure. When living organisms are
exposed to NPs for an extended period of time, inflammatory
conditions can occur that lead to physical, muscular, and neuro-
logical degeneration, or increased intensity of oxidative stress.
This happens because longer exposure times enhance the toxici-
ty mechanism of NPs. In contrast, short-term exposure does not
affect significantly the cells. NPs can induce oxidative stress by
impairing antioxidant defenses in humans when they are chroni-

cally exposed to NPs.

Importance of the zeta potential as a

descriptor
The developed QSPR model without zeta potential descriptor
shows R? = 0.47 and Q(ZLOO) = 0.34, which is well below the

desired acceptance criteria. The obtained results indicate that
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the fitting and robustness of the developed model without the
presence of the zeta potential descriptor is unsatisfactory.
Therefore, to achieve the fit and predictive power of the model,
we included the zeta potential descriptor along with the other
seven descriptors. In the presence of zeta potential, the statis-
tical quality and internal validation metrics increased (R% = 0.62
and Q(ZLOO) = 0.54) showing the stability and predictive ability
of the model.

Utilization of the metal oxide cell damage

knowledge for cancer treatment

NPs have shown immense potential in treating various diseases
owing to their small size and high surface-to-volume ratio,
which makes them effective drug delivery systems. Metal NPs
can lead to greater signal amplification, greater sensitivity, and
higher detection. However, NPs with properties that generate
ROS can increase cell damage. In cancer cells, rapid prolifera-
tion leads to an imbalance of oxygen, abnormal structure, and
blood supply, making the tumor microenvironment (TME)
prone to hypoxic conditions [46]. Insufficient oxygen reduces
ROS generation, which decreases the efficacy of oxygen-de-
pendent therapies, such as photodynamic therapy (PDT),
chemodynamic therapy (CDT), and radiation therapy. The
information derived from the positive contribution of the
D1metal descriptor (model 2) draws attention to the fact that
metal oxides are good candidates for generating oxidative stress
in cells. The Yx/nO descriptor suggested a higher oxygen

Easy removal of
outer shell electrons

Electrostatic interaction with proteins leading
to denature and abnormal synthesis

Easy formation of
cationic form

Beilstein J. Nanotechnol. 2024, 15, 297-309.

requirement for damaging the cells. It indicates that a higher
fraction of oxygen in the metal oxide nanoparticles can increase
the sensitivity to PDT. Furthermore, transition metals can cata-
lyze Fenton/Fenton-like reactions [47], generating highly oxida-
tive species that can kill tumor cells. The electronegativity of
the metal oxides helps the NPs in crossing the cell membrane.
The formation of metal cations can also affect the pH value of
the cell and increase the catalytic properties of metal oxides,
thereby increasing ROS generation. Tumor cells have a mecha-
nism for dealing with hypoxia, acidosis, and high glutathione
(GSH) levels, which promote drug resistance, especially for
ROS-dependent drugs (Figure 5). However, metal oxides can
change the TME conditions by supplying oxygen and suppress-
ing hypoxia-inducible factor 1 and CD39/CD73 in T cells,

which reduces the immunosuppression effect of tumors.

Comparison with previously published

literature

This study successfully develops a QSPR model with a cell
damage endpoint that uses the zeta potential value as a
descriptor. The descriptor was calculated using another model
that used the zeta potential as the endpoint (Y-response) for its
QSPR model development. The QSPR models were developed
with simple periodic table-based descriptors that do not depend
on size or any other experimental conditions. These descriptors
are easy to calculate, less expensive, and can be calculated by

anyone without the need for expert personnel.

Light source

Exited singlet state

0, OH
l Low T ’
| ¥ High 0

‘ Ground singlet state
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X -
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- ,," Malignant organelle destruction
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...\ oxidative stress

Figure 5: Interpretation of descriptors with respect to cell damage (endpoint) in cancer cells.
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The study provides in-depth knowledge about the properties and
causes of toxicity of nanoparticles using simple regression-
based models. It is important to note that a direct comparison
with a previous study by Toropova [27] is not possible because
of the different data division methods (five random splits), the
use of different types of descriptors (optimal nano-descriptors),
and the dissimilar modeling methods (Monte Carlo method).
However, it is clear that the statistical metric values for the de-
veloped model in the present study are similar to those of the
previous study (the best-split results only shown) as presented
in Table 2. Furthermore, we have proposed an effective mecha-
nism to treat cancerous cells with the cell-damaging properties
of MeOx NPs.

Conclusion

The impact of nanoparticles on cell membranes has been thor-
oughly examined through nanotoxicological research and in
vitro modeling [48,49]. While the toxicity endpoint is a well-
explored topic, it is crucial to investigate non-fatal endpoints
such as cell damage. The zeta potential is a widely used param-
eter to characterize the properties of nanoparticles. However,
cell membrane damage is influenced by various factors, includ-
ing exposure time and dose. Thus, this study aimed to establish
a relationship between the properties of nanoparticles and their
toxicity, with a focus on cell membrane damage.

The study was divided into two parts. The first part involved
modeling nanoparticles against the zeta potential to determine
the features that can alter their properties. The second part
focused on the elements that can influence toxicity and damage
to the cell membrane. Both the QSPR model for the zeta poten-
tial and another model against cell damage were developed
using periodic table-based descriptors. The QSPR model (zeta
potential) was able to predict the zeta potential for MeOx NPs
without experimental values. The developed models showed
good predictivity and robustness, confirming their effectiveness.

The features obtained from the models suggest that surface
charge and electronegativity play a role in altering the zeta
potential. Additionally, an increase in oxygen count, electroneg-
ativity, formation of cationic charge, and an increase in zeta

potential can influence cell membrane damage. Based on these

Table 2: Comparison of the statistical parameters with a previous study.

Sl. no. Q2 RZain
current study 0.538 0.621
previous study (best split) [27] 0.486 0.512

Beilstein J. Nanotechnol. 2024, 15, 297-309.

findings, the authors propose that the damaging power of metal
oxide nanoparticles can be harnessed in treating cancerous cells.
This study not only identifies the features required to enhance
the properties of nanoparticles but also provides knowledge for
treating cancerous cells through cell damage techniques. The
study can pave the way for researchers to use nanoparticles in
clinical practice with confidence.
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Abstract

Neurodegenerative diseases are characterized by slowly progressing neuronal cell death. Conventional drug treatment strategies
often fail because of poor solubility, low bioavailability, and the inability of the drugs to effectively cross the blood-brain barrier.
Therefore, the development of new neurodegenerative disease drugs (NDDs) requires immediate attention. Nanoparticle (NP)
systems are of increasing interest for transporting NDDs to the central nervous system. However, discovering effective nanoparti-
cle neuronal disease drug delivery systems (N2D3Ss) is challenging because of the vast number of combinations of NP and NDD
compounds, as well as the various assays involved. Artificial intelligence/machine learning (AI/ML) algorithms have the potential
to accelerate this process by predicting the most promising NDD and NP candidates for assaying. Nevertheless, the relatively
limited amount of reported data on N2D3S activity compared to assayed NDDs makes AI/ML analysis challenging. In this work,
the IFPTML technique, which combines information fusion (IF), perturbation theory (PT), and machine learning (ML), was em-
ployed to address this challenge. Initially, we conducted the fusion into a unified dataset comprising 4403 NDD assays from
ChEMBL and 260 NP cytotoxicity assays from journal articles. Through a resampling process, three new working datasets were
generated, each containing 500,000 cases. We utilized linear discriminant analysis (LDA) along with artificial neural network
(ANN) algorithms, such as multilayer perceptron (MLP) and deep learning networks (DLN), to construct linear and non-linear
IFPTML models. The IFPTML-LDA models exhibited sensitivity (Sn) and specificity (Sp) values in the range of 70% to 73%
(>375,000 training cases) and 70% to 80% (>125,000 validation cases), respectively. In contrast, the [FPTML-MLP and IFPTML-
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DLN achieved Sn and Sp values in the range of 85% to 86% for both training and validation series. Additionally, IFPTML-ANN

models showed an area under the receiver operating curve (AUROC) of approximately 0.93 to 0.95. These results indicate that the

IFPTML models could serve as valuable tools in the design of drug delivery systems for neurosciences.

Introduction

Over time, there has been a significant shift in global dietary
habits and lifestyle standards. Poor dietary choices, irregular
eating patterns, extended working hours, and sedentary behav-
iors have contributed to a trend towards an unhealthy lifestyle
[1]. This shift has resulted in a rise in chronic degenerative
diseases among the elderly population. These diseases encom-
pass a diverse range of conditions characterized by the gradual
deterioration of bodily structures and functions [2,3]. Although
the exact causes leading to these diseases remain unidentified,
there is evidence that oxidative damage plays a crucial role in
the progressive neuronal cell death, particularly through the
generation of reactive oxygen and nitrogen species [4,5]. In this
regard, Alzheimer’s and Parkinson’s diseases are the most
severe and untreatable conditions. Conventional drug treatment
methods, such as acetylcholinesterase inhibitor drugs, often en-
counter obstacles due to their inadequate solubility, limited
bioavailability, and inability to effectively penetrate the
blood—brain barrier (BBB) [6]. Therefore, there is an urgent
need to focus on the advancement of novel neurodegenerative
disease drugs (NDDs) [7,8]. The major obstacle encountered by
NDDs is the selectivity of the BBB, which limits the number of
therapeutic substances able to reach the brain in order to induce
a positive effect. Recently, many efforts have been made to
develop systems that facilitate the passage of NDDs through the
BBB.

Interestingly, nanoparticle (NP) systems are gaining increasing
interest among the possible nanomedicine strategies for NDD
transport to the central nervous system (CNS) [9,10]. For
simplicity, we are going to call them nanoparticle neuronal
diseases drug delivery systems (N2D3Ss). N2D3Ss have the
ability to protect NDDs from chemical and enzymatic degrada-
tion, direct the active compound towards the target site with a
substantial reduction of toxicity for the adjacent tissues, and
help the NDDs to pass physiological barriers, increasing
bioavailability without resorting to high dosages [5,11]. There-
fore, researchers are studying and developing new treatment ap-
proaches that use N2D3Ss for diagnosis and treatment [12-15].

Also, over the last few years, artificial intelligence/machine
learning (AI/ML) models have been applied successfully to
solve problems in different disciplines, especially in the inter-
face of chemistry and ND research [16-19]. In this regard, we
consider AI/ML to be helpful in the development of N2D3Ss to

select the most efficient combination of NP and drug, taking

into account properties regarding chemical absorption, distribu-
tion, metabolism, excretion, and toxicity (ADMET), and the bi-
ological activity regarding NDs [20]. Nevertheless, there is rela-
tively limited experimental data on NPs reported in the scien-
tific literature in comparison to drugs, which increases the diffi-
culty of designing systems based on AI/ML techniques.

An additional essential downside of developing N2D3Ss with
AI/ML techniques is the great complexity of the data to be
explored. As a result, N2D3S development by the additive ap-
proach requires an AI/ML technique to achieve multioutput and
multilabel classification [21-24]. In addition, the AI/ML tech-
nique includes a pre-processing step to perform information
fusion (IF) of the preclinical NDD assay and NP cytotoxicity
datasets. Nevertheless, most of the AI/ML methods reported to
date only consider the structural/molecular descriptors of the
NDDs or NPs as input. Therefore, these methods exclude com-
pletely non-structural parameters, specifically experimental
conditions of the assays, in order to list NDD or NP labels.
Consequently, the resulting model cannot predict multioutput
properties and/or labels such as different organisms or cell lines
[25-37]. Sizochenko et al. reported a new methodology for NP
safety estimation in different organisms [38]. Predicting NP
safety instead of biological activity has been the objective of
other studies as well [37,39].

As a new strategy to tackle this problem, Gonzalez-Diaz et al.
have developed IFPTML, a multioutput, and input-coded multi-
label ML method, which stands for information fusion (IF) +
perturbation theory (PT) + machine learning (ML) algorithm
[40]. In recent investigations, the IFPTML model has shown to
be a powerful tool in molecular sciences and NDD research for
the analysis of big datasets that include both structural and non-
structural parameters. Application examples are drug screening,
protein targeting, the prediction of coated-NP drug release
systems [41-49], multitarget networks of neuroprotective com-
pounds for a theoretical study of new asymmetric 1,2-rasagiline
carbamates [50], a TOPS-MODE model of multiplexing neuro-
protective effects of drugs, an experimental/theoretical study of
new 1,3-rasagiline derivatives potentially useful in neurodegen-
erative diseases [51], as well as QSAR and complex networks
in pharmaceutical design, microbiology, parasitology, toxi-
cology, cancer, and neurosciences [52]. Furthermore, this new
model also has been used for very similar systems to this

research work such as NP systems, taking into account NP
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structure and coating agents, synthesis conditions of NPs and
loaded drugs, cancer co-therapy drugs, or assay conditions [53-
57]. Here we developed IFPTML models for the proposal of
N2D3Ss containing NDD and NP components.
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Results and Discussion

In order to build the IFPTML models we carried out the steps
shown in Figure 1, which shows the general workflow of all
computational procedures in this study. For a better under-
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Figure 1: Detailed information processing workflow of the IFPTML models. Steps 2.1 and 2.2: data collection (ChEMBL dataset of NDDs and NP
cytotoxicity dataset); step 2.3: data pre-processing and information fusion (NP and NDD assays); step 2.4: definition of objective and reference

functions; step 2.5: calculation of the perturbation theory operator (PTO).
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standing of all steps, we enumerated them with 2.1, 2.2., and so
on.

Figure 2 shows the connections regarding methodology and
used databases to our previous publications. For each PTML
model development, data download/compilation, data curation,
and so on were carried out separately by researchers. First, the
database of antineurodegenerative drugs (ADs) was down-
loaded from ChEMBL by Alonso and coworkers. These
researchers employed this database to create advanced predic-
tive models known as multitarget or multiplexing QSAR. These
models are designed to forecast both the potential neurotoxicity
and neuroprotective effects of drugs across various experimen-

Beilstein J. Nanotechnol. 2024, 15, 535-555.

tal setups, including multiple assays, drug targets, and model
organisms [41]. Later, Romero Durén et al. enriched the AD
database and constructed multitarget networks of neuroprotec-
tive compounds to study new asymmetric 1,2-rasagiline carba-
mates. These authors developed a TOPS-MODE model to
analyze the multiple neuroprotective effects of drugs and to
conduct experimental/theoretical studies on new 1,3-rasagiline
derivatives potentially useful in neurodegenerative diseases
[50]. Additionally, Romero Duran et al. expanded the AD data-
base to develop artificial neural network (ANN) algorithms.
These models were designed to forecast how ADs interact with
targets within the CNS interactome [58]. Speck-Planche et al.
compiled manually a database of NPs from the literature. They
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: — | : P byM d :
u ¢
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Figure 2: Connection of the current IFPTML model to other PTML models developed by our research group.
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constructed a QSAR model to investigate multiple antibacterial
profiles of NPs under diverse experimental conditions. Further-
more, Ortega-Tenezaca et al. enriched the NP dataset and de-
veloped a PTML model for the discovery of antibacterial NPs
[59]. Diéguez et al. expanded the NP database and developed a
PTML model in order to design antibacterial drug and NP
systems [10].

In this study, we utilized the IFPTML model to investigate
N2D3Ss, encompassing assays of ADs and preclinical assays
for NPs. To achieve this, we conducted the IF of AD and NP
databases, curated the data, combined the objective and refer-
ence functions, and calculated the PTO.

NDDs ChEMBL dataset

First, we collected the data of preclinical assays for NDDs from
the ChEMBL dataset (see step 2.1. in Figure 1) [60-62]. This
dataset contained 4403 preclinical assays for 2566 NDDs
(unique drugs), that is, approximately 1.71 assays for each drug.
The information downloaded from ChEMBL included discrete
variables cg; used to specify the conditions/labels of each assay.
These variables are cqq, the biological activity parameter, cqi,
the target protein involved in NDs, cqy, the cell line for NDD
assays, and cq3, the model organism. Each one of these assays
included one out of n(cqg) = 46 possible biological activity pa-
rameters (e.g., ECsg or Kj (nM)). They also involved some of
the n(cq) = 21 target proteins, n(cqp) = 7 cell lines (SH-SY5Y,
CHO-K1, HEK293, PC-12, CHO, HEK-293T, and HuT78), and
n(cq3) = 7 model organisms (Homo sapiens, Rattus norvegicus,
Mus musculus, Cavia porcellus, Canis lupus familiaris, Maca-
cafas cicularis, and Caenorhabditis elegans). The information
downloaded from ChEMBL also included another set of
discrete variables used to codify the nature/quality of data.
These variables are cq4, the type of target, cqs, the type of assay,
c46, the data curation, c47, the confidence score, and cg4g, the
target mapping. Specifically, the target types are n(cqq) = 6
(single protein, organism, tissue, non-molecular target, and
ADMET), and the assay types are n(cqs) = 3 (binding, func-
tional, and ADMET). In addition, data curation has n(cg4g) = 3
different values (auto-curation, expert, and intermediate), the
confidence scores are n(cq7) = 4 (9: direct single protein target
assigned, 1: target assigned is non-molecular, 0: default value,
that is, target assignment has yet to be curated, and 8: homolo-
gous single protein target assigned) and the target mapping is
n(cqg) = 3 (protein, non-molecular target, and homologous pro-
tein). Furthermore, this database included the molecular
descriptor Dgx = [Dq1, D42, Dg3] in order to define the chemi-
cal structure of the NDD compound. Specifically, we used two
types of molecular descriptor for the i-th compound, namely
Dy = logarithm of the n-octanol/water partition coefficient
(LOGP;) and Dy, = topological polar surface area (PSA;). The
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detailed information of this dataset is given in Supporting Infor-
mation File 1 (datasheet “ChEMBL”).

NP cytotoxicity dataset

Simultaneously, we downloaded the data of preclinical assays
for the cytotoxicity of NPs from different sources (see step 2.2.
in Figure 1). We selected 62 papers from the scientific litera-
ture databases Pubmed and SciFinder [63-65]. This dataset
included 260 preclinical assays for 31 unique NPs. Therefore,
the number of assays for each NP is about 8.39. Moreover, the
data covered a huge range of properties of NPs such as mor-
phology, physicochemical properties, coating agents, length,
and time of assay. These properties were defined as discrete
variables cp; applied to identify the conditions/labels of each
assay. Then, we enumerated all particular conditions of each
assay as a general vector ¢yj = [Cp1, €p2s Cn3s-- -5 Cymax]- These
variables are ¢, the biological activity parameter, ¢y, the cell
line, c¢yp, the NP shape, cj3, the measurement conditions, and
cn4, the coating agent. Each of these assays involved at last one
out of n(cyp) = 5 possible biological activity parameters (CCsy,
EC50, IC50, LC5, and TC5). They also include n(c,;) = 53 cell
lines (e.g., A549 (H), RAW 264.7, and Neuro-2A (M)) and
n(cp2) = 10 NP shapes (spherical, irregular, slice-shaped,
needles, rods, elliptical, pseudo-spherical, polyhedral, pyra-
midal, and strips). In addition, they contain n(c,3) = 8 NP mea-
surement conditions (dry, HoO, DMEM, RPMI, 1% Trion
X-100/H,0, H,O/TMAOH, egg/H,0, and HyO/HMT) and
n(cpg) = 16 coating agents (UC, PEG-Si(OMe)s, PVA, sodium
citrate, 11-mercaptoundecanoic acid, PVP, propylamonium
fragment, undecylazide fragment, CTAB, N,N,N-trimethyl-3(1-
propene) ammonium fragment, potato starch, N-acetylcysteine,
CMC-90, 2,3-dimercaptopropanesulfonate, 3-mercaptopropane-
sulfonate, and thioglycolic acid). The full information of this
dataset is shown in Supporting Information File 1 (datasheet
“NP”).

DNDS pair resampling

IF processing of biological parameters

First, we described and acquired the objective value in order to
design the IFPTML model for N2D3S. We defined the target
function by applying the vectors of descriptors for all cases Dy
to use as the input variable in the ML model. The target func-
tion is commonly achieved by a mathematical conversion of the
original theoretical or observed feature of the scheme under
analysis [66-68]. In this IFPTML model, it includes two groups
of observed values, specifically vji(cqo) and vy;(cpo). In addition,
it contains two types of input vectors, Dgy; and Dy, for the
preclinical NDD and NP assays, respectively. Moreover, in this
dataset was a large number of different biological parameters
cqo and c¢po. For example, there are properties such as half the

maximum inhibitory concentration (ICsq (nM)), half the
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maximum effective concentration (ECsy (nM)), or the lethal
concentration of a substance for an organism (LCsqg (nM)).
Another difficulty is that the majority of vij(cqp) and vy;(cyo)
values collected are numbers with decimals. Furthermore, in
order to acquire the optimum N2D3S, we prioritize some prop-
erties and deprioritize others. In this context, we introduced a
“desirability” parameter to tackle this problem

The desirability value was established as d(cqp) = 1 or d(cyg) =
1 when the value of vj;(cqp) or vyj(cpo) needs to be maximized,
otherwise d(cqp) = —1 or d(cyo) = —1. The different NDD and
NP properties/characteristics possess a large number of designa-
tions or labels cqg and ¢y, respectively, and increase the unre-
ability of the data, making it more laborious to build a regres-
sion model. For example, in context of a specific case, biologi-
cal activity parameters cqg With d(cqg) = 1 are Bmax (fmol/mg),
the total number of receptors expressed in the same units, activ-
ity (%), and Cp (nM). Whereas parameters with d(cqg) = —1 are,
for example, EC5q (nM), ICsy (nM), and Imax (%). To address
this problem, we used a cutoff value to divide AD and NP
assays into favorable and non-favorable assays. It is worth men-
tioning that using a cutoff is a common practice in drug
discovery processes. As a result, acquiring the final target func-
tion, the pre-processing of all observed vjj(cqo) and vy;(cpo)
values is crucial in order to remove or reduce imprecisions.
Eventually, IF processing of the parameters vij(cqo) and vyi(cno)

enabled us to obtain a target function of the N2D3Ss.

We also used a cutoff to rescale the parameters of vjj(cqo)
and vyj(cpp) to obtain the Boolean (dummy) functions
Sfvij(cao))obs and f(vyj(cnp))obs- These values were obtained as
Sfij(cqo))obs = 1 if vij(cqp) > cutoff and d(cqp) = 1, or vii(cqp) <
cutoff and desirability d(cqg) = —1; otherwise f(vjj(cqp)) = 0.
Similarly, f(vyj(cno)obs = 1 if vyj(cnp) > cutoff and d(cyp) = 1, or
vpj(cno) < cutoff and d(cyp) = —1; else f(vij(cqo), Vnj(cno)) = 0.
The values f{vii(cqo))obs = 1 and f(vpi(cnp))obs = 1 mean to have
a positive desired effect of both NDDs and NPs. As a result, the
target function was described as f(vij(cdo), Vnj(cno))obs =
Sij(ca0)obs f(Vnj(€no))obs- Therefore, the outcome of the IF
scaling f(vij(cd0), Vnj(cno))obs is determined by the i-th NDD
compound and the n-th NP measurement conditions. The
remaining cases, f(vij(cdo), Vnj(cno))obs = 0, indicate that at least
one of the abovementioned conditions fail.

Definition of objective and reference
functions

IF phase for combining the references

After we obtained the target function, the next step is to
describe the input variables of the IFPTML model. Input vari-
able for this model is the reference function f(vij(cq4o),

Vnj(€no)ref- The function f(vij(cqo). Vnj(cno)ref plays an impor-
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tant role because this function characterizes the expected proba-
bility f(vij(cdo), Vnj(cnoDrer = P(fVij(€do)s Vnj(cno)rer = 1) for
achieving the required level of activity for a specific property
acquired from well-known systems. IFPTML uses values from
well-known systems or subset systems as reference. Afterwards,
this model includes the effect of different deviations (perturba-
tions) of the query function from the reference function. Ac-
cordingly, f(vij(cd0), Vnj(cno))ref can be considered a function
related to observed (not predicted) outcomes. In the above
section, we mentioned the step of IF scaling to transform the
original vj(cqg) and vyj(cyp) values into f(vij(cdo))obs and
S(vyj(eno))obs functions. When we acquire f(vij(cqo))obs and
S(vnj(cno))obs for all cases in our dataset, the next step is to quan-
tify each of the positive outcomes n(f(vij(cdo))obs = 1) and
n(f(vyj(cno))obs = 1). Subsequently, in order to obtain the refer-
ence or expected functions (Figure 3), we divide the previous
values by the entire number of cases for the NDD and NP
systems separately. We describe these functions as f(vij(cdo))ref
= p(f(vij(can)obs = 1) = n(f(vij(cgo))obs = 1)/n(cqo); and
f(an(Cn()))ref :p(f(vnj(cno))obs =D= n(f(an(cnO))obs = 1)/n(cn0)j-
In this context, we can calculate the reference function directly
to recognize the probability products for both subsystems
f(Vij(ch)s an(CnO))ref = P(f(vij(cdo)’ an("nO))obs =1 =
P(fvij(can)obs = D p(fvyj(cno))obs = 1). It is worth mentioning
that the usage of the reference function at this point is
another representation of the IF (combination) of NDD and NP

datasets.

PTO calculation

IFPTML N2D3S data analysis

As we mentioned in the previous section, we acquired the
results of many cytotoxicity preclinical assays of different NPs
[69,70]. Complementarily, we obtained the data of preclinical
assays for NDDs from the ChEMBL database [60,71,72]. It
included the calculation of the vectors Dy and Dy, of structural
descriptors for all NPs and NDDs. In addition, we constructed
the vectors ¢;; and ¢y; in order to list each label and assay condi-
tion for all preclinical assays of NPs and NDDs. Subsequently,
we obtained the values ADg(cgj) and AD y(¢y;) of the respec-
tive moving average deviation PTOs.

The NDD vector lists each element Dy = [Dgqy, Dgp]. Precisely,
these elements are the NDD structural descriptors, which have
enabled the development of various strategies to characterize
and classify the structure of potential bioactive molecules [73].
These structural descriptors are Dy = logarithm of the
n-octanol/water partition coefficient (LOGP;) and Dy, = topo-
logical polar surface area (PSA;). In contrast, the cytotoxicity
NP vector lists the elements as Dy, = [Dy1, D2, Dn3, Dna, Dis,
Dy6, Dy, D, Dno, Dni10s Dni1> Dni2> Dni3s D14, Dais, Daies
Dq17, Datg, Dnt9, Dnool. Specifically, they are D,;; = NMUn
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Cutoff
. - Observed value Desirability (d) e 1
hEMBL Vij(ch) ij\*~d0//obs
d(cgo)=1, vij(cao) > cutoff 1(vi(Ca0))obs
PubMed ) Vuj(cno)

SCIFINDER lf

d(cao)= -1, vij(cqo) < cutoff 1

d(cpo)=1, Vyi(cyo) > cutoff

d(cu0)= -1, an(cnO) < cutoff

Otherwise=>0

fij(cao))rer = P(f (Wij(€ao))ops = 1) =

f(vnj(cdo))ref = p(f(vnj (cno))ops = 1) =

n(f(vij(€ao))ops) = 1

n(cao0);

n(f(vnj(cno))obs) =1

n(cno)j

f(vij(Cdo)' Unj(CnO))ref = p(f(vij(cdo))obs =1) p(f(vnj(cno))obs =1

Figure 3: Reference function calculation workflow.

(number of monomer units), D, = Lnp (NP length), D;3 = Vnu
(NP volume), Dy4 = Enu (NP electronegativity), D5 = Pnu (NP
polarizability), D¢ = Uccoat (unsaturation count), D7 = Uicoat
(unsaturation index), D,g = Hycoat (hydrophilic factor), D9 =
AMR coat (Ghose—Crippen molar refractivity), Do =
TPSA(NO)coat (topological polar surface area using N,O polar
contributions), D11 = TPSA(Tot)coat (topological polar sur-
face area using N,O,S,P polar contributions), D1, = ALOGP-
coat (Ghose—Crippen octanol/water partition coefficient),
D13 = ALOGP2coat (squared Ghose—Crippen octanol/water
partition coefficient (logP*2)), D,14 = SAtotcoat (total surface
area from P_VSA-like descriptors), D15 = SAacccoat (surface
area of acceptor atoms from P_VSA-like descriptors), D16 =
SAdoncoat (surface area of donor atoms from P_VSA-like
descriptors), D17 = Vxcoat (McGowan volume), D,g =
VvdwMGcoat (van der Waals volume from McGowan volume),
Dy19 = VvdwZAZcoat (van der Waals volume from the
Zhao—Abraham-Zissimos equation), and D5y = PDIcoat
(packing density index).

PT data preprocessing

Apart from the vectors Dy, and Dy, the IFPTML study takes
into account all vectors cg; and ¢,; as parts of the non-numerical
experimental conditions and labels for both NDD and NP
preclinical assays. We calculated the PTOs of the NDD and NP
preclinical assays including this additional information. We
used Equation 1 and Equation 2 in order to obtain the moving
average (MA) PTOs of NDDs and NPs. The PT model begins

with the expected value of a well-known activity and adds the
effect of different perturbations/variations to the system. Conse-
quently, the model includes two different input variables,
namely the reference or expected-value function f(v;j)ef and the
PT operators ADy(c;). Specifically, they are applied for account-
ing structural and assay information on NDDs and NPs. In addi-
tion, the PTOs AD(Dg;) and AD(Dy) label structural and/or
physicochemical characteristics of NDDs and NPs on the vari-
ables AD(Dyy) and AD(Dyy), respectively. Furthermore, the
PTOs AD(Dgy) and AD(Dyy) classify biological assay data of
NDDs and NPs with the variables (D(Dgy)cqj) and (D(Dpp)enj)»
respectively. (D(Dgy)) and {D(Dy)) are the representations of
the average operator for counting all cases with the equivalent
subset of methodology conditions ¢g; and ¢y;, respectively. Ac-
cordingly, they ought to provide exact values for a particular
assay with minimum one altered element in methodology condi-
tions of the vectors cg; or ¢,;. In this regard, they can specify
which assay we are referring to [53-57]. Another kind of PTOs
involved in this model is the NDD-NP coating agent moving
average balance (MAB) PTO AAD(D¢,1, Dcaz, Dar)
(Equation 3). The MAB PTO takes into consideration the like-
nesses between the information on NDDs and the NP coating
agent. Furthermore, PTOs centered straightly on MA and/or
linear and non-linear conversions of MA have been applied for
NDD and NP development in previous research work
[49,55,56]. The MAS is another way of expressing the combi-
nation of IF and PT cumulative procedures of NDD and NP
datasets.
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AD(de):D(de)‘<D(de)cdj> (1)
A0(Dy)=D(0)~(P(0w), ) @

AAD(Dgy 1, Degar Dgg) = AD (Dgy) = [AD (D) + AD (Do) | (3)

IF phase and proposal of training and validation
series subsets

To develop the ML models, each of the sample cases are
assigned to either the training (subset t) or validation (subset v)
series. The process of assignment ought to be random, illustra-
tive, and stratified [74]. Because of the nature of this combina-
tory system, our sampling also has to take into account the IF
scaling procedure. Initially, we obtained the NDD activity
dataset from the open database ChEMBL, which has been
compiled from primary published literature. The preclinical NP
cytotoxicity assays were acquired from journal articles. After-
wards, we prepared each case as the following labels cqg, cqy,
Cd2> €d3 Cdd» €d5> Cd6> €d7> €8s €n0> Cnl» Cn2s Cn3» and cpq. These
cases were organized by ranking the labels alphabetically from
A to Z (as we mentioned before, they are non-numeric vari-
ables in nature). The preference order of the labels on the proce-
dure of ranking was cgg — Cp9 = €41 — Cnl — €42 — Cn2— Cd3
— cp3. In other words, we organized the cases first by cqq, then
by cp, and so forth. This preference order considers the IF step
by interchanging labels from AD and NP datasets. Afterwards,
we assigned three quarters of the cases to subset t and the
remaining quarter to subset v. This random assignment im-
proves the likelihood that nearly all categories of individual
labels are denoted by subsets t and v (stratified or proportional
random sampling). In addition, this boosts the possibility that
practically all cases for each label are in a distribution of 3/4 in
subset t and 1/4 subset v, known as representative sampling. It
is worth mentioning that the 75% and 25% proportion between
training and validation is the most used one in big data analysis
[74].

IFPTML-LDA model

The IFPTML N2D3S model utilizes as input variables the PTOs
specified in the previous section to codify information of the
putative N2D3Ss with their corresponding subsystems NDD
and NPs. Combining objective function f{vij, vpj)obs and refer-
ence function f(vjj, vpj)rer and adding the IF PTOs AAD(D.y,
D¢3, Dgy), we obtained the output function f(vjj, vyj)calc- This
function carries out dataset crosscut classification of NDD and
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NP information. The generic equation for the IFPTML linear
model is the following (Equation 4):

f(vl/vvn/ )calc =4a + a 'f(Vijaan )ref
k=kimax »J=/max
+ Y @ ;-AD(Dy)
k=1,j=1
k=kmax>J=/max “)
+ Y ;-AD(Dy)
k=1,j=1

Cdi

Cnj
k:kmax ,J=Jmax
+ > ak’j-AAD(D,a-,D,m)

Cdi>Cni
k=1,/=1 4

Generalities for IFPTML model training and
validation series

In many big data systems, the linear discriminant analysis
(LDA) model is the most commonly used tool to seek the pre-
liminary model because of the simplicity of this technique. In
this regard, within this model we applied a forward stepwise
(FSW) [75] process that can select automatically the most
essential input variables for N2D3Ss. We obtained all results by
using the software STATISTICA 6.0 [74]. Afterwards, we
applied the expert-guided selection (EGS) heuristic [76] in
order to retrain the LDA method using the most crucial parame-
ters selected by the FSW process along with other missing
aspects. All IFPTML models were obtained by calculating dif-
ferent statistical parameters, specifically sensitivity (Sn), speci-
ficity (Sp), accuracy (Ac), chi-square (%), and the p-level
[77,78].

IFPTML-LDA vs cross linear model

In the Introduction section, we indicated the use of ML ap-
proaches as a promising strategy in order to tackle practical
problems of nanotechnology, such as reducing the number of
experiments [79-84]. In this paper the IFPTML method was
used to combine preclinical assays of NDDs and NPs. Speck-
Planche et al. described multiple IFPTML approaches regarding
toxicity and drug delivery of NPs with a large number of
species under a wide variety of experimental conditions. How-
ever, this study did not take into account the NDDs [54,69,85].
In contrast, Nocedo-Mena et al. reviewed an IFPTML method
to explore the activity of NDDs against numerous species and
under different assay conditions; but this research they did not
consider NPs as part of the system [86]. Accordingly, these
models could not take into consideration both components
(NDD and NPs) of the N2D3Ss. In our group, Dieguéz-Santana
et al. for the first time applied successfully the IFPTML tech-
nique to study the combination of multiple antibacterial drugs

and preclinical assays on the cytotoxicity of NPs [10]. In this
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paper, we used this new approach to develop complex N2D3Ss
containing NDDs and NPs, taking into account, among other
things, NDD assays, NP types including coating agents, and NP
morphologies. To complete the IF scaling process, we calcu-
lated the objective function f(vij, Vyi)obs = f(Vi)obs(Vnj)obs- The
main purpose of this function is to increase the effect of
certainty and maintain the homogeneity of scales. Once the
PTOs were obtained, we applied ML methods so as to fit
Sijs vnjdobs and to achieve the IFPTML models. As indicated in
the previous section, we classified the preclinical NDD assays,
¢gj, onto two different partitions (subsets) of variables ¢y and cyy.
The partition ¢y defines the biological characteristics; it
contains, among other things, cqg = biological activity parame-
ters of NDDs (e.g., ICs, K;, potency, and time) and c4; = type
of proteins involved in the NDs. The partition ¢y defines the
data quality; it contains, among other things, cqq = type of target
and cgs = type of assay. For the preclinical NP cytotoxicity
assays, ¢;; forms only one partition ¢y, which describes its
nature and involves ¢,y = biological activity parameters of the
NPs (e.g., CCsqp, IC59, LC5, and ECsq), ¢, = cell lines, cpp =
NP morphology, and c,;3 = NP synthesis conditions. In addition,
we acquired two types of IFPTML-LDA model for designing
the N2D3Ss. On the one hand, we obtained the IFPTML-LDA
by calculating the PTOs ADy(c;) as the difference between the
average value (Dy(c;)) and the partition ¢, within of their own
set. As result, the best IFPTML-LDA model found is as follows
(Equation 5):

I (Vag g )Calc = —4.46387+16.30655  (Vgy vy )
+0.00003- ADPSA (cy )

ref

1y

+0.00675- ADVnpu (e ®)

nj

+0.00431- ADVxcoat ey )

1y

—0.00537 - ADVvdwMGcoat ( ey )nj

Nipain = 375000; xz =24273.63; p-level <0.05

On the other hand, we tested the possibility to improve the
results of statistical parameters for the IFPTML-LDA algo-
rithm. To this end, we calculated the PTOs ADy(c;) by per-
forming all possible combinations among the average values
(Di(¢))) of both vectors Dy and Dy with each partition. As a
result, we obtained three different combinations of crossing
PTOs for each sample, one for NDDs (AD g (cqyp)) and two for
NPs (ADy(¢ep) and 4D (cyy)). For simplicity, they are named
“IFPTML-LDA with cross” (see more details in Figure 1). The

Beilstein J. Nanotechnol. 2024, 15, 535-555.

best IFPTML-LDA found with the cross model is the following
(Equation 6):

f(vdij,vnij )CalC = —4.44505+14.28457 - f(vd,.j,vm.j)
+0.00216- ADPSA (¢;)

ref
onj

+0.00241- ADt (¢eyyy )

Cl‘lj

CIlj

+0.16549 - ADVnpu (e )

an

—0.02389- ADVxcoat (¢ )

Cl’lj

+0.04902 - ADVvdwMGcoat ¢y )

an
+2.040821- ADEnpu (¢ )Cd
n

+0.03229- ADAMRcoat (¢jp )

Cdn

Nygin =375000; 2 =43587.01; p-level < 0.05

rain

The output function f(vg;j, Vnjj)calc Provides a real numeric value
that will probably be applied to counting N2D3Ss. This func-
tion was acquired by calculating the objective function
Svij(cq0)s vnj(cno))obs With the ML method making use of the
PTOs. The characteristic of the IFPTML models was defined by
the statistical parameters sensibility (Sn), specificity (Sp), accu-
racy (Ac), chi-square test ()(2), and p-level [74]. The results
summary collected in Table 1 contains the statistical parame-
ters for the best models found (Equation 2) for each sample
(standard IFPTML-LDA and IFPTML-LDA with cross) are
collected in Table 1. The statistical parameters obtained for both
methods were in the accuracy range described for the classifica-
tion model of ML algorithms [77,78]. The standard IFPTML-
LDA contains all indispensable variables for defining the NDD
structures and the most significant parameters for NPs, such as
morphology, size, and assay conditions, among other things. In
the IFPTML-LDA with cross system, we included not only all
essential variables but also two crossing PTOs. These new
PTOs were chosen by the FSW method, which can select the
most influential variable in the system under study.

The IFPTML-LDA model in this paper had Sn and Sp values of
70%—73% in both training and validation series. The IFPTML-
LDA with cross model showed significantly higher Sn and Sp
values of 70%-80% in both series. By only adding two PTOs to
the standard model, the IFPTML-LDA Sp value was improved
by almost 7% in the training/validation series. However, the Sp
and Sn values of the “with cross” model are slightly unbal-
anced in comparison with the standard model; yet, the Sp and
Sn values remain approximately constant within the same

training and validation series.
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Table 1: IFPTML-LDA N2D3S model results summary.

Data Stat. Param.
Sample  Set Subset Param. (%)
1 t 0 Sp 73
1 Sn 71
v 0 Sp 73.3
1 Sn 70.3
2 t 0 Sp 70
1 Sn 62.1
v 0 Sp 70
1 Sn 63.1
3 t 0 Sp 70.6
1 Sn 62.3
v 0 Sp 70.7
1 Sn 62.7
Avg. t 0 Sp 71.2
1 Sn 65.1
v 0 Sp 71.3
1 Sn 65.4

Linear vs non-linear IFPTML models

In order to obtain the artificial neural network (ANN) model,
we used the same PTO variables as in the LDA model. As an al-
ternative to the non-linear models, we created the ANN by
using the same software STATISTICA. The ANN can also be
used as a new strategy to confirm and validate the linear
hypothesis. Both are comparable because the linear neural
network (LNN) techniques are analogous to LDA models and
they are linear equations. Accordingly, the IFPTML-LNN
model is a useful tool to assess the degree of strength of the
linear relationship between PTOs and the N2D3S objective
function. The IFPTML-LNN models in this work showed lower
Sn and Sp values of 64%—-65% in the training and validation
series, compared with the IFPTML-LDA models, see details in
Table 2.

Analogous to the IFPTML-LDA model, the values of the statis-
tical parameters Sp and Sn are considerably balanced and stay
steady when comparing training and validation series. Also, we
obtained two types of non-linear models, the multilayer percep-
tron (MLP) and the depth learning network (DLN). The MLP is
made up by seven PTOs as input layer, a hidden layer with
eleven neurons, and an output layer. The most notable differ-
ence is that the DLN involves two hidden layers, each one with
ten neurons. Both MLP and DLN showed high Sp and Sn
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Without cross Param. With cross
Subset predicted Subset predicted
0 1 (%) 0 1
255190 94292 72.2 252534 97042
7398 18120 74.4 6517 18907
85369 31125 72.3 84183 32315
2522 5984 73.9 2218 6284
244548 105076 79.5 277907 71717
9528 15848 70.1 7584 17792
81640 35009 79.7 92929 23720
3081 5270 70.7 2451 5900
246551 102809 79.6 277921 71439
11616 15974 70.1 7668 17972
82370 34174 79.6 92726 23818
3828 5300 70.4 2500 5956
248763 100726 771 269454 80066
9514 16647 71.5 7256 18224
83126 33436 77.2 89946 26618
3144 5518 71.7 2390 6047

values of 85%—-86% in the training and validation series. If we
compare the linear IFPTML-ANN model with non-linear
models based on the results of statistical parameters, we can
confirm that N2D3S is a non-linear system. Another result ob-
tained in the development of the ANN is the area under receiver
operating characteristic (AUROC) (Figure 4) [74]. The AUROC
curve values are 0.93-0.94 for both MLP and DLN models in
the training and validation series. The AUROC values of the
non-linear models are remarkably different from the random
(RND) curve with AUROC = 0.5 [74].

Robustness analysis of IFPTML models

The design of the N2D3Ss involve the combination of a large
amount of data on preclinical assays of NDDs and NPs.
Because of the nature of this big data system, we divided the
information fusion dataset into three samples. In the previous
section, we discussed the best model obtained for IFPTML-
LDA, IFPTML-LDA with cross and IFPTML-ANN. In this
section, a robustness analysis for the three samples is given (see
Table 3). In general, the number of cases (n) used in training
and validation series for all models presented the lowest stan-
dard deviation (SDV), which indicated that most of the data in a
sample tend to be clustered near its mean [87]. In contrast, the
high value of SDV for the DLN model indicates that the data

was distributed over a wide range of values. In addition, all
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Table 2: The best result of IFPTML-ANN N2D3Ss models found.

Sample IFPTML-ANN Models? Subset Stat.  Val. f(vj(cqo), vnj(cno)) Observed AUROC
(%) Pred. 1 0
01 LDA 7:7-1:1 t Sp 0 73.0 94272 255178 —
Sn 1 71.0 18057 7367
v Sp 0 73.3 31125 85319 —
Sn 1 70.3 5980 2522
FSTW + EGS
MLP 7:7-11-1:1 t Sp 0 86.1 300836 48740 0.943
Sn 1 85.8 3610 2181
v Sp 0 86.1 100278 16220 0.934
Sn 1 86.2 1173 7329
BP96b
DLN 7:7-10-10-1:1 t Sp 0 85.8 299942 49634 0.945
Sn 1 85.8 3621 21803
v Sp 0 85.9 100103 16395 0.933
Sn 1 86.3 1168 7334
BP100,CG20b
LNN 7:7-1:1 t Sp 0 65.0 227184 122392 0.744
Sn 1 64.7 8971 16453
v Sp 0 65.1 75788 40710 0.733
Sn 1 64.1 3055 5447
Pl

models presented similar SDV values in the same training and ~ SDV for Sn (>4) in the training and validation series. However,
validation series. Interestingly, the LDA model showed signifi- the SDV values for the LDA cross model were contrary to those

cantly lower values of SDV for Sp (>1), compared with the of LDA, with lower SDV values for Sn and higher values for
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Figure 4: AUROC exploration of IFPTML-MLP and IFPTML-LNN models.

Sp. It is worth mentioning that both MLP 1 and LNN models
yielded statistical parameters close to its mean, in other words
these models are robust. Furthermore, using the IFPTML-ANN
model, we also obtained AUROC values as results. After doing
the robustness analysis, we can confirm that all AUROC values
for all ANN models are robust. In addition, the AUROC graphic
(Figure 4) gives evidence to this because of the similarity of the
curve shapes.

The results reveal the strength of the linear hypothesis. Never-
theless, the statistical parameters of the obtained linear model
are not satisfactorily at all. As a result, in the IFPTML-LDA
with cross model, we enlarged the number of input variables
from seven to nine. Thus, we did not obtain substantial change.
Therefore, we tested more complex non-linear models so as to
improve the Sp and Sn values. The IFPTML-MLP 7:7-11-1:1
model, containing seven input variables in the input layer and
eleven neurons in the hidden layer, yielded the best statistical
parameters of Sn and Sp values (Table 3). The IFPTML-DLN
model, which involves two hidden layers, yielded similar result
as IFPTML-MLP 7:7-11-1:1.

Taking into account all the aforementioned results, we can
consider both IFPTML-MLP and IFPTML-DLN as the best
models with remarkably higher values of Sp and Sn of
85%—-86% and AUROC values of 0.93-0.94. However, the
DLN model is more complex and yields only a non-significant
improvement of statistical parameters in comparison with the
MLP model. Thus, we can confirm that N2D3Ss require the

MLP model. This selection is supported by the principle of
parsimony, prioritizing the simplest explanations among all
possible ones [88]. In Table 4, an input variable sensitivity anal-
ysis concerning NDDs, NPs, and the corresponding subsystems
are shown for the IFPTML-ANN model. The IFPMTL-LNN
model involves almost all significant parameters according to
the EGS criteria. The majority of parameters provide a substan-
tial influence on the sensitivity = 1 [74]. In many cases, the
value of sensitivity analysis is slightly higher with a sensitivity
of 1.00-1.08. Nevertheless, the EGS perspective fails in the
selection of ADPSA(cy) and ADt(cyyp) variables. In this regard,
the IFPTML-ANN model suggests that those variables do not
affect any model. In contrast, the IFPTML-LNN yielded the
lowest value of sensitivity of 1.00—1.13, which would underline
the need for a complex model in N2D3Ss. The DLN model
involves the essential variables in accordance with the EGS
criteria; however, they have remarkably higher sensitivity
values of 0.96-2.03. The MLP yielded the highest values of
sensitivity between 1.13 and 2.57.

IFPTML-LDA for N2D3S simulation

In this section, we employed the IFPTML-LDA technique to
calculate the probability values for some selected cases of
N2D3Ss. The linear model was chosen for its simplicity and the
slight improvement of the non-linear model. The value of prob-
ability p(N2D3Sj;)cgj.cnj Was obtained for N2D3Ss, created by
the combination of the i-th AD; and the n-th NP,,, which are
likely to have a desired level of biological activity under both

assay conditions ¢q; and ¢,;. This simulation experiment
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Table 3: Result summary of N2D3Ss alongside average of three samples and standard deviations.

Model t
Sp Sn n
AVG LDA 71.2 65.1 375000
LDA cross 771 71.5 375000
MPL 1 85.1 85.0 375000
DNL 79.2 79.0 375000
LNN 65.0 64.9 375000
Model t
Sp Sn n
SDV LDA 1.587 5.082 0
LDA cross 4.244 2.483 0
MLP 1 1.266 1.217 0
DLN 8.489 8.568 0
LNN 0.100 0.153 0

Table 4: IFPTML-ANN model input variable sensitivity analysis for different subsystems with their corresponding variables.

LNN MLP
Sub-systems Variables
t \Y t
NDDs&NP f(CdOanO)ref 1.02 1.02 1.32
NDDs ADPSA(c)) 0 0 0
ADt(cy) 0 0 0
ADLpp(cyy) 1.00 1.00 1.14
NP ADVnpU(Cm) 1.00 1.00 2.22
ADVycoat(Ch) 1.00 1.00 1.96
ADV\gwMGgoat(Cii) 1.13 1.13 2,57

involved in total Nnop3s = 88 systems vs a total of Nypps =
123 drugs. Many of these drugs are NDDs with known anti-
neurodegenerative activity, generally for Alzheimer and
Parkinson diseases. Some of these NDDs are approved by the
Food and Drug Administration, while others have been shown
to be active in several assays. In addition, the simulation also
contained cytotoxicity assays against multiple cell lines, the
type of NPs, their coating, and the time of each assay. In this
context, we calculated a total of Ny = NNpps-Nnp = 22-218 =
4796 values of probability, which were able to predict success-
fully putative N2D3Ss.

Figure 5 depicts the results in a three-color scale according
to the value of probability: the green section indicates high
probability (0.61-0.98), yellow low-to-middle probability
(0.17-0.60), and red very low probability (<0.17). Assays that

v AUROC
(tv)
Sp Sn n
71.3 65.4 125000 —
77.2 7.7 125000 —
85.1 85.1 125000 0.937/0.925
79.2 79.3 125000 0.893/0.879
65.1 64.9 125000 0.748/0.737
v AUROC
(tv)
Sp Sn n
1.739 4.277 0 —
4.244 1.940 0 —
1.940 1.102 0 0.010/0.010
8.584 8.727 0 0.069/0.071
0.153 0 0 0.005/0.003
DLN
v t v t v t v
1.33 1.46 1.45 1.25 1.24 1.38 1.40
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1.13 1.08 1.08 1.08 1.08 1.60 1.59
222 092 092 1.06 1.05 1.24 1.25
1.98 1.45 1.47 1.45 1.48 199 2.03
2.54 1.44 1.43 1.24 1.24 1.91 1.90

have not been reported before, are represented in the original
dataset to a very low extent, or whose combination of NDDs
and NPs are meaningless were illustrated in white color to avoid
an overestimation of results. The results of the [IFPTML-LDA
model pointed out some N2D3Ss as promising combinations
for future additional assays. The resulting N2D3Ss shown in
Figure 5 involve twenty different NDDs. The first ten are
1 = clozapine, 2 = galantamine, 3 = levodopa, 4 = apomorphine,
5 = fiduxosin, 6 = beagacestat, 7 = memoquin, 8 = mesodihy-
droguairetic acid, 9 = tarenflubil, and 10 = huperzine A. The
other ten NDDs are 11 = guanidinonaltrindole, 12 = semagace-
stat, 13 = huprine X, 14= carproctamide, 15= tacrine, 16 =
tramiprosate, 17 = preladenant, 18 = piracetam, 19 = istrade-
fylline, and 20 = rivastigmine. These systems include the
following coating agents: PEG = polyethylene glycol, PVP =

polyvinylpyrrolidone, PPF = propylammonium fragment, and
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PEG-Si(OMo);
PEG-Si(OMe), NCIH441 (H)

PEG-Si(OMe);  BMSC (M)
58 Si0, PEG-Si(OMe) HEK293(H) 72
50 Si0, PEG-Si(OMe) RAW 2647 (M) 72
60 S0, PEGSi(OMe) BMSC(H) 72
61 S0, PEGSi(OMe) HepG2(H) 72
62 Si0, PEG-Si(OMe)  AS49 (H)

63 Si0, uc

64 S0, uc

65 Si0, uc BMSC(M) 72
66 Si0, UC  RAW2647(M) 72
67 Si0, uc HaCaT (H) 4
68 Si0, uc BMSC(H) 72
6 Si0, uc NCIH441 (H) 72
70 - Sio, uc HepG2 (H) 72
71 Sio, uc A549 (H) 7
72 Si0, uc A549 (H) 72
73 Sio, uc A549 (H) 48
74 Si0, uc HaCaT (H) 24
75 Si0 uc 313 (M) 7
76 __Si0, uc A549 (H) 24
77 "0, UC Neuro2A (M) 48
78TO, uc AS49 (H) 24
79 Y305 UC HEK293 (1) 24
80 ZnFe,0;  UC WISH(H) 72
81 ZnFe,0;  UC WISH (H) 48
82 ZnFe,0;  UC WISH (H) 24
83~ Zn0 uC A549 (H) 2%
84 Zn0O uc HeLa (H) 2
85 Zn0 uc HepG2 (H) 24
86 _ Zn0 uc HUVECs 24

Figure 5: IFPTML-LDA N2D3Ss experiment simulation.

UAF = undecylazide fragment. The symbol UC = uncoated
represents non-coated N2D3Ss. Interestingly, a high value of
prediction involves PEG-Si(OMe); as NP coating with
P(N2D3Sip)edj.enj = 0.80-0.99 for the majority of NDDs.
Another important factor that may affect the value of probabili-
ty is the type of NP. It appears that metal oxide compounds
such as SiO, and TiO; along with PEG-Si(OMe);NP coating
for almost all NDDs are likely to be promising for further

assays. Double metal oxide compounds such as CoFe,O4
and ZnFe,O,4 obtained intermediate probability values

P(N2D3Sip) e en = 0-17-0.70 against TK6 (H) and WISH (H).

In general, the least advantageous combinations are metal
NPs with all NDDs, which give low values of probability
(p(N2D3Sip)cdj.cnj = 0.02-0.35). It is worth mentioning that all
predictions carried out by this method should be used with
caution and require experimental corroboration. The potential
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utility of the IFPTML method is to speed up experimental
studies and to provide inexpensive preliminary results for a
large database of N2D3Ss. This approach offers an efficient and
powerful tool to direct experimental research as an alternative to
tedious trial-and-error tests.

In addition, the determination of the probability value distribu-
tion in a generic sense for the unique pairs of NP cytotoxicity
assays and NDDs was carried out. For this, we depict the sur-
face scatterplot of probability values against histograms of NP
length along with NDD hydrophobicity (Figure 6). Generally, a
third of the probability values remains in the dark green zone,
which represents promising N2D3Ss for further assay. It is
worth mentioning that most of the cases (white dots) are hydro-
phobic drugs (on the left of the graph). This feature is one of the
most important physicochemical properties for drugs in order to
cross the BBB [89]. High lipophilicity can contribute to exces-
sive distribution volumes, increased metabolic liability, and
lower unbound drug concentration in the plasma and/or brain; it
may also negatively affect pharmaceutical properties, in particu-
lar solubility [90]. Most NDDs of this database are in the PSA;
range of 60-120 A2. Stephen et al. suggested that CNS drugs
should have a PSA value below 90 A2 for a decent BBB perme-

Beilstein J. Nanotechnol. 2024, 15, 535-555.

ability, among other physicochemical characteristics such as
number of hydrogen bond donors, molecular size, and shape,
with smaller contributions from hydrogen bond acceptors [89].
Although this type of graphic is clearly a simplification of the
whole database, it offers simple guidelines for researchers
concerned with designing NDD compounds or libraries with
improved probability of BBB penetration. The size of the vast
majority of NPs for NDD delivery in this database is in the
range of 70-115 nm. Recently, Chithrani et al. [91] have
demonstrated that size, coating, and surface charge of nanopar-
ticles have a crucial impact on the intracellular uptake process.
Similarly, Shilo et al. have investigated the influence of NP size
on the probability to cross the BBB by using the endothelial
brain cell method. The results indicated that the intracellular
uptake of NPs strongly depends on the NP size. This character-
istic has a direct impact on biomedical applications. When NPs
serve as carriers for drug delivery through encapsulation, a
larger NP size (70 nm) is needed. However, when NPs serve as
carriers by binding drug molecules to their surface, a larger free
surface area is required; therefore, the optimal size would be
20 nm [92]. This principle suggests that a high number of the
NPs in our database are proper drug delivery carriers by drug

encapsulation.
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Figure 6: Probability surface scatter plot representing the deviation of NP length considering the partition ¢y, which describes the NP nature and
includes cno = NP biological activity parameters (e.g., CCsg, ICs0, LCs0, and ECsq), ch1 = cell lines, ch2 = NP morphology, and c,3 = NP synthesis
conditions. (AL (cyyj)y;) along with the deviation of NDD hydrophobicity (APSA(c))q)) taking into account the partition ¢}, which includes the biological
characteristics, for example cqo = NDD biological activity parameters (e.g., ICs, Ki, potency, and time) and c4¢ = the type of protein involved in NDs.
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Thus, the design of new N2D3Ss based on multiple preclinical
assays of NP cytotoxicity and NDDs has been carried out suc-
cessfully. This database involves a high structural and biologi-

cal diversity, which may help to distinguish active from non-

Table 5: IFPTML analysis of experimentally tested N2D3S compounds.

Drug?® NP Cqo = activity ~ ADPSA(c))
Metal/n.a.

2234684 Ag Time (h) 0.57
2376472 Ag Time (h) 4.30
2234683 Ag Time (h) 0.57

Metal oxide/n.a.

3769671 TiOo Cp (nm) 0
Levodopa TiOp Time (h) -35
Sch-58261 TiOo Time (h) -1
2180030 TiO» ECo (nm) 0
Levodopa TiOp Time (h) -35
Sch-58261 TiO» Time (h) -1
2234689 TiO» Time (h) 0.3
Morin TiOo Time (h) 0

Metal/elliptical

Datiscetin Ag Time (h) 0.3
2234993 Ag Time (h) 0.4
1240582 Ag Time (h) -1.7
1241456 Ag Time (h) -2
Metal oxide/elliptical

2180030 Yb203 ECQO (nm) 0
Levodopa YboOg3 Time (h) -35
3769671 CeOs Cp (nm) 0
Metal oxide/needle

3747225 LaxO3 Time (h) 2.8
3769671 LaxO3 Cp (nm) 0
Meta/rod

3218426 Au Activity (%) -2.0
Congo red Au Inhibition (%) 3.6
3218189 Au Activity (%) -2.0
3580774 Au Activity (nm) 0
Metal oxide/pyramidal

PGAf TiO» Time (h) -18
Apomorphine  TiOz Time (h) -17
1801682 TiO2 Time (h) -20

Beilstein J. Nanotechnol. 2024, 15, 535-555.

active N2D3Ss. Experimentally, the IFPTML-LDA method pre-
dicted with high probability p(N2D3S;,)¢dj.cnj > 0-81 all exam-
ples reported in Table 5. The results support our initial premise

that the IFPTML additive approach is able to carry out an

Obs.P Pred.c pd L (nm)®
1 1 0.88 12.50
1 1 0.88 12.50
1 1 0.88 12.50
1 1 0.94 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.93 56

1 1 0.81 36.8
1 1 0.81 36.8
1 1 0.81 36.8
1 1 0.81 36.8
1 1 0.90 62.1

1 1 0.90 62.1

1 1 0.90 44.8
1 1 0.89 65.8
1 1 0.88 65.8
1 1 0.93 37.8
1 1 0.93 37.8
1 1 0.93 37.8
1 1 0.93 37.8
1 1 0.91 6.5

1 1 0.91 50

1 1 0.91 50
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Table 5: IFPTML analysis of experimentally tested N2D3S compounds. (continued)

Metal oxide/irregular

3350757 TiO2 Time (h) -53 1 1 0.93 21
3747225 TiOo Time (h) 2.8 1 1 0.93 21
1243007 TiOo Time (h) -0.7 1 1 0.92 21
3769671 TiO2 Cp (nm) 0 1 1 0.92 21
Levodopa TiOo Time (h) -35 1 1 0.92 21
Metal Oxide/pseudo-spherical

2376474 CeOo Time (h) 3.9 1 1 0.89 8
3747225 CeOo Time (h) 2.8 1 1 0.89 8
3769671 CeO» Cp (nm) 0 1 1 0.89 8
Levodopa CeOo Time (h) -35 1 1 0.89 8
Sch-58261 CeO» Time (h) -1.0 1 1 0.89 8
Metal/spherical

2151181 Au EDsg (mg/kg) -0.4 1 1 0.94 42.9
1222303 Au EDsg (mg/kg) -0.4 1 1 0.94 42.9
2181911 Au Activity (%) 1.6 1 1 0.90 42.9
3397881 Au Inhibition (%) -1.1 1 1 0.90 42.9
3785241 Au Inhibition (%) -1.5 1 1 0.90 42.9
3947919 Au Activity (%) 1.0 1 1 0.90 42.9
3817925 Au Inhibition (%) -0.7 1 1 0.90 42.9
3612821 Au Inhibition (%) 0.3 1 1 0.90 42.9
2159510 Au Activity (%) -0.8 1 1 0.90 42.9
2415095 Au Inhibition (%) 0.5 1 1 0.90 42.9
436483 Au Inhibition (%) 1.5 1 1 0.90 42.9
2159511 Au Activity (%) -1.2 1 1 0.90 42.9
2349470 Au Activity (%) -1.8 1 1 0.90 42.9
3127906 Au Activity (%) 0.6 1 1 0.90 42.9
Propidium Au Inhibition (%) 0.4 1 1 0.90 42.9
Metal oxide/spherical

3218188 SiOp Activity (%) 91 1 1 0.97 12.5
3087679 SiOp Inhibition (%) 69 1 1 0.97 60
3233831 SiOp Inhibition (%) 58 1 1 0.97 44
510384 SiO» Ki (nm) -30 1 1 0.97 47.5
81999 SiO» Ki (nm) -40 1 1 0.97 36.8
3218425 Sie Activity (%) 91 1 1 0.97 70
55401 SiO» Ki (nm) -31 1 1 0.97 37
3233829 SiO» Inhibition (%) 58 1 1 0.97 36.8
3087678 SiO» Inhibition (%) 69 1 1 0.97 3.4
3769671 SiO» Cp (nm) 0 1 1 0.99 5.5
2234689 SiO» Time (h) 37 1 1 0.99 36.8
2234690 SiO» Time (h) 37 1 1 0.99 16.4

aChEMBL ID or drug name; the name of the drug is depicted if it is available, otherwise the ChEMLID code of the drug is indicated, which can be
easily consulted by accessing the CheMBL website. °Class. Obs: f(vij, Vnj)obs- °Class. Pred: f(vij, viyj)pred- dp: probability calculated as
P(N2D3Sin/Cgj, Cr)pred = 1/(1 + exp[-f(vjj, Vnj)caicl- ®L (nm): NP length. fPGA: phloroglucin aldehyde.
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appropriate recognition of N2D3Ss involving additive and

synergic cases.

Conclusion

N2D3Ss are a promising and plausible tool to help conven-
tional NDDs cross the BBB. AI/ML algorithms can be instru-
mental in expediting the process of designing N2D3Ss. Howev-
er, scientific literature lacks a sufficient number of real N2D3S
experimental cases that characterize complex applications. In
this context, the IFPTML model, encompassing both NDDs and
NP models, could offer a practical solution. This approach has
successfully addressed the challenges posed by the vast number
of combinations of NP and NDD compounds and the wide
range of conditions to be tested in N2D3S discovery. The
results of the IFPTML-LDA and IFPTML-ANN techniques
showed satisfactory performance, achieving Sp values of
73.0%-86.1% and Sn values of 70.0%—-86.2% in the training
and validation series, comprising 375,000 and 125,000 cases,
respectively. Moreover, both models are easily accessible and
provide logical solutions for predicting putative N2D3Ss. The
most successful outcome was observed using non-linear
models, specifically, the IFPTML-MLP model, which displayed
Sn and Sp values of 85.8-86.2% and an AUROC value of 0.94
in the training and validation series. Furthermore, the analysis
of three N2D3Ss samples yielded low SDV values, confirming
the robustness of both IFPTML-LDA and IFPTML-ANN. In
summary, the [IFPTML models offer an initial solution for a
rapid and less arduous pre-screening of putative N2D3Ss. This
approach is widely utilized to minimize resource costs and save
experimental time that would otherwise be spent on testing all
possible combinations.
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Abstract

Quantitative structure—activity relationship (QSAR) models are routinely used to predict the properties and biological activity of
chemicals to direct synthetic advances, perform massive screenings, and even to register new substances according to international
regulations. Currently, nanoscale QSAR (nano-QSAR) models, adapting this methodology to predict the intrinsic features of nano-
materials (NMs) and quantitatively assess their risks, are blooming. One of the challenges is the characterization of the NMs. This
cannot be done with a simple SMILES representation, as for organic molecules, because their chemical structure is complex, in-
cluding several layers and many inorganic materials, and their size and geometry are key features. In this review, we survey the lit-
erature for existing predictive models for NMs and discuss the variety of calculated and experimental features used to define and
describe NMs. In the light of this research, we propose a classification of the descriptors including those that directly describe a
component of the nanoform (core, surface, or structure) and also experimental features (related to the nanomaterial’s behavior,
preparation, or test conditions) that indirectly reflect its structure.

Introduction

Computational techniques of statistical nature such as quantita-  matical models relating the structure of a series of molecules to
tive structure—activity relationships (QSARs) can help to under- a biological/physicochemical property or activity, mostly
stand the intrinsic features of nanomaterials (NMs) and quanti-  through the use of statistical tools. Once a model has been
tatively assess their potential risks for human health and the constructed, it can be used to predict the property or biological

environment [1]. QSARSs consist in the construction of mathe-  effect of new structures quickly and at a very low cost in com-
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parison to experimental approaches. Furthermore, when they
are developed complying strictly with the rules established by
the Organization for Economic Co-operation and Development
(OECD) for their scientific validation, QSARs are accepted for
regulatory purposes, thus ensuring their applicability at the
regulatory level by international bodies such as the European
Chemicals Agency (ECHA) [2,3].

Unlike QSAR models for discrete organic molecules, QSARs
for NMs are still at an early stage, mainly because of the lack of
data available regarding their generation [4], but also because of
the intrinsic difficulty to characterize the structure of NMs
[5-7]. The first described nano-QSAR model is from 2009 [8],
but the number of relevant nano-QSAR models is growing sig-
nificantly because new nanoscale descriptors are found [6], and
more information on NMs is progressively generated, opening
new ways of improving nano-QSARs. This is an active field
and, recently, a comprehensive review about this topic and the
future perspectives was published [7]. Scientific, industrial, and
national institutions should harmonize their efforts for the de-
velopment and application of nano-QSARs at the regulatory
level [9].

From a regulatory point of view, ECHA recognizes the com-
plexity of NMs and the fact that the same chemicals could lead
to different nanostructured substances, which, despite sharing
the chemical composition, should be considered different mate-
rials in terms of their activity and properties. ECHA uses the
term “nanoform” to specify a particular substance in the NM
field for questions such as their registration and risk evaluation.
A nanoform is defined by having particles with a specific com-
position and with structural properties (such as size and shape)
in a defined range. In this way, it differs from more general
labels used for NMs (e.g., “Au nanoparticles”) to refer to a
family of materials combining different sizes and/or coating
materials that can have different properties. Hence, ECHA
defined a set of relevant physicochemical parameters to iden-
tify and register nanoforms, including six compulsory require-
ments, namely, composition, impurities, surface treatment func-

tionalization, size, shape, and surface area [10].

One of the challenges in nano-QSAR modelling, and in the
modelling of NMs in general, is the definition and the identifi-
cation of what a single NM is. Discrete organic molecules can
be fully identified and characterized by their chemical structure,
often represented by a SMILES code [11]. This approach is
insufficient for NMs, as a key component of their definition is
their size. NMs are defined as materials with at least one of the
dimensions (including internal features) on the nanoscale
(1-100 nm). Figure 1 shows some types of NMs according to

their dimensions [12].
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Figure 1: NMs with different kinds of shape. The number of dimen-
sions next to the names refers to those that exceed the nanoscale.

Several studies show that the nanoscopic structure of the nano-
particles or their aggregates affects the behavior of NMs, and
more particularly their toxicity. The influence of the size and
the structure of nanoparticles or their aggregates on their toxici-
ty has been recently reviewed [13]. From now, we will use the
label “nanostructure” to refer to these properties, in comparison
with the term “structure” referring to the chemical composition.
The nanostructural differences among nanoparticles can be
defined by different means: (i) direct measurements of their
structure (e.g., their size), (ii) comparison of their physical
properties that depend on size/nanostructure, and (iii) considera-
tion of differences in their preparation.

Another particularity of NMs is their chemical composition, as
they could exhibit complex compositions (Figure 2) formed by
different parts such as (i) the core (the inner part of the NM and
most of its weight), (ii) the shell (the composition of the sur-
face that interacts with the solvent and biological molecules),
(iii) impurities or dopants (minor components deposited on the
surface or distributed among the material that affect the proper-
ties), and (iv) ligands or coating (organic molecules linked to
the external part of the particle that contribute to its formation,

solubility, or function).

Moreover, different experimental factors during the life of a
NM (i.e., the conditions during its preparation and handling)
will lead to different structural configurations and to different
properties. Thus, the reported experimental conditions are sig-
nificant, and they often need to be included in a predictive
model.

Finally, the quality of data is a key component in the develop-

ment of QSAR models. Consistency of the data is a key aspect
in the preparation of a database for a QSAR study as different
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Figure 2: Schematic depiction of the parts of a complex nanopatrticle.

changes in the conditions of the test could lead to a dispersion
of the results [4]. This should be considered carefully when
collecting data from different sources. It becomes a harder prob-
lem in nano-QSAR as not only differences that can arise on the
evaluation of the endpoint must be considered, but also those
regarding preparation of the NMs and the way they are identi-
fied. In addition, the inclusion of experimental values as
descriptors further reduces the availability of data on NMs that
have been tested for both the adequate characterization results

and the prediction endpoint.

Therefore, the development of QSAR models requires the codi-
fication of information on nanoforms beyond classical molecu-
lar descriptors. NMs have some particularities in comparison
with discrete substances, which are (i) the importance of the
size and shape, (ii) the complex composition, and (iii) the
consequences of the preparation of the NM on their features.
All these particularities need to be codified somehow as NM

NANOFORM STRUCTURE

(c) SIZE

NANOSHAPE
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descriptors (nanostructural features) that are the basis of the de-
velopment of nano-QSAR models (in a similar way that molec-
ular descriptors are fundamental for QSAR models). However,
the challenge goes further than describing numerically the struc-
ture. These aspects also have to be considered in the recording
and identification of the NMs. A recent approach to this issue
from Lynch et al. is the development of InChl codes for NMs,
which expand the InChl codes used to identify chemicals [14].

In the present work, we have collected and analyzed the
existing models in the literature and how different authors
address the codification of NMs. Moreover, in an attempt to
harmonize NM modelling, we propose a new classification of
NM descriptors.

Review
Available nano-QSAR models

We have surveyed the literature to compile the existing models
and to analyze the variety of calculated and experimental fea-
tures used to define and describe NMs. A total of 77 different
publications including NM-focused prediction models have
been found, and the information is collected in Table S1 (Sup-
porting Information File 1). This review is not restricted to self-
considered nano-QSAR models, but it includes also other
predictive models (such as Bayesian networks or mapping
strategies) that use calculated and/or experimental features that
could potentially be used as descriptors in a nano-QSAR model.
For the literature analysis below, all descriptors with a potential
use in nano-QSAR are discussed.

Descriptors for NMs

One of the conclusions of the analysis of available models is the
heterogeneity of the criteria used by different authors to charac-
terize the NMs [7]. Taking these models as starting point, and in
order to harmonize the characterization of the nanoforms, we

propose a classification of the descriptors as follows (Figure 3):
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Figure 3: Classification of nano-QSAR descriptors.
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(i) Descriptors that directly describe the nanoform, that is, its
chemical composition or its physical structure. Descriptors
based on the chemical composition are similar to those used in
QSAR models of discrete molecules. Nevertheless, in nano-
QSAR, the descriptors should differentiate between those
describing the main component of the nanoform (the core, (a) in
Figure 3), those related to the external part (shell or surface)
and/or the substituents or ligands attached to it ((b) in Figure 3),
and those that directly reflect the nanostructure of the nanoform
(including factors such as size, aspect ratio, or surface area,
(c) in Figure 3). (ii) Descriptors that codify experimental infor-
mation on the NMs and do not directly describe the composi-
tion or structure of the NM, but can be used to model them
because they imply nanostructural features and composition.
We assign different groups to these experimental measure-
ments, depending on whether they describe properties that are
consequence of the structure of the nanoform (e.g., wavelength
or zeta potential, (d) in Figure 3) or whether they represent
experimental conditions that contribute to the formation of
nanoforms and are the cause of their structure (such as the
synthesis medium or the time span between preparation and
testing, (e) in Figure 3). (iii) Descriptors related to the experi-
mental conditions of the determination of the endpoint. It is
possible that some of those conditions also affect the structure
of the nanoform in experimental media; however, these descrip-
tors are not focused on the nanoform itself but on the measured

endpoint (such as the target or exposure time, (f) in Figure 3.

Descriptors that define the nanoform
Core composition (a): The first family of descriptors are those
that describe the core composition of the nanoform. This kind

of descriptors can be applied depending on the type of nanoma-
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terials, which can be classified according to their chemical com-
position in inorganic, carbon-based, organic, and composite
NMs (Figure 4). In organic molecules, a wide range of descrip-
tors are obtained from the topology of the molecule, arising
from the rich variety of structural motifs that can be found and
the relevance of their distribution along the molecule. However,
the core of the NMs is typically composed by chemicals with a
simpler and repetitive chemical structure. Most inorganic mate-
rials are composed of single elements (e.g., Au or Ag) or binary
compounds (e.g., Fe,O3, CdSe, or SiO;). The most abundant
families among the carbon-based NMs are nanotubes and fuller-
enes; they are also considered inorganic and have a simple
chemical composition (mostly carbon). Hence, classical organic
molecular descriptors are not commonly found in the core com-
position, although they are potentially applicable to structures
involving organic polymeric substances (such as nanoplastics
and dendrimers) or lipids (such as liposomes).

Because of the simpler chemical structure of the components
typically found in NMs, the chemical descriptors tend to be also
simpler than those of organic molecules. Furthermore, it is
common to find nano-QSAR models focused on groups of
nanoforms that have different activity but are chemically homo-
geneous in their core, that is, which include NMs with the same
or similar core composition (e.g., only nanotubes and fullerenes,
or only metal oxides). One example is the use of the count of
metal and oxygen atoms as descriptors in metal oxide models
[15,16].

It is also common to find single-element descriptors based on

the physicochemical properties of pure elements. The use of

single-element descriptors is trivial in single-metal nanoforms,
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Figure 4: Classes of NMs by chemical composition.
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such as silver or gold nanoparticles [17]. In other cases, a
weighted-average can be used to transform the element-based
descriptors to the current composition of compounds [18,19].
Most of the descriptors are based on the empirical formula (i.e.,
the proportion of elements in the substance), such as the molec-
ular weight, which is calculated from a symbolic formula
[15,20,21], or descriptors calculated from element-based values
transformed to the empirical formula [20]. However, because of
the common presence of oxygen, several descriptors of metal
oxide models do not take into account the oxygen atoms and
depend only on the identity of the metal, such as metal mass
[15], electronegativity [16,20,22] or position in the periodic ta-
ble (group and period) [15,16].

Despite the fact that, generally, such element-based descriptors
are independent of the compound, in some cases they are
related to the particular composition of the material, such as ox-
idation state, formal charge [8,16,20,23], softness [22], ioniza-
tion potential [22], and weight percentage of the metal [23].
Furthermore, to include information regarding the particular
nanoform, the crystal structure can be included as a categorical
descriptor [24] or by using coordination numbers [24]. Alterna-
tively, Kotzabasaki et al. also codified the composition of iron
oxide nanoparticles with a single categorical descriptor that
encodes the crystal structure of the main component (in this

case as maghemite or magnetite) [25].

Alternatively, some descriptors are focused on the complexity
of inorganic materials and, in place of structural features, focus
on electronic features. In this regard, several descriptors were
obtained from quantum mechanics (QM) calculations of small
clusters or periodic models [26-30]. Although cluster-calcu-
lated QM descriptors are inherently size-dependent, they are
calculated using smaller, single-size model clusters, which are
not related to the size of the nanoparticles; thus, they should be
considered size-independent. Cluster-related values include
standard heat of formation, total energy, electronic energy,
core—core repulsion energy, area and volume of the cluster,
energies of HOMO and LUMO orbitals and the gap between
them, and lattice energies [22,26]. The energy levels of conduc-
tion and valence bands, which are found commonly among the
most important parameters, can be calculated from QM models
or derived from other simple reference parameters by empirical
formulas [31]. Additionally, QM calculations can be performed
in very simplified models that only describe a part of the mate-
rial, such as single metal atom, to calculate the enthalpy of for-
mation of the cation [26]. However, there is an alternative,
simplified way of incorporating the electronic structure in the
model, that is, by using the electron configuration of the ele-
ments (e.g., by using electron configuration fingerprints) [32].

In this way, the atomic orbitals can be easily represented and
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used to estimate the molecular/crystal orbitals in the NM with-

out requiring an electronic calculation.

Also, experimental physical properties of the compound, ob-
tained from classical databases or literature sources, could be
used. However, because these measures correspond to the bulk
material and do not characterize the nanoform, we classify them
as composition-related descriptors and not as experimentally
measured physical descriptors of the investigated nanoform. Ex-
amples of this are the atomization energy of the bulk MO,
structure obtained from literature sources, used by Liu and
coworkers [15], and the formation energies used by Banerjee
and coworkers [33]. Nano-QSAR models based on the CORAL
software [34] use descriptors that are optimized from the dataset
by using an identifier text string called “quasi-SMILES”, an
extension of the SMILES incorporating in a single string the
composition of the core and additional information related to
the nanostructure or the conditions [35-37]. However, both data
are not always combined; the first model by Toropov et al.
restricts its textual descriptor to a simple SMILES representa-
tion of the molecular formula of the metal oxide [38], and there
are quasi-SMILES descriptors without any composition data
[39]. Nevertheless, the nanoform identification of certain mate-
rials, such as pristine carbon nanoforms, does not really
describe the composition (pure carbon) but the nanostructure

(shape and composition of nanotubes or fullerenes) [40].

Otherwise, the single-formula representation of the chemical
composition of a nanoparticle discussed until now can be
simplistic. NMs are often found to include different chemical
components because they are mixtures or complex chemical
structures, including impurities or even different crystal phases.
Hence, the primary chemical composition of the nanoparticle,
excluding ligands or external substituents, can be categorized
into two parts, the core and the shell compositions. This ap-
proach was employed in a study of quantum dots [30], which
does not use numerical descriptors for the composition, but
directly uses a Bayesian network with categorical descriptions
of both the core and the shell. These are determined by empir-
ical formulas of either a single inorganic salt or a mixture. Ad-
ditionally, a distinct category has been designated for quantum
dots lacking a specific shell composition, labeled as “non-
coated” [41].

Substituents and modifiers (b): The consideration of substitu-
ents or modifiers on the surface of a NM is essential to identify
and describe the nanoform as they may influence its properties.
The characterization of these substituents or modifiers becomes
even more relevant when the core composition among different
NMs is the same (e.g., silver), but the substituents differ (e.g.,

different organic ligands). The substituents can be organic
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chemicals as, for example, in the model developed from the
database by Weissleder et al. [42] for several same-core super-
paramagnetic nanoparticles functionalized with different
organic molecules. The authors used SMILES-based descrip-
tors, common in QSAR models of discrete molecules, to char-
acterize the substituents, and they constitute the only identifier
of each datapoint [43-46].

In datasets with substituents that are mainly transition metals
(deposited in the nanoparticle or present in the solution), prop-
erties such as the ionization potential, the electron affinity, the
absolute electronegativity and the absolute hardness, as well as
the adsorption energy of the metal have been used (using litera-
ture values or QM calculations) [47-50]. In those cases, the
descriptors were obtained for a single component, and the final
value of the mixture was calculated as a linear combination
weighted by the molar fraction. In other cases, the molar com-
position of the metallic substituent was also directly used as
descriptor [51]. The idea of considering a NM as a mixture and
developing QSAR models for the toxicity of nanoscale mix-
tures formed by a NM and discrete molecules or ions, which
could potentially work by attachment to the surface, has been
reviewed by Trinh and Kim [52].

Similarly, carbon-based nanoforms are constituted of a common
carbon core, but they can have different side groups attached to
the surface. In the case of Cg fullerene structures (with the
same exact fullerene composition), the datapoints were identi-
fied merely based on these side groups only. The correspond-
ing molecular descriptors comprised 3D QM-calculated descrip-
tors (which include the constant fullerene) and descriptors only
based on the structure of the functionalization group [53,54].
Coating descriptors are not only found in common-core models.
For example, Kleandrova et al. included descriptors based in the
bond adjacency matrix for the organic coating if present (a zero
was used for uncoated nanoforms) [18].

Bilal et al. did not use numerical descriptors to describe the
composition, but categorical descriptors that included empirical
formulas for the core and the shell, as well as different cate-
gories (one group and one specific name) for each of the ligands
and surface modifications in a Bayesian network [41]. Simi-
larly, categories for the ligands are used in a quasi-SMILES-
related model for single core—shell quantum dots [55]. Alterna-
tively, other authors combined all components in a single
fingerprint without differentiating the composition of core and
coating [32].

Size and nanoshape (c): The most direct and common ap-
proach to describe the nanostructure of a NM is to include

values that provide a physical description of the particle. Parti-
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cle size is the most common feature in nano-QSAR models.
However, despite the established understanding that size plays a
crucial role in the activity and toxicity of NMs, its significance
in the performance of QSAR models seems debatable. For ex-
ample, the original nano-QSAR models of Puzyn et al. [26] and
Gazewicz et al. [30] used only core-related descriptors, and they
argued that the size does not significantly affect the property in-
vestigated for NMs in a predetermined size range (15-90 nm).
Thus, even though subsequent studies on similar datasets
considered the size of the nanoforms as a descriptor, because of
the limited size range in the training database, it is common for
size not to be among the most relevant descriptors in the models
[56,57]. At the other extreme, there are studies where the only
difference among the nanoforms used (without considering
endpoint-related descriptors such as dose or time) is the size
[58,59].

The size of nanoparticles is commonly measured by transmis-
sion electron microscopy (TEM). TEM images can provide
several descriptors that reflect the nanoform’s shape and size,
such as its area, volume, surface, diameter, volume/mass ratio,
volume/surface ratio, aspect ratio, porosity, sphericity, and
circularity [30]. However, the most common approach is to
provide a single size parameter and assume that the nanoparti-
cles are approximately spherical [23,35,56,60]. In some cases,
the length in a second direction is also reported or, more often, a
ratio between two dimensions is included to encode the shape of
the nanoparticle or to categorize it [60]. Alternative size param-
eters are volume and mass [61].

Dynamic light scattering (DLS) is another technique that can be
used to describe the hydrodynamic size or the aggregation of
the nanoforms in larger nanostructures, depending on the medi-
um and other conditions. In some cases, the size values re-
ported in the papers are not measured on purpose, but are the
nominal values found in the vendor's documentation. Some
authors have reported the TEM diameter as primary size, but
included also values for the hydrodynamic diameter measured
by DLS [23,62,63], even in some cases in different media such
as ultrapure water and a different medium (i.e. buffered [64] or
bacterial [56] media).

Additionally, categorical variables describing the kind of struc-
ture can be used to reflect the shape. For example, a shape com-
ponent in mixed carbon-based nanoparticles is encoded by this
type of categorical variables, such as fullerene vs carbon nano-
tubes or different carbon nanotubes [40,65]. Alternatively,
Trinh and collaborators directly encoded the size of multi-
walled nanotubes by both their diameter and length. They also
included the surface area as a structural descriptor, by using a

hierarchical clustering method to classify the values in ten cate-
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gories [66]. The categorization of the size and other physico-
chemical parameters was required in the quasi-SMILES
descriptors used in those cases [51] as they are converted to a
string, even when the effect is reduced by dividing the dataset in
two categories only with a single size threshold [60]. However,
in more modern approaches, quasi-SMILES allow for numeri-
cal values for the size and similar experimental values [36].

A different approach to describe the shape and size is provided
by the use of the calculated molecular weight for discrete car-
bon nanoparticles, as well as their calculated surface area
(overall and specific) and volume [67]. However, this requires
to have the full atomistic description of the nanoform, which is
not available for most experimental datasets. Some authors
propose additional topological descriptors that are specific for
carbon nanoshapes with known topology, such as carbon nano-
tubes, graphene, and fullerenes. For example, the sum of
degrees around the carbon atoms at the surface can be used for
all pristine carbon nanoforms [67].

Theoretical calculations of the surface area are more common
[68], but it can also be obtained experimentally from gas
adsorption data, using the Brunauer-Emmett-Teller (BET)
theory [33,51], or directly from the vendor [61]. The surface
area can be expressed as total surface area (by nanoparticle),
specific surface area (by weight), or both [24].

Finally, the existent size-dependent descriptors should be
included in this section. These descriptors are calculated, nu-
merical factors derived from the size of the molecule and other
physicochemical properties of its components. For example, a
series of size-dependent descriptors, such as the ratio of surface
molecules, which involves both the nanoform size and the
aggregation size, can be calculated using a liquid drop model
approximation [69,70]. This model defines the forces between
molecules assuming that they behave like particles in a liquid
drop. It uses the estimated Wigner—Seitz radius to calculate the
average distance between particles, used as descriptor by some
authors [71]. Similarly, the size-dependent electron configura-
tion fingerprints describe mainly electron population, but they
also consider the size of the NM and the distribution of the dif-
ferent components to yield an overall single fingerprint of the
NM [32].

A different approach is to include the information on the nano-
structure not directly as a descriptor, but as a different part of
the model framework that contributes to the prediction. For ex-
ample, the multi-task QSAR model of Ambure et al. [72]
mainly uses descriptors based on the core chemical structure,
but also a different kind of categorical parameters, labelled as

conditions, which modify the descriptors used in the prediction.
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These are mainly endpoint-related values, but the nanoparticle
size is also included as a condition that modifies three of the
descriptors using a Box—Jenkins approach [73]. Halder et al.
also included the size as one of the perturbation parameters
[19]. Other authors included structural features in perturbation
QSAR toxicology models, both as one of the descriptors (the
size) and as a perturbation criterion (the shape) [18,74,75].
Interestingly, they also included among the perturbation criteria
the experimental conditions of the size measurement, which
was applied both to the size itself but also to the electronegativi-
ty [74,75].

Indirect descriptors of the nanoform properties

Experimental measurements (d): Because of the complex
structures of NMs, it is challenging to understand how the nano-
structure affects their chemical and biological activities. How-
ever, it is possible to use direct experimental measurements that
describe the behavior of the nanoparticle, for example, their
electric or chemical properties, in place of their structural fea-
tures. The rationale behind this usage is that the experiments
measure properties that are involved in the activity modelled or

that have a structural origin related to the activity mechanism.

A very common property included in several models
[23,44,60,68,76] is the zeta potential (a measurement of the
charge at the surface of the NMs). The zeta potential value used
as a descriptor can be measured in a test medium or in different
media, such as water at a specific pH or purity level [15,64,77].
A further step, proposed as an example of combining preex-
isting structure—activity predictive models in networks, is the
prediction of the zeta potential in the relevant medium using a
model that uses the measurement in pure water (first layer) and
another one that allows for estimating the value of the zeta
potential in the ionized medium (second layer) using the output
of the first layer [78]. Although the zeta potential is most often
included as a numerical value, it can be also used to group the
data into categories [60]. Related measures are the isoelectric
point, which corresponds to the pH at which a nanoparticle
suspension has zero zeta potential [15,17], the surface charge
[31,36,63], the conductivity [77], and the electrophoretic
mobility [77].

Magnetic properties are also found to be used as NM descrip-
tors, such as the relaxivities R and R, obtained from magnetic
resonance studies [44]. Related to magnetism, Kotzabasaki et
al. used the magnetic field strength, but also a single categor-
ical descriptor describing the magnetic core composition of the
nanoparticles [25]. Additionally, focusing on the role of the NM
as contrast agent in magnetic resonance imaging, the authors
added the specific property of cellular internalization of iron,

measured as the amount of iron inside the cells [25].
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Zhang et al. [79] created a predictive model that uses regres-
sion trees to predict the toxicity of metal oxides using two pa-
rameters, namely, the experimentally measured concentration of
the metal (expressed as a percentage) and the conduction band
energy, which was calculated from different physicochemical
constants and also from experimental measurements of zeta
potential and diffuse reflectance UV-vis spectra). Alternative
formulations for valence and conduction band energies, based
only on pre-known physicochemical constants and values from

reference handbooks, have been reported as well [79,80].

Furthermore, the electric characteristics of the nanoparticle sur-
face can be reported by its interaction with other substances, as
for example using the maximum salt concentration in the medi-
um with no significant coagulation or the rate constant of its ox-

idation by hydrogen peroxide [68].

It should be noted that the use of experimental descriptors can
be exclusive, and there are models such as those of Liu et al.
[76] and Fourches et al. [44] that describe a series of NMs with
different compositions, including different iron oxides and
quantum dots, only on the basis of their size, magnetic values,
and zeta potential, without any direct consideration of the com-

[TPel}

position (i.e., no descriptor of the category “a” or “b” in our
classification). Kudrinskiy et al. also modelled silver nanoparti-
cles with different coatings without introducing directly the
capping agent in the model, but only by observing the differ-
ences in size, reactivity, and electric behavior of the nanoforms

with different capping agents [68].

A different approach to the use of experimental properties are
models that combine composition-based descriptors with exper-
imental information on the toxicity to different species, such as
the interspecies iQSTTR models developed by De et al. [81]
and the nano-QTTR development for aquatic toxicity by Jung
and coworkers [82].

Finally, we can consider a variation of this type of descriptors,
that is, the use of experimental results for specific signaling-
pathway responses in order to assess the overall toxicity and to
group different NMs together [83,84].

Experimental conditions (e): Finally, some descriptors do not
directly describe the nanoform; instead they consider how it
was prepared. In this context, the effects of the preparation
methodology could be assessed without describing the specific
structural features that arise from the preparation. In contrast to
the following group (f), we have reserved this to experimental
conditions of the processes performed prior to the test of the
predicted property. These conditions lead to a specific

nanoform, even if there is no characterization step to identify its
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properties, that is used for the test and, potentially, for other in-
dependent tests. Hence, differences in equivalent tests should be

related to underlying differences in the nanostructure.

The wide range of attributes selected by Liu et al. [85] in their
predictive method of toxicity based on a combined index for
zebrafish (EZ metric) included the synthesis precursors. Simi-
larly, Gul et al. compiled a dataset of nanoforms in cell viability
tests to perform an association rule mining analysis in which the
synthesis method was included among the identifiers of the
nanoparticles [86].

In another example, in the read-across models developed by
Varsou et al. [77], the effect of aging the nanoparticle for two
years prior to toxicity testing has been considered. However,
instead of including this as a descriptor, they provided values
for some of the experimental descriptors measured before and
after aging. They also concluded that discriminating aged from
pristine nanoparticles improves the predictive value of the
model.

Descriptors independent on nanoforms

Experimental endpoint conditions (f): This section includes
descriptors that codify information about the experimental
conditions of the test that potentially affect the value of the
measured parameter of the endpoint. The exposure of the NMs
to different conditions could produce structural changes, which
could be responsible for changes in their activity. The NM par-
ticles are known to be significantly affected by the medium
regarding size, aggregation, ligands, and nanostructure. Never-
theless, although the parameters considered here could have
direct impact on the value, their relevance could not be directly
linked to structural differences in the nanoform, in contrast to

the conditions classified above in group (e).

Such descriptors are commonly found in multi-task QSAR
models, where different endpoints are modelled using the
same framework. For example, it is possible to have different
target cell lines (identified by one or more descriptors)
[24,31,36,60,66] or to combine different toxicity assay methods
[24,36,63,66] in the same model.

In some models, binary descriptors are used to indicate the
absence or presence of a certain condition such as centrifuga-
tion, stirring, sonication, dispersion, or presence of additives
[17,39,65,87]. Numerical descriptors used to encode the test
environments include the ionic strength [17], the amount of
organic matter [17], and the pH value. More specific variables
can be found for particular tests, such as the number of daphnia
individuals in an immobilization test [17]. Also, descriptors that

quantify the exposure to the nanoform, such as exposure time
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[17,31,37,60,66] and dose [31,37,63,66] are very common in
nano-QSAR models.

A different approach of multi-task QSAR models to incorpo-
rate the endpoint conditions is to use them as modifying factors
of the descriptors. For such a modification, using a Box—Jenkins
approach, Ambure et al. [72] classified the dataset based on two
endpoints and several experimental protocols, cell line targets,
exposure times, and doses. Other authors use perturbation
QSAR models to incorporate endpoint conditions such as the
specific toxicity measurement [18,74], the biological target
[18,19,74], the exposure time [18,74], and the incubation condi-
tions [19].

Although not directly used as a descriptor, it is worth to note
that Pathakoti et al. [61] included the light exposure as a vari-
able in their toxicity models of metal oxides versus E. coli, ob-
taining two series of toxicity data for the same set of NMs.
Analogously, Basant and collaborators considered toxicity
values measured under different light conditions in E. coli and
in HaCaT cells in a multi-target QSTR model [88].

Conclusion

In this review we have analyzed in depth the descriptors used in
the literature in QSAR and related in silico prediction models
for NMs. Our review highlights that the high degree of vari-
ability in the NM properties is a key challenge in nano-QSAR
models, because it makes it difficult to develop models that are
accurate and generalizable across different NM types. Thus,
most nano-QSAR models are based on data sets limited to very
similar nanoforms, which can lead to overfitting and poor
predictions out of the applicability domain. Regarding the kind
of descriptors used, there is a significant variety of descriptors
including low- and high-level calculations, qualitative classi-

fiers, and experimental features.

Furthermore, it is difficult to find common points such as the
requirement of a particular set of features for each kind of
nanoforms. For example, key features such as the composition
of a NM or its size are not included in all the models. It should
be noted that some nano-QSAR models have been developed
based exclusively on testing conditions (e.g., dose, preincuba-
tion, and sonication) of a single nanoform. In these cases, the
chemical structure and direct structural information are con-

stant and do not need to be included among the descriptors.

The descriptors found throughout 77 publications have been
classified based on the information that they codify (Figure 3).
This classification proposes to consider parameters that directly
describe the nanoform (core, surface, or geometry), those that

provide an indirect description (other properties and prepara-
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tion conditions) and descriptors focused not on the nanoform

but on the endpoint measurement.

The variety of descriptors reflects how, in nano-QSAR models,
the identification of a NM as a particular data point is based on
a combination of chemical and physical structures, which could
require using experimental parameters. This differs from
common QSAR models with molecular substances, where only
the chemical structure is used to identify the substance (which
usually can be expressed using the SMILES representation).
From there, a series of calculated molecular descriptors are ob-
tained that correspond to a single data point determined by the
SMILES. However, this is not possible in most nano-QSAR
models, which often utilize experimental descriptors such as
size and shape to define a specific NM and to model its proper-
ties. In this case, those descriptors relate the data point to a par-
ticular nanoform with specific properties. This distinction high-
lights the unique role that experimental descriptors can play in
nano-QSAR models. Experimental values in nano-QSAR
models are often not derivable from the composition, but rather
from “identifying descriptors”, that is, fundamental experimen-
tal features that are necessary for the model and that identify a
nanoform. For example, the size of a nanoparticle is often used
as an “identifying descriptor” because it is a key parameter that
determines the properties of the material. However, most of the
electronic experimental values obtained from bulk materials
discussed above are “derived descriptors”, which are similar to
the calculated values, as they are potentially derivable from
other features or identifiers such as the SMILES.

Other experimental measures, such as zeta potential, may be
used as identifying features and can be considered derived from
nanostructural information (as the value will largely depend on
the composition). In any case, we consider as “identifying”
those features that are required as input data for a prediction and
are necessary to make accurate predictions, regardless of
whether they are physically bound or not.

According to our analysis, despite the existence of a broader
range of options and the need to incorporate structural informa-
tion, composition-based descriptors remain the norm in nano-
QSAR. In spite of the chemical complexity inherent to any ex-
tended system (such as a crystal or polymer), most descriptors
are simpler than those found for organic molecules, focusing on
simplified structural formulas or single elements. In most cases,
the composition of a NM is simplified to its major component,
ignoring impurities, mixtures, and ligands; when those are in-

corporated, their proportion is commonly ignored.

Particle size, commonly the measured or nominal value of the

diameter, is among the most common features in nano-QSAR
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models. However, as discussed above, its statistical signifi-
cance in the predictivity of models is not consistent. This ambi-
guity might stem from the fundamental shift in properties when
transitioning from bulk materials to nanoparticles, making it a
quantum leap in terms of behavior. While having a nanoscale
size is crucial for exhibiting distinct properties, a specific size
within a suitable range might have a less pronounced impact.
Consequently, and also because of the limited size variations
present in the databases used to train QSAR models, size is

often perceived as a parameter of lesser relevance.

In summary, our review discusses and classifies a wide variety
of descriptors used for NM predictive modelling. Our analysis
highlights the significant efforts made to combine the chemical
and structural complexity of the NMs with the objective to
obtain convenient descriptors. Our analysis provides a couple of
trends that could guide future steps in this field, that is, to calcu-
late descriptors using simplified chemical models and to use ex-
perimental properties or conditions as descriptors. Most calcu-
lated descriptors are restricted to one component of the core
and/or ligands (even assuming part of its chemical composition)
and do not include nanostructural information. In contrast, the
use of experimental information captures insights on the real
structure, but unveils another challenge of the nano-QSAR
models, the lack of consistence among the methods and parame-
ters used to characterize and evaluate NMs. In consequence, our
proposal classifies the descriptors (mainly calculated) accord-
ing to the part of the particle that they describe (i.e., the core or
the surface ligands) and also discerns among the descriptors
used to encode the nanostructural information (mainly experi-
mental) from other experimental data used to obtain an overall
description of the NMs, that is, from other properties or the ex-

perimental conditions.
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Nanoparticles (NPs) are considered as versatile tools in various fields including medicine, electronics, and environmental science.

Understanding the structural aspects of surface modifiers in nanoparticles that govern their cellular uptake is crucial for optimizing

their efficacy and minimizing potential cytotoxicity. The cellular uptake is influenced by multiple factors, namely, size, shape, and

surface charge of NPs, as well as their surface functionalization. In the current study, classification-based ML models (i.e.,

Bayesian classification, random forest, support vector classifier, and linear discriminant analysis) have been developed to identify

the features/fingerprints that significantly contribute to the cellular uptake of ENMOs in multiple cell types, including pancreatic
cancer cells (PaCa2), human endothelial cells (HUVEC), and human macrophage cells (U937). The best models have been identi-
fied for each cell type and analyzed to detect the structural fingerprints/features governing the cellular uptake of ENMOs. The study

will direct scientists in the design of ENMOs of higher cellular uptake efficiency for better therapeutic response.

Introduction

In recent years, the rapid advancement of nanotechnology has
led to the widespread utilization of engineered nanostructured
metal oxides (ENMOs) in various industrial and biomedical ap-
plications [1]. Nanoparticles (NPs) are described by the Interna-
tional Organization for Standardization as structures character-

ized by one, two, or three dimensions within the range of 1 to

100 nm [2]. The diminutive size of nanoparticles contributes to
a significantly high surface area with respect to volume, result-
ing in enhanced reactivity, improved stability, and augmented
functionality. In the field of nanomaterials, ENMOs are a
notable subset. These nanoparticles consist of metal elements

bonded with oxygen in intricate structures [3,4]. They exhibit
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exceptional physicochemical properties, which have led to their
widespread utilization across various industries [5,6]. These
nanomaterials are employed in, for example, electronics,
cosmetics, and medicine because of their enhanced reactivity,
large surface area, and tunable properties [7,8].

ENMOs can enter the human body [9] and engage with various
biomacromolecules, including sugars, lipids, proteins, and
nucleic acids. These biomolecules rapidly envelop the nanopar-
ticle surface, creating a dynamic “protein corona”, which
dictates the biological characteristics of the nanoparticles
[10,11]. The composition of this corona is variable and relies on
the concentrations and affinities of its different components to
the nanoparticle surface. Cellular uptake of NPs happens
through receptor-mediated active or passive transport across the
cell membrane [12]. Excessive absorption by normal cells
enables metal oxide nanoparticles to engage with various sub-
cellular organelles, initiating diverse signaling pathways to
generate a stress response within cells. This results in the pro-
duction of free radicals. Ultimately, this cascade leads to
damage to cellular organelles and the demise of the cell [13-15].

ENMOs have also been explored for potential diagnostic appli-

Beilstein J. Nanotechnol. 2024, 15, 909-924.

cations, particularly in targeting cancer cells [16,17]. To create
target-specific NPs, researchers synthesized magnetofluores-
cent NPs with an iron oxide nanocore decorated with organic
compounds and investigated their cellular uptake across various
human cell types [18]. However, determining the cellular
absorption of functionalized nanoparticles in different human
cell types is a laborious, expensive, and time-consuming task.
Computational analysis of experimentally obtained cellular
uptake data for ENMOs provides a systematic approach to gain
insights for modifying them for specific purposes. In recent
times, these computational methods have gained popularity as
they are more cost-effective and independent alternatives to ex-
perimental procedures [19-21].

Understanding the structural features related to the surface
modifiers of ENMOs that influence their uptake in human cell
lines is crucial for designing nanomaterials with enhanced
bioavailability. The surface modifiers are, in general, chemical
groups or molecules that are attached to the surface of ENMOs
to modify their properties and, specifically, the cellular uptake.
A lot of computational studies (Table 1) have been reported

using nanoscale quantitative structure—activity relationship

Table 1: Comparison of statistical parameters of the present model with previous studies for the cellular uptake of ENMOs.

S.no. Cellline  nyajn Niest Model? Statistical parameters® Ref
Regression-based QSAR
PaCa2 87 2 — R?1¢ = 0.72; RMSET, = 0.18 [22]
2 PaCa2 90 19 MLR R2t, = 0.934; RMSET, = 0.121; R%7, = 0.943; RMSET, = 0.214  [23]
3 HUVEC 87 21 BRANNLP & R?t, = 0.55; RMSET, = 0.38; R, = 0.72; RMSET, = 0.30 [24]
PaCa2 MLREM R21, = 0.64; RMSET, = 0.26; R27e = 0.62; RMSET, = 0.32
4 PaCa2 91 18 Monte Carlo R21, = 0.76; RMSET, =0.19; R?1, = 0.86; RMSETe = 0.14 [25]
regression
5 PaCa2 87 22  MLR R27, = 0.945; RMSET, = 0.13; R%7, = 0.897; RMSET, = 0.18 [26]
6 PaCa2 89 20 PLS LV = 5; R%, = 0:806; Q% oo = 0.758; RMSET, = 0.20; [27]
Q%1 = R%1¢ = 0.879; Q% = 0.868; RMSET, = 0.12
7 HUVEC 87 21 MLR R21, = 0.74; RMSET, = 0.34; R%1, = 0.63; RMSET, = 0.36 [28]
Bayesian (linear model)
regularized R2y, = 0.70; RMSET, = 0.30; R%, = 0.66; RMSET, = 0.33
neural network  (nonlinear model)
PaCa2 R21, = 0.76; RMSET; = 0.19; R27¢ = 0.79; RMSET, = 0.24
(linear model)
R21, = 0.77; RMSET, = 0.15; R%¢ = 0.54; RMSET, = 0.28
(nonlinear model)
8 PaCa2 83 21 MLR R21, = 0.974; RMSET, = 0.067; R%7¢ = 0.944; RMSET, = 0.109  [29]
HUVEC R2t, = 0.973; RMSET; = 0.100; R?1, = 0.966; RMSET, = 0.104
U937 R2t, = 0.977; RMSET; = 0.019; R?7, = 0.938; RMSET, = 0.023
9 PaCa2 36 9 MLR R21, = 0.792; Q% oo = 0.765; RMSET, = 1929.40 [30]
27 7 RP1e = 0.954; Q%4 = 0.908; RMSETe = 581.646 (Model 1)
15 3 R2t, = 0.857; Q% oo = 0.735; RMSET, = 1649.077

R21¢ = 0.961; Q% = 0.923; RMSET, = 1083.365 (Model 2)
R21, = 0.819; Q2 o0 = 0.739; RMSET, = 1683.908
R21¢ = 0.863; Q% = 0.821; RMSET, = 1683.908 (Model 3)
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Table 1: Comparison of statistical parameters of the present model with previous studies for the cellular uptake of ENMOs. (continued)

10 PaCa2 87 22 PLS LV = 4; R%1, = 0.814; Q% oo = 0.782; RMSET, = 0.198; [31]
Q%F1 = 0.893; Q%Fp = 0.749
HUVEC LV = 5; R%1, = 0.782; Q2 oo = 0.733; RMSE, = 0.299;
Q%1 = 0.704; Q%F, = 0.668
U937 LV = 5; R%1, = 0.667; Q% oo = 0.539; RMSET; = 0.077;
Q2F1 = 0.602; Q%F, = 0.506
11 HUVEC 87 22  MLR R21, = 0.852; RMSET; = 0.235; R27, = 0.822; RMSET, = 0.241 [32]
PaCa2 R?t, = 0.905; RMSET, = 0.130; R21, = 0.885; RMSET, = 0.140
Classification-based QSAR
12 PaCa2 — — DTB Ser, = 1.000; Spr; = 0.974; ACCr; = 0.988; MCCr, = 0.980 [26]
Sere = 0.882; Spte = 1.000; ACCr, = 0.926; MCCre = 0.860
13 PaCa2 — — DTF Ser, = 1.000; Spr; = 1.000; ACCr; = 1.000; MCCr, = 1.000
Serte = 0.875; Spte = 0.909; ACCr, = 0.889; MCCre = 0.780
14 PaCa2 89 20 RF Ser, = 0.958; Spr; = 0.976; ACCr; = 0.966; MCCr, = 0.933 [33]
Sere = 0.909; Spre = 1.000; ACCre = 0.950; MCCre = 0.905
15 PaCa2 88 21 Bayesian Ser, = 0.980; Spt; = 0.865; Conc.1, = 0.932; ROCt, = 0.765; our
classification Sete = 1.000; Spte = 0.800; Conc.Te = 0.905; ROCte = 0.891 model
HUVEC SVC Ser, = 0.952; ACCr, = 0.875; MCCr; = 0.761; ROCr, = 0.969;
Serte = 0.833; ACCr, = 0.857; MCCre = 0.716; ROC1¢ = 0.870
U937 LDA Ser, = 0.827; ACCt, = 0.716; MCCr, = 0.400; ROCr, = 0.735;

Sere = 0.833; ACCre = 0.667; MCCre = 0.304; ROCre = 0.630

aVarious models reported as follows: MLR = multiple linear regression; RMSEP = root mean square error of prediction; Conc. = concordance,

RF = random forest; SVC = support vector classifier, LDA = linear discriminant analysis; DTB = decision tree boost; DTF = decision tree forest;

PLS = partial least squares; BRANNLP = Bayesian regularization artificial neural network, using Gaussian priors, MLREM = multiple linear regression
with expectation maximization; Pdifferent statistical parameters reported as follows: R? = correlation coefficient, ACC = accuracy, MCC = Matthews
correlation coefficient; ROC = receiver operating characteristic; RMSE = root mean square error; Q% oo = cross-validated correlation coefficient;

LV = latent variables; Se = sensitivity; Sp = specificity.

(nano-QSAR) models (predominantly regression-based) that
specifically employ the cellular uptake in the PaCa2 cell line
[22-27]. In the current study, we have performed a distinctive
approach by developing nano-QSAR machine learning-based
classification models that encompass not only the cellular
uptake data of the PaCa2 cell line but also the two additional
cell lines HUVEC and U937. The primary objective is to find
the structural fingerprints/features that govern cellular uptake
selectivity for each cell line. The selective surface modifica-
tions of ENMOs could enhance the affinity of the nanoparticles
for certain cell types while reducing the uptake by non-target
cells. This is particularly important for in vivo applications
where non-specific uptake by the reticuloendothelial system
(e.g., liver and spleen) can reduce the efficacy of the nanoparti-
cles. The workflow of the current study is shown in Figure 1.
The insights gained from this study hold significant implica-
tions for the rational design of ENMOs with tailored properties
for biomedical applications, ensuring their higher efficiency.

Materials and Methods
Preparation of datasets

The current study was performed employing the experimental

cellular uptake data of 109 chemically attached surface modi-

fiers of ENMOs (monocrystalline magnetic nanoparticles
having overall size of 38 nm and an average of 60 ligands per
nanoparticle, indicating a consistent level of attachment across
different preparations) regarding human pancreatic ductal
adenocarcinoma cells (PaCa2), human umbilical vein endotheli-
al cells (HUVEC), and the human monocyte lymphoma cell line
U937 [34]. PaCa2 cells are derived from a human pancreatic
tumor and are adherent and epithelial in nature, providing
insights into the uptake and behavior of nanoparticles in pancre-
atic cancer. HUVEC cells are endothelial cells derived from the
vein of the umbilical cord to study vascular biology and endo-
thelial function. U937 is a human cell line used as a model for
monocyte/macrophage differentiation. The cellular uptake was
represented by log;o[NP]/cell, in which the concentration was
represented in picomoles per cell. In order to classify the
higher-uptake (assigned as “1”’) and lower-uptake (assigned as
“0”) surface modifiers of ENMOs, the average values of
logo[NP]/cell were considered as cut-off value (Supporting
Information File 1, Table S1). Thus, 62 higher-uptake and
47 lower-uptake (in the case of PaCa2 cell line); 54 higher-
uptake and 55 lower-uptake (in the case of HUVEC cell line),
and 64 higher-uptake and 45 lower-uptake (in the case of U937

cell line) surface modifiers of ENMOs were included in the
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Figure 1: Workflow of the current study for cellular uptake of ENMOs involving different approaches such as Bayesian classification and machine
learning. The similar training (n = 88) and test set (n = 21) were used in different analyses.

modelling. The whole dataset was divided based on the
“Diverse molecule” method in Discovery studio 3.0 software
[35] into 88 modifiers in the training set (70%) and 21 modi-
fiers in the test set (30%) for the different classification-based
QSAR analyses.

Bayesian classification study

Bayesian classification was carried out via the “Create Bayesian
model” protocol in Discovery Studio 3.0 [35]. To develop a
model, various descriptors were collected, including molecular
weight (MW), n-octanol/water partition coefficient (ALogP),
number of aromatic rings (nAR), number of rings (nR), number
of rotatable bonds (nBonds), number of hydrogen bond donors
(nHBDs), and the number of hydrogen bond acceptors (nHBAs)
[36]. Extended-connectivity fingerprints (ECFPs) or functional-
class fingerprints (FCFPs) were also used for the Bayesian anal-
ysis. ECFPs are circular fingerprints that capture precise
substructural features of molecules, making them suitable for
predicting molecular activity and similarity search [37]. They
are generated through an iterative process based on the Morgan
algorithm, which assigns numeric identifiers to each atom in a
molecule and updates these identifiers through several itera-
tions. In contrast, FCFPs focus on capturing functional class
information, reflecting the pharmacophore roles of atoms. Both
ECFPs and FCFPs are highly customizable and have been
widely adopted for various scientific applications [38,39]. The

molecules from the training set were used for constructing the

model, and the molecules from the test set were used for the
validation. The resulting model’s statistical properties were
assessed using the fivefold cross-validation procedure. Addi-
tionally, the model’s quality was evaluated by looking at the
receiver operating characteristic (ROC) plot as well as speci-
ficity, sensitivity, and accuracy values [40-42].

Development of other machine learning

models

Calculation of descriptors and data pre-treatment
The training set of 88 and the test set of 21 surface modifiers
from Bayesian classification analysis were used for the develop-
ment of other machine learning models. Different classes of
2D descriptors were calculated using PaDEL-Descriptor [43].
The data pre-treatment tool (Data Pre-TreatmentGUI 1.2
from DTC laboratory, Jadavpur University, available at
http://teqip.jdvu.ac.in/QSAR_Tools/) removed some descrip-

tors (intercorrelation cutoff > 0.90, variance cutoff < 0.0001)
[44].

Feature selection

Finding the minimum number of significant features or vari-
ables in the descriptor form is a vital step in the interpretation of
a ML model [45]. In our current study, the most discriminating
features selection method (MDF_Identifier-v1.0 accessible at

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/

home) was used to find out the minimum number of required
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features that are responsible for classifying higher-uptake and
lower-uptake surface modifiers in the case of three cell lines
[46]. The descriptors that had greater values of absolute differ-
ence were taken as significant features for a particular cell line.
For the study of the PaCa2 cell line, we selected ten descriptors
(Supporting Information File 1, Table S2) that had an absolute
difference value greater than or equal to 0.31. Similarly, for the
study of HUVEC and U937 cell lines, we selected, respectively,
eight (Supporting Information File 1, Table S3) and eleven
descriptors (Supporting Information File 1, Table S4) that had
an absolute difference greater than or equal to 0.39 and 0.19, re-
spectively. The specific values were determined through empir-
ical analysis, ensuring that the selected descriptors provide the

best predictive performance for each cell line.

ML model development and analysis

Four classification-based ML models, namely, random forest
classifier (RFC), support vector classifier (SVC), linear discrim-
inant analysis (LDA), and logistic regression (LR) were de-
veloped in the current analysis. These models were developed
using the optimized hyper parameters in the Scikit Learn
package. The ML models were built by utilizing the ML classi-
fier tool (https://sites.google.com/jadavpuruniversity.in/dtc-lab-

software/home/machine-learning-model-development-guis)

[47]. For applicability domain analysis, the leverages of the
training and test set compounds were calculated. The applicabil-

ity domain analysis was performed with the help of Hi_Calcu-

Training set (A)

Beilstein J. Nanotechnol. 2024, 15, 909-924.

lator-v2.0, accessible at https://sites.google.com/jadavpuruni-

versity.in/dtc-lab-software/home [48].

Training set (C)

Results and Discussion
Bayesian classification study for the three cell

lines

PaCaz2 cell line

Initially, a Bayesian classification study was carried out in order
to build a classification-based QSAR model. The test set was
developed with 21 molecules, whereas the training set was de-
veloped with 88 molecules. Figure 2A,B depict the ROC curves
for the compounds in the training and test set of the surface
modifiers of ENMOs in the PaCa2 cell line. Various statistical
criteria, such as concordance, specificity, and sensitivity, were
examined to characterize the model (Table 2). The developed
Bayesian model has a fivefold cross-validated ROC of 0.765,
indicating the model’s validity. The ROC for the test set is
0.891, indicating an acceptable external validation result. The
training set’s statistical results are summarized in Table 2,
showing a strong 98% sensitivity, 86.5% specificity, and 93.2%
overall concordance.

Twenty uptake-promoting (UP, 1-UP, 20) and twenty uptake-
impairing (Ul 1-Ul, 20) structural features/fingerprints were
generated by the Bayesian model of 109 surface modifiers. As

seen in Figure 3, uptake-promoting and uptake-impairing

Training set (E)
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Figure 2: Receiver operating characteristic plots of the training set (A, C, E) and test set (B, D, F) for the Bayesian classification analysis in the case

of PaCaz2 cell line (A, B), HUVEC (C, D) and U937 (E, F) cell line.
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Table 2: Validation parameters of the generated classification-based Bayesian model for different cell lines.

Cell line Set TP2 FNP FpPC
trainin 50 1 5
PaCa2 ning
test 11 0 2
traini 39 3 5
HUVEG raining
test 10 2 1
training 52 0 14
U937
test 6 6 4

TNd Sen® Spec' Conc9 RoCh
32 0.980 0.865 0.932 0.765
8 1.000 0.800 0.905 0.891
41 0.929 0.891 0.909 0.854
8 0.833 0.889 0.857 0.861
22 1.000 0.611 0.841 0.682
5 0.500 0.556 0.524 0.565

aTrue positive; Pfalse negative; ®false positive; dtrue negative; ®sensitivity; fspecificity; 9concordance; Nreceiver operating characteristic.
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Figure 3: Uptake-promoting (UPp, 1-UP,, 20) and uptake-impairing (U, 1-Ul,, 20) fingerprints from the Bayesian study (PaCaz2 cell line). Sc denotes

the Bayesian score of the corresponding fingerprints.

fingerprints can be matched into fewer structural features/

fingerprint groups, as explained below.

A long aliphatic carbon chain of the surface modifiers in
ENMOs is highly beneficial for improved uptake in the PaCa2
cell line as suggested by the fingerprints UP, 3, UP, 4, UP, 5,
UPp 9, UPp 19, and UPp 20. For example, surface modifiers 68
and 73 have these essential fingerprints and exhibit higher
uptake (Supporting Information File 1, Figure S1). The uptake
of ENMOs with surface modifiers like 49 is also high because
of the presence of long-chain aliphatic anhydride-like finger-
prints such as in UPp 11, UPp 12, UPp 13, UPp 14, UPp 16, and
UP, 18. The fingerprints UP,, 2 and UP}, 6 share the similarity

of a dihydro-2H-pyran-2,6(3H)-dione structure. These finger-
prints are seen in surface modifiers 18 and 28.

The uptake-impairing fingerprints UL, 12, Ul,, 15, Ul,, 16, and
UI,, 18 indicate the presence of aliphatic/cyclic alcohol-like
structures in the surface modifiers, and a negative impact on
cell uptake of ENMOs is shown in the case of surface modifier
59. Similarly, fingerprints UIp 2, UIp 3, UIp 6, UIp 8, UIp 13,
and UI, 19 represent the presence of amino groups with a
possible carboxyl functionality. Such fingerprints are observed
in surface modifier 101. The fingerprints UIp 9, UIp 11, UIp 14,
and Ul,, 20, having a cyclohexane ring (e.g., 90), also reduce the
uptake of ENMOs in the PaCa2 cell line.
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HUVEC cell line

In the case of the HUVEC cell line, the fivefold cross-validated
ROC values for the training set and test set are 0.854 and 0.861,
respectively. The ROC plots (Figure 2C,D) have been gener-
ated to justify the internal and external predictability of the
model. The statistical factors sensitivity, specificity, and
concordance are reported in Table 2. The presence of the ali-
phatic anhydride-like fingerprints UPy, 9, UPy, 10, UPy, 17, and
UPy, 18 (Figure 4) in the surface modifiers promotes uptake in
the HUVEC cell line (Supporting Information File 1, Figure
S3). As discussed previously, similar fingerprints are also im-
portant for the uptake in the case of the PaCa2 cell line. Further-
more, fingerprints like UPy 13, UPy, 14 and UPy, 16, having
ester functionality, are also responsible for a higher uptake of
ENMOs in the HUVEC cell line. Fingerprints having a dihydro-
furan-2,5-dione scaffold (UPy, 3, UP}, 4, UPy, 8, and UPy, 20) in
the surface modifiers are important for the higher uptake of
ENMOs in the HUVEC cell line, too. This is shown in the case
of surface modifier 30 (Figure S3, Supporting Information
File 1). The presence of fingerprints like UPy 1, UPy, 5, and
UPy, 7 are also important for the uptake of ENMOs in
the HUVEC cell line as shown in the case of surface modifier
46.

However, fingerprints containing aliphatic amino functionality
(UL 1, UL, 2, Ul 7, Ul 8, Ul 9, and Ul 11) have a delete-
rious effect on the uptake of ENMOs in the HUVEC cell line,
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as demonstrated in in the case of surface modifier 74 (Support-
ing Information File 1, Figure S4). The fingerprints Ul 5,
Ul 10, UI}, 13, Ul 15, and Ul 18 with a branched aliphatic
structure have a negative impact on the uptake of ENMOs. As
discussed previously in the case of the PaCa2 cell line, aliphat-
ic alcohol-related fingerprints, such as Ul}, 12 and Ul}, 17, also
impair uptake in the HUVEC cell line. Other fingerprints re-
sponsible for impairing uptake in the HUVEC cell line include
Ul 3, Ul 6, and Ul 14. These fingerprints suggest uptake
impairment of ENMOs by the presence of a carboxyl group
with or without amino functionality in the surface modifiers as
shown in Figure S4 (Supporting Information File 1).

U937 cell line

The ROC curves for the U937 cell line are shown in
Figure 2E,F for training and test set separately, and the statis-
tical parameters for the model are shown in Table 2. The
training set has sensitivity = 1.000, specificity = 0.611, and
concordance = 0.841. The test set has sensitivity = 0.841, speci-
ficity = 0.556, and concordance = 0.524. The statistical quality
of the Bayesian classification model for the U937 cell line is
inferior compared to the models for the other cell lines. The
training and test sets have also shown lower ROC scores of
0.682 and 0.565, respectively.

For U937, the Bayesian model also yielded 20 favorable
fingerprints (UP, 1-UP, 20) and 20 unfavorable fingerprints
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y, | o o . / NH, [e]
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Figure 4: Uptake-promoting (UPy, 1-UP}, 20) and uptake-impairing (Ul,, 1-Uly, 20) fingerprints from the Bayesian study (HUVEC cell line). Sc denotes

the Bayesian score of the corresponding fingerprints.
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(Ul 1-UI, 20) using ECFP_6 fingerprint descriptors, as shown
in Figure 5. The fragments UP, 8—UP,, 10 highlight the signifi-
cance of the long aliphatic chain for the increased uptake of
ENMOs as shown in the case of surface modifier 68. The
fingerprints having anhydride functionality, for example, UP, 3,
UP, 11, UP, 13, and UP, 14, are important for the uptake of
ENMOs in the case of the U937 cell line (surface modifier 49 in
Supporting Information File 1, Figure S5). The presence of
dihydrofuran-2,5-dione scaffold-like structures in fingerprints
including UP, 4, UP, 7, and UP,, 15 is also important for the
uptake of ENMOs in the U937 cell line (surface modifier 54 in
in Supporting Information File 1, Figure S5). A similar feature
is found to be important also in the case of the HUVEC cell line
as discussed previously. Other fingerprints promoting uptake in
the U937 cell line (UP, 5, UP, 16, and UP, 20) have an ester
functionality (Supporting Information File 1, Figure S5). The
higher uptake of ENMOs with surface modifier 86 is due to the
presence of fingerprints UP, 12 and UP,, 18.

The uptake-impairing fingerprints Ul 1, Ul, 4, UI, 11, Ul 12,
and Ul 14 indicate the presence of aliphatic alcohol function-
ality. The presence of primary or secondary amino groups
(Ul 2, UL, 5, UL, 8, UL, 9, Ul 10, and Ul 16) also has a nega-
tive impact on the uptake of ENMOs in the U937 cell line as
illustrated in the case of surface modifier 22 (Supporting Infor-
mation File 1, Figure S6).
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Other machine learning models

Other classification-based machine learning (ML) models
(RFC, SVC, LDA, and LR) were also developed individually
for the three cell lines (PaCa2, HUVEC, and U937) for the 109
surface modifiers of magnetofluorescent ENMOs. Various
statistical parameters were evaluated for the selection of the best
ML model. Regarding classification-based validation measures
(Table 3), the random forest (RF) model exhibited the highest
performance for the PaCa2 cell line, while the support vector
classifier (SVC) model demonstrated superior performance for
the HUVEC cell line. The linear discriminant analysis (LDA)
model performed best for the U937 cell line. Figure 6A-F
depicts the ROC curves for the compounds in the training and
test sets of each cell line. The best ML model (RF) for the
PaCa2 cell line has fivefold cross-validated ROC values of
0.939 for the training set and 0.818 for the test set, which indi-
cates an acceptable internal and external validation result. The
best ML model (SVC) for the HUVEC cell line has fivefold
cross-validated ROC values of 0.969 for the training set and
0.870 for the test set, indicating that the internal and external
validation result is acceptable. Last, the best ML model for the
U937 cell line (LDA) has fivefold cross-validated ROC values
of 0.735 for the training set and 0.630 for the test set. The
detailed statistical analysis is presented in Table 3. The applica-
bility domain analysis was also performed in order to check the

chemical space of training and test set of surface modifiers of
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Figure 5: Uptake-promoting (UP, 1-UP, 20) and uptake-impairing (Ul, 1-Ul, 20) fingerprints from the Bayesian study (U937 cell line). Sc denotes

the Bayesian score of the corresponding fingerprints.
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Table 3: Validation parameters of the classification-based ML models for PaCa2, HUVEC, and U937 cell line.

Cellline  Model Type Set Accuracy Precision Recall F1score MCC?2 Cohen’s k AUC-ROCP
PaCa2 RFC training 0.852 0.807 0.980 0.885 0.710 0.684 0.939
test 0.857 0.786 1.000 0.880 0.742 0.710 0.818
SvC training 0.739 0.750 0.823 0.785 0.457 0.454 0.791
test 0.619 0.636 0.636 0.636 0.236 0.236 0.536
LDA training 0.818 0.769 0.980 0.862 0.646 0.607 0.862
test 0.857 0.786 1.000 0.880 0.742 0.710 0.855
LR training 0.830 0.781 0.980 0.870 0.667 0.632 0.874
test 0.857 0.786 1.000 0.880 0.742 0.710 0.873
HUVEC  RFC training 0.841 0.780 0.929 0.848 0.695 0.684 0.970
test 0.905 0.917 0.917 0.917 0.806 0.806 0.889
SvVC training 0.875 0.816 0.952 0.879 0.761 0.751 0.969
test 0.857 0.909 0.833 0.870 0.716 0.712 0.870
LDA training 0.841 0.792 0.905 0.844 0.690 0.683 0.934
test 0.905 0.917 0.917 0.917 0.806 0.806 0.889
LR training 0.830 0.765 0.929 0.839 0.676 0.662 0.891
test 0.905 0.917 0.917 0.917 0.806 0.806 0.944
U937 RF training 0.739 0.754 0.827 0.789 0.451 0.448 0.744
test 0.619 0.667 0.667 0.667 0.222 0.222 0.611
SvC training 0.693 0.698 0.846 0.765 0.347 0.334 0.687
test 0.667 0.667 0.833 0.741 0.304 0.290 0.630
LDA training 0.716 0.729 0.827 0.775 0.400 0.394 0.735
test 0.667 0.667 0.833 0.741 0.304 0.290 0.630
LR training 0.693 0.698 0.846 0.765 0.347 0.334 0.699
test 0.667 0.667 0.833 0.741 0.304 0.290 0.685

aMatthew’s correlation coefficient; Parea under the receiver operating characteristic curve.
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Figure 6: Receiver operating characteristic plots of training set (A, C, E) and test set (B, D, F) for the ML-based classification models in the case of
PaCa2 Cell line (A, B), HUVEC (C, D) and U937 (E, F) Cell line.
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ENMOs. Based on the leverage calculation, surface modifiers
16, 48, 78, 79, 83, 86, and 107 from the training set and 82 from
the test set are outliers for the classification model of the cellu-
lar uptake data for PaCa2 cell line. Similarly, based on the
leverage calculation, surface modifiers 48, 83, 86, and 107 in
the training set and 13, 40, and 109 in the test set are outliers for
the classification model of the cellular uptake data for HUVEC
cell line. For the developed classification model for the U937
cell line, surface modifiers 48, 59, 80, 83, and 97 from the
training set and 10, 82, 95, and 109 from the test set are outliers.

Interpretation of the descriptors of the best ML
based classification models

According to OECD Principle 5 on the validation of QSAR
models, it is very important to give a mechanistic interpretation
of the descriptors that have a significant contribution to the
model output [49]. In the current study, SHapley Additive ex-
Planation (SHAP) analysis was performed on the training
datasets for the three cell lines using the best identified models.
An increased value with a greater spreading from the mean
identify the most important descriptors in the SHAP summary
plot.

PaCaz2 cell line

The SHAP summary plot for the classification random forest
model of cellular uptake data of ENMOs in the PaCa2 cell line
is shown in Figure 7. The descriptors nHBDon_Lipinski,
AATS7i, minHsNH2, maxsNH2, maxHBint3, maxHBd,
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minHBint3, maxHsOH, maxssO, and minsOH are mentioned in
descending order of importance. The details of the descriptors
along with their definitions are given in Supporting Informa-
tion File 1, Table S2.

nHBDon_Lipinski was identified as the most highly contribut-
ing feature in the developed model for the PaCa2 cell line. The
descriptor nHBDon_Lipinski is associated with Lipinski’s
“rule of five” where “nHBDon” stands for the number of hydro-
gen bond donors present in a molecule [50]. Hydrogen bonds
play an important role in interactions between molecules in
various biological processes. However, for cellular uptake in
the PaCa2 cell line, the contribution of hydrogen bonds has
a negative impact as shown in Figure 7. A higher value of
nHBDon_Lipinski leads to lower chances of cellular uptake of
ENMOs (e.g., 92, 97, and 99). The second significant descriptor
according to SHAP analysis (Figure 7) is AATS7i. The
descriptor AATS7i is an averaged Moreau—Broto autocorrela-
tion of lag 7 weighted by ionization potential. This descriptor
adds the ionization potential with the Moreau—Broto autocorre-
lation to measure the structural and electronic properties of sur-
face modifiers [51] and has a negative impact on the cellular
uptake of ENMOs. For example, in the case of surface modi-
fiers 11, 24, 59, and 97, higher values of the AATS7i descriptor
result in a lower cellular uptake of ENMOs in the PaCa2 cell
line. Conversely, surface modifiers 2, 4, 17, and 20 show higher
cellular uptake of ENMOs in the PaCa2 cell line while having
low values of the AATS7i descriptor. The next descriptor

High
nHBDon_Lipinski e oo mememes o ___4. .
AATS7i @ e mew amemm 0o ‘.
minHsNH2 ® momass s b .*..
maxsNH2 .. LR oo o compnse o }- (,?
2
maxHBint3 = o * E
maxHBd cmAne oo o F [ §
g
minHBint3 . {
maxHsOH . cmme .*
maxssO ®
minsOH —y
Low

-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05

SHAP value (impact on model output)

Figure 7: SHAP summary plot for the ML-based RFC model (training set) in the case of PaCaz2 cell line.
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according to SHAP analysis is minHsNH2, which refers to
the minimum atom-type E-state indices for the amino (-NH»)
hydrogens in a molecule [52]. It is observed that the surface
modifiers 87, 88, 94, and 98, which have a higher value of the
minHsNH2 descriptor, are not suitable as structural modifiers of
ENMOs for the higher cellular uptake in the PaCa2 cell line.
Surface modifiers 8, 17, and 20 cause higher cellular uptake of
the ENMOs in the PaCa2 cell line, and they have a value of
zero for the descriptor minHsNH2. Thus, based on the out-
comes of the previous Bayesian classification model (UI}, 10,
Ul,, 13, and Ul, 14 fingerprints in Figure 3) and the current
machine learning analyses (Figure 7), it can be concluded that
the presence of an amino group in the structure of surface modi-
fiers of ENMOs is not conducive to higher cellular uptake in the
PaCaz2 cell line. The fourth negatively contributing descriptor in
the model output was maxsNH2. In simple terms, the maxsNH2
value indicates the maximum electronic state value of a single-
bonded NH, group [53]. It is observed that the structures of sur-
face modifiers 74, 77, and 93 are not suitable for higher cellular
uptake of ENMOs in the PaCa2 cell line because of the in-
creased maxsNH2 values. Conversely, the values of maxsNH2
in compounds 1, 2, and 4 are zero, and these surface modifiers
lead to higher cellular uptake in the PaCa2 cell line. This is also
suggested by our previous Bayesian classification model (U}, 2
and Ul,, 3 fingerprints in Figure 3). The fifth negatively contrib-
uting descriptor in the model output is maxHBint3 [54]. The
increased maxHBint3 values of surface modifiers 87, 88, and
94 indicate that the latter are not suitable for higher cellular
uptake of ENMOs in the PaCa2 cell line. The descriptor
maxHBd signifies the maximum E-states for (strong) hydrogen
bond donors [55] and contributes negatively to model output
(Figure 7). The next negatively contributing descriptor is
minHBint3. Basically, minHBint3 means the minimum E-state
descriptors of strength for prospective hydrogen bonds separat-
ed by three edges [56]. The negative impact of this descriptor is
reinforced by examining compounds 2, 4, 8, and 14, where the
zero value of the minHBint3 descriptor correlates with higher
cellular uptake of ENMOs in the PaCa2 cell line. The nega-
tively contributing descriptor maxHsOH refers to the maximum
atom-type E-state indices for the hydroxy (~OH) hydrogen in a
molecule [57]. The negative contribution is supported by the
observation of our previous Bayesian classification model
(UL, 12, Ul,, 15, and UL, 16 fingerprints in Figure 3). The sur-
face modifiers 1, 2, 8, and 17 are characterized by a zero value
of the maxHsOH descriptor and are very much suitable for
achieving higher cellular uptake of ENMOs in the PaCa2 cell
line. The descriptor maxssO denotes the maximum electronic
states of the ether-type oxygen (—O-) present in the structure of
a compound [58]. It has been observed that the surface modi-
fiers 23, 29, and 49, which have a higher value of the maxssO
descriptor, are suitable for the higher cellular uptake of ENMOs

Beilstein J. Nanotechnol. 2024, 15, 909-924.

in the PaCa2 cell line. In our previous Bayesian classification
analysis, we identified similar favorable fingerprints (UP, 11,
UP,, 12, UP,, 13, and UP,, 14 fingerprints in Figure 3) for the
cellular uptake of ENMOs in the PaCa2 cell line. The descriptor
minsOH [59] makes a negative contribution to the final ML
model. The descriptor minsOH stands for minimum electronic
state value for the single bonded hydroxy group (—OH) present
in a structure. It has been observed that the surface modifiers
30, 78, and 79, which have a higher value of the minsOH
descriptor, are not suitable for the cellular uptake of ENMOs in
the PaCa2 cell line.

HUVEC cell line

SHAP analysis on the training dataset of the ML-based support
vector classification model for the cellular uptake in HUVEC
cell line was performed for the identification of descriptors
(Supporting Information File 1, Table S3) to the final model
output (Figure 8). Figure 8 shows the important descriptors
ndssC, maxHBd, SsNH2, maxssO, maxsNH2, SRW9, nssO,

and minHsNH?2 in descending order.

Descriptor ndssC is recognized as the most contributing
descriptor in the developed model and it denotes the total num-
ber of double bonded carbons present in the structure [60]. The
positive contribution of the descriptor is confirmed by the pres-
ence of maximum double-bonded carbons in the structures (e.g.,
39, 43, and 46), which actively contribute to a higher cellular
uptake of ENMOs in the case of the HUVEC cell line. From the
earlier Bayesian analysis, it was also identified that certain
favorable fingerprints (UPy, 2 and UPy 14 fingerprints in
Figure 4) include a double-bonded carbon in the structure for

better cellular uptake.

The descriptor maxHBd indicates the maximum E-States for
(strong) hydrogen bond donors [55] and contributes negatively
to model output (Figure 8). For example, surface modifiers 88,
94, 98, and 100 are not appropriate for increasing the cellular
uptake of ENMOs in the HUVEC cell line, indicated by their
high maxHBd values. The third most contributing descriptor
was SsNH2. In simple terms, the SSNH2 value indicates the
summation value of the electronic state of a single-bonded NH,
group present in a compound [61]. Higher values of SsSNH2
have a negative impact on the cellular uptake of ENMOs in the
HUVEC cell line (e.g., 71, 76, 80, and 92). The Bayesian classi-
fication model also revealed that fingerprints Ul;, 7, Ul 8, and
Ul 9 in Figure 4, containing an NH, group, are unsuitable as
structural modifiers of ENMOs for higher uptake in the
HUVEC cell line.

The next descriptor that has been identified for its negative

contribution is maxssO. The descriptor maxssO denotes the
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Figure 8: SHAP summary plot for the ML-based SVC model (training set) for the HUVEC cell line.

maximum electronic states of the ether-type oxygen (-O-)
present in the structures of a compound [58]. It has been ob-
served in most of the cases that the surface modifiers 15, 18, 27,
and 37, which have a higher value of the maxssO descriptor, are
not suitable for the higher cellular uptake of ENMOs in the
HUVEC cell line. The fifth negatively contributing descriptor in
the model output was maxsNH2. The maxsNH2 value indicates
the maximum electronic state value of a single-bonded NH;
group [53]. Higher values of maxsNH?2 lead to a lower cellular
uptake of ENMOs in the HUVEC cell line (e.g., 1, 2, 14, and
104). The aforementioned observation was previously noted in
the Bayesian classification analysis, where certain unfavorable
fingerprints (U}, 7, Ul}, 8, and Ul 9 fingerprints in Figure 4)
containing an NH; group in their structure were identified. The
other descriptors like SRW9 [62], nssO [63], and minHsNH2
have lower contribution in the model for the cellular uptake of
ENMOs in the HUVEC cell line.

U937 cell line

We performed SHAP analysis regarding the U937 cell line, and
the plot is shown in Figure 9. The details of descriptors defini-
tions are explained in Supporting Information File 1, Table S4.

The descriptor SSNH2 is recognized as the most contributing
feature in the developed model. In simple terms, the SSNH2
value indicates the summation value of the electronic state of a
single-bonded NH; group present in a compound [61]. Higher
values of SSNH2 have a negative impact on the cellular uptake
of ENMOs in the U937 cell line (e.g., 69, 71, and 80). The next,
positively contributing, descriptor is SHsNH2, calculated as the
sum of the atom-type E-state indices for all -NH, hydrogens in

a molecule [64]. The variable maxsNH2 makes a significant
positive contribution to the model (Figure 9). The descriptor
maxsNH2 refers to the maximum electronic state value for the
single-bonded NH; group present in a structure [53]. It is
noticed in the cases of surface modifiers 77 and 86 that these
structures are suitable for higher cellular uptake of ENMOs in
the U937 cell line. The descriptor minHsNH?2 exhibited a nega-
tive contribution to the final model output. The minHsNH2
descriptor refers to the minimum atom-type E-state indices for
all of the amino (-NH,) hydrogens in a molecule [52]. It is ob-
served that the surface modifiers 94 and 98, which have a
higher value of the minHsNH2 descriptor, are not suitable as
structural modifiers of ENMOs for the higher cellular uptake in
the U937 cell line. The descriptor ETA_dEpsilon_D [65] signi-
fies that surface modifiers containing a higher number of
strongly electronegative atoms (such as N, O, and F) or hydro-
gen bond donor atoms will cause a lower uptake of ENMOs in
the U937 cell line (e.g., 6, 9, and 15). Other descriptors
including maxssO, maxHBd, maxdO, ndO, ndssC, and
nHBDon_Lipinski contribute less to the cellular uptake of
ENMOs in the U937 cell line.

Conclusion

Identifying the surface modifiers of engineered nanostructured
metal oxides (ENMOs) that enhance affinity for certain cell
types while reducing uptake by non-target cells could signifi-
cantly improve the efficacy of targeted therapies and minimize
off-target effects. In this study, classification-based machine
learning models have been created separately using cellular
uptake data from 109 surface modifiers of ENMOs in three cell
lines, namely, PaCa2, HUVEC, and U937, for the identification
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Figure 9: SHAP summary plot for the ML-based LDA model (training set) in the case of the U937 cell line.

of distinctive fingerprints/descriptors controlling the cellular
uptake in the specific cell line. Significant uptake-promoting
and uptake-impairing fingerprints were identified for different
cell lines based on Bayesian classification studies. The best
machine learning (ML) model for the PaCa2 cell line was the
random forest (RF), which achieved fivefold cross-validated
ROC values of 0.939 for the training set and 0.818 for the test
set, indicating acceptable internal and external validation
results. Similarly, the best-performing ML model for the
HUVEC cell line was support vector classifier (SVC), which

.

mi
M mmsOH
| axsNH2 *
PaCaZ >\
majjg
/\a/‘;‘;ﬁ
Y%,
maxssO °

P~

demonstrated fivefold cross-validated ROC values of 0.969 for
the training set and 0.870 for the test set, indicating successful
internal and external validation. Finally, the top ML model for
the U937 cell line, linear discriminant analysis (LDA), yielded
fivefold cross-validated ROC values of 0.735 for the training set
and 0.630 for the test set. The findings revealed distinctive
structural fingerprints associated with the cellular uptake of
nanoparticles in each cell line (Figure 10). For example, the
presence of a hydroxy group in the structures of the surface
modifiers leads to a decrease in the cellular uptake of ENMOs

—— Positive contribution —— Negative contribution

Figure 10: Summary of structural features of surface modifiers of ENMOs for the uptake in the PaCa2, HUVEC, and U937 cell line models.
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in the PaCa2 cell line only. Furthermore, the study also identi-
fies some common structural fingerprints among surface modi-
fiers (Supporting Information File 1, Figures S7-S8) observed
in uptake across multiple cell lines. It is observed from SHAP
analysis that there are three major descriptors (maxsNH2,
maxHBd, and maxssO) identified as common in the three best
ML models developed for the three different cell lines. Having
one or more aliphatic primary amino groups (descriptor
maxsNH2) in the surface modifiers leads to reduced cellular
uptake of ENMOs in both PaCa2 and HUVEC cell lines.
Neither does a higher number of hydrogen bond donating
groups (descriptor maxHBd) in the surface modifiers promote
greater cellular uptake of ENMOs in these cell lines. Addition-
ally, the study highlights that the presence of ether-type oxygen
(descriptor maxssO) in the surface modifier structure may con-
tribute to increased cellular uptake across the three cell lines.
The structural fingerprints/descriptors obtained from the cur-
rent modelling study will be helpful to scientists for the future
design of surface modifiers of nanostructured metal oxides.
This may facilitate a higher therapeutic response by surface
modifier-mediated site-specific targeting to the cell surface re-
ceptors of particular cell types. Further availability of sufficient
and reliable uptake data of ENMOs in other cell types is also
needed for better confirmation of these fingerprints/descriptors
in the design of surface modifiers of ENMOs.

Supporting Information

Supporting Information File 1

Additional figures and tables.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-75-S1.pdf]
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Abstract

The thermal response of gold and platinum spherical nanoparticles (NPs) upon cooling is studied through atomistic molecular dy-
namics simulations. The goal is to identify the morphological transformations occurring in the nanomaterials as well as to quantify
their dependence on temperature, chemistry, and NP size. For diameters smaller than 3 nm, the transition temperature from a
melted/amorphous to a highly crystalline state varies considerably with NP size. For larger NPs, the transition temperature is almost
diameter-independent, yet it differs considerably from the transition temperature of the respective bulk materials. The platinum NPs
possess a higher level of crystallinity than the gold counterparts under the same conditions because of the stronger cohesive forces
that drive the crystallization process. This observation is also supported by the simulated X-ray powder diffraction patterns of the
nanomaterials. The larger NPs have a multifaceted crystal surface, and their shape remains almost constant regardless of tempera-
ture variations. The smaller NPs have a smoother and more spherical surface, and their shape varies greatly with temperature. By
studying the variation of nano-descriptors commonly employed in QSAR models, a qualitative picture of the NPs’ toxicity and re-
activity emerges: Small/hot NPs are likely more toxic than their large/cold counterparts. Because of the small size of the NPs
considered, the observed structural modifications are challenging to be studied by experimental techniques. The present approach

can be readily employed to study other metallic and metal oxide nanomaterials.

Introduction
Nanomaterials, that is, materials with dimensions in the range environment and energy. Because of their small size, nanoparti-
of 1-100 nm [1,2], are central to a variety of developments in  cles (NPs) have only been discovered relatively recently, al-

science and technology, from medicine and engineering to the though they have been present in the environment throughout
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earth’s and human history, emerging from various sources in-
cluding biological, anthropogenic, and geological processes [3].
Only a few decades ago, NPs attracted attention because of their
size-dependent chemical and physical properties [4]; nowadays,
they are commercially available and exploited in several sectors
such as optics, automotive, electronics, and healthcare [5,6]. A
notable category of engineered NPs is comprised of metal and
metal oxide NPs, which rank among the highest in production
volume. They have already found widespread applications in
technological advancements such as photovoltaics, catalysis,
gas sensors, fuel cells, and adsorbents [7,8]. This prevalence is
attributable to their distinctive properties, including superpara-
magnetism, piezoelectricity, certain optical characteristics
[9-13], and the enormously high surface-to-volume ratio. These
special properties derive from their small size, rather than their
chemical composition. Given the broad spectrum of possible
applications, NPs have the potential to profoundly influence
society [14].

Despite the numerous studies and advances [15-20], the rational
design of NPs, especially the prediction of their structural modi-
fications in industrial processes, such as rapid heating or cool-
ing, is still hindered by several factors. For instance, observing
NPs under real working conditions remains a challenge for
experimentalists, as the capability to conduct in situ experi-
ments has not yet been fully realized [21]. Experimental
methods, such as confocal microscopy [22], laser light scat-
tering [23], and optical microscopy [24], have provided accu-
rate estimates of nucleation rates and critical nucleation sizes,
but little data have been produced for the sub-micrometer size
regime regarding crystal facet formation and the mechanism of
crystal growth. Moreover, a fundamental prerequisite for NPs is
the consistency in their shape, surface characteristics, and crys-
tallinity. Nevertheless, developing straightforward and widely
applicable approaches to crystallize or melt NPs uniformly,
with precise control, remains a significant challenge [25]. For
instance, it has been shown that atomic stresses at the NP sur-
face are crucial in phase transitions below a certain critical NP
size [26]. Although it is understood that, qualitatively, the sur-
face stress generates an effect comparable to an externally
applied compressive pressure on the NP, a quantitative descrip-
tion is missing. While there have been some promising theoreti-
cal models [27] and in situ observations [28], crucial elements
that can harmonize thermodynamic and kinetic controls remain

unclear at the nanoscale.

The plentiful theoretical efforts to understand and interpret
structural modifications in metals upon thermal treatment can
be traced back to the seminal works of Lindemann [29] and
Pawlow [30]. Recent developments and the current state of the

art have been summarized in the reviews of Mei and Lu [31]
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and Alcoutlabi and McKenna [32]. Emphasis has been placed
on relating the melting temperature of a NP to its size by
adapting theories suitable for bulk materials to NPs; examples
include the classical nucleation theory [33], phenomenological
models [34-36], as well as molecular simulations [37-40]. A
molecular dynamics (MD) study of shape transformation and
melting of tetrahexahedral Pt NPs has been carried out by Wen
et al. [41]. Wang et al. employed ab initio MD to describe the
melting of icosahedral Au nanoclusters [42]. The structural and
thermal stability of high-index-faceted Pt NPs was addressed by
Zeng et al. [43]. Similarly, the thermal stability of unsupported
Au NPs was investigated by molecular dynamics [44]. The
strong decrease of the melting point of small Au NPs compared
to bulk Au was quantified by Qiao et al. [45]. Nayebi and
Zaminpayma [46] as well as Shim et al. [47] studied the crystal-
lization of liquid Au NPs. The dependence of the surface energy
of gold NPs on their size and shape was looked into by Holec et
al. [48], while Martin et al. considered silver NPs [49]. A com-
parative study of surface disorder in Au and Ag NPs upon cool-
ing was carried out by Agudelo-Giraldo et al. [50]. Chushak and
Bartell considered the structural modifications upon freezing of
several molten Au clusters consisting of 1157 atoms [51]. Some
light on the microscopic origin of the anisotropic growth of gold
NPs has been cast via molecular dynamics simulations [52]. In
a similar way, Liimmen and Kraska investigated the homoge-
neous nucleation and cluster growth of Pt clusters from super-
saturated vapour [53]. A combined molecular dynamics and
X-ray diffraction analysis of gold NPs has been carried out by
Kamiriski et al. [54]. The dynamical stability and vibrational
properties of Pt nanoclusters by ab initio methods were investi-
gated by Maldonado et al. [55]. A comprehensive review of Pt
NPs has been compiled by Quinson and Jensen [56].

The aim of the present work is twofold, namely, (i) to discern
the structural modifications in initially spherical NPs occurring
upon rapid cooling and (ii) to link these modifications to the NP
size, as quantified by the initial diameter, the NP chemical com-
position, and the temperature. To this end, atomistic molecular
dynamics simulations have been performed for gold (Au) and
platinum (Pt) NPs with diameters from 1 to 8 nm for a range of
temperatures. Bulk Au and Pt materials share the same unit cell
of the crystal structure, yet they differ in the strength of their
energy interactions. The morphological changes in the NPs are
measured using both atomic parameters, such as the coordina-
tion number and the Berry parameter, and cluster parameters,
such as the X-ray powder diffraction pattern and the asphericity
parameter. Furthermore, we extract qualitative information
regarding the toxicity and reactivity of these NPs by monitor-
ing the behaviour of nano-descriptors commonly employed
in quantitative structure—activity relationship (QSAR) models

and by measuring the water—-NP energetic interactions. The
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extracted information from our simulations complements exper-
imental techniques by providing insights into phenomena occur-
ring at time and length scales that are challenging to capture ex-

perimentally.

Methods

We performed atomistic MD simulations of spherical Au and Pt
NPs in vacuum and in aqueous media. The considered NP di-
ameters and the number of atoms in each NP are presented in
Table 1. The potential energy of the NPs is described by the
EAM/alloy force field; the parameters proposed by Grochola et
al. [57] for the Au NPs and by O'Brien et al. [58] for the Pt NPs
are adopted. For both force fields, files containing all required
parameters in suitable LAMMPS format have been obtained
from the NIST interatomic potentials repository (https://
www.ctcms.nist.gov/potentials/) [59,60].

Table 1: NP diameters and number of atoms in Au and Pt NPs.

NP diameter (nm) Number of atoms in NP

Au NP PtNP
1.0 43 32
2.0 249 257
3.0 887 846
4.0 1985 2015
5.0 3925 3918
6.0 6699 6817
7.0 10641 10791
8.0 15707 16149

The initial configurations of the Au (Pt) NPs are constructed
as follows: A supercell consisting of 2048 Au (Pt) atoms is
obtained by replicating the face-centered cubic (FCC) unit cell
8 x 8 x 8 times. The supercell is then simulated for 1 ns in the
canonical (NVT) ensemble at 300 K. The Langevin thermostat
is employed with a coupling time of 0.1 ps. A time step of 1 fs
using the velocity-Verlet integration scheme is used. The
system is subsequently heated to 1400 K (2100 K), that is, the
melting point of bulk Au (Pt), in the isothermal-isobaric (NPT)
ensemble at 101.3 kPa with a constant heating rate of 10 K/ns.
The Langevin thermostat and the Nose—Hoover barostat [61]

are employed with coupling times of 0.1 and 1.0 ps, respective-

Heating with
linear rate

Multiplication Thermalization Equilibrati Curving out the Cooling d
of unit cell to of bulk bqw ibra [u?n NPs with Oﬁ 'nﬁp own
obtain bulk Materials at above melting above me ting desired the NPs in
material 300K point point dimensions vacuum
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ly. When the heating stage is completed, further equilibration is
performed for 20 ns in the NPT ensemble at 101.3 kPa and
1400 K (2100 K). The final amorphous system is replicated
several times along all three Cartesian coordinates so that a
spherical NP with the desired diameter can be curved out.

Afterwards, the Au (Pt) NPs are placed in vacuum, and the
systems are cooled down to 100 K following the single-step
procedure of Martin et al. [49]. In each step, the temperature is
decreased instantaneously by 100 K, and the systems are
relaxed by performing a MD simulation of 20 ns in the NVT en-
semble. In total, this procedure is employed 13 (20) times for all
Au (Pt) NPs until the temperature reaches 100 K. Configura-
tions are sampled every 10 ps from the last 1 ns of each cooling
step. A schematic of the computational steps to generate the NP
configurations is shown in Figure 1. Although the employed
procedure results in extremely high heating and cooling rates
compared to the experimental ones, it has been shown to yield
representative structures that are in good agreement with the
ones observed via X-ray diffraction for a number of nanomate-
rials such as CuO NPs [62], TiO, NPs [63], as well as carbon
[64] and Ag [65] nanostructures.

We also simulated Au and Pt NPs in aqueous solutions at
300 K, that is, close to room temperature. The interactions
among the water molecules are described by the SPC/E model
[66]. The interactions among the water molecules and the Au
(Pt) atoms are calculated by the force field of Merabia et al.
[67] (Brunello et al. [68]). The initial configuration of a
hydrated NP is obtained by placing the NP inside a pre-equili-
brated water configuration and removing all water molecules
that are closer than 0.5 nm from any Au (Pt) atom. The result-
ing system is equilibrated for 10 ns in the NPT ensemble at
101.3 kPa and 300 K. The Nosé—-Hoover thermostat and baro-
stat are employed with coupling times of 0.1 and 1.0 ps, respec-
tively. After equilibration, a subsequent simulation for 1 ns
takes place in the NPT ensemble at 101.3 kPa and 300 K where
configurations are sampled every 10 ps. All simulations are per-
formed with the LAMMPS code [69], and atomistic configura-
tions are visualized using the Ovito software [70].

The structural modifications occurring in the NPs are identified
by monitoring the temperature variation of atomic and cluster

parameters. One such atomic quantity is the Berry parameter, d,

Final NP

structure

Figure 1: Schematic of the computational procedure utilized to generate nanoparticle configurations at various temperatures.
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which forms a distance—fluctuation criterion to identify first-
order transitions, for example, from liquid to solid phases
[71,72]. It is given by

<r; >, ~( >;2 W
()

where N is the number of atoms in the NP, r;; is the distance be-

N-1
)

2 N
:N(N—l).z )2

i=l j=i+l

tween the i-th and the j-th atom and (...), denotes time aver-
aging. A critical value close to 0.05 signifies the occurrence of a
phase transition in a cluster of atoms. Additional atomic param-
eters are the average potential energy, force, and coordination
number per atom. These quantities have also been employed as
descriptors in nano-QSAR models to successfully predict the
toxicity of NPs [73-75]. The average force per atom, f, is com-
puted as f :\/F)% +FY2 +FZZ, where Fj is the k-th Cartesian
component of the force vector F. The coordination number of
an atom is defined as the number of its neighbouring atoms that
lay within a given distance. For the Au (Pt) atoms, a distance of
0.32 (0.30) nm is used. Additionally, every atom is assigned to
a structural type matching a known crystal form (FCC, body-
centered cubic (BCC), hexagonal close-packed (HCP), icosahe-
dral, or amorphous) based on the Ackland—Jones bond-angle

method [76] as implemented in Ovito.

One of the employed cluster parameters is the surface area-to-
volume ratio of a NP. The surface area is calculated by the
alpha-shape method with a probe sphere radius of 0.3 nm [77]
as available in Ovito [70]. The volume is determined by per-
forming a Delaunay tessellation on the atomistic configuration
and summing up the volumes of the resulting tetrahedra. The
tessellation is carried out using the Qhull library [78]. The
shape of a NP is quantified by the asphericity, b, the acylin-
dricity, ¢, and the relative shape anisotropy, x2, parameters [79].
Let xﬁ( S?»IZ, Sk% denote the eigenvalues of the gyration

tensor. The shape parameters are given by:

i) o

C:(x%_xi)/(k§(+kﬁ+k%), 3)
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Complementary information regarding the NP morphology is

obtained from simulated X-ray powder diffraction patterns as
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determined by Debye functional analysis [80]. The intensity of

the diffracted coherent radiation, /, is given by

-1

M=

153 e, Wn(ann ) s

i=

—_

J=i+l

where § = 2sin(0)/A, A is the wavelength of the incident radia-
tion, and 20 is the scattering angle. The scattering functions g
are computed using the expressions proposed by Cromer and
Mann [81]. A A value of 0.15418 nm is employed, representing
Cu Ka radiation. Python codes to compute the Berry parameter
and the X-ray powder diffraction pattern of a NP are available
at https://github.com/evoyiatzis/Jupyter-Notebooks.

Results and Discussion

The radial number density distributions in selected Au and Pt
NPs for two temperatures are shown in Figure 2. The NP
diameters are 2 nm (Figure 2a,c) and 8 nm (Figure 2b,d). The
considered temperatures for the Au NPs (Figure 2a,b) are 100 K
(blue line) and 1200 K (orange line), while, for the Pt NPs
(Figure 2c¢,d), they are 100 K (blue line) and 1800 K (orange
line). Regardless of chemical composition and NP diameter, the
number density distributions at high temperatures are similar,
and their shape is typical of liquid and amorphous materials.
They have two pairs of peaks and valleys, which correspond to
the first and second coordination shells. For the Au NPs, the
peaks are located at 0.275 nm and multiples of this distance,
while, for the Pt NPs, they lie at roughly 0.250 nm and its multi-
ples. For long distances, the number density distribution reaches
a plateau value, which implies that, for sufficiently large dis-
tances, the atoms are uniformly distributed in the NP. Thus,
there is no persistent structural feature present in the materials.
The number density distribution for the two large NPs at 100 K
is characterized by sharp and well-separated peaks, which is a
telltale sign of the existence of crystal domains in the NPs. The
positions of the peaks in the Au NPs are located at slightly
greater distances than in the Pt NPs because of the shorter
dimensions of the Pt unit cell. For the small NPs at 100 K, new
peaks have emerged in the number density distribution, but they
are not as sharp as in the case of the large NPs. Moreover, the
height of the peaks is much smaller compared to those for the
large NPs. This feature reflects a lower degree of crystallinity
for the small relative to the large NPs and the fact that the nano-

materials are in a supercooled amorphous, and not liquid, state.

The temperature dependence of the Berry parameter, d, of the
Au and Pt NPs is shown in Figure 3a and Figure 3b, respective-
ly. The NP diameters vary from 1 to 8§ nm. The Berry parame-
ter quantifies the mobility of the atoms in the NPs by measuring

the spatial fluctuations around their mean atomic position. In all
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cases, O becomes larger with increasing temperatures. For the
Au NPs with a diameter larger than 2 nm, a sharp drop in the 6
curves takes place between 1000 and 1100 K; the 6 value
becomes smaller than the critical value of 0.05, and a first-order
transition is identified. The temperature where the transition
occurs is approximately 200 K smaller than the melting temper-
ature of bulk crystalline Au, which is close to 1100 K. This
difference stems from the higher mobility of the Au atoms in a
finite-size cluster placed in vacuum compared to the atomic
mobility in a dense crystal/amorphous bulk material. For the Au
NP with a diameter of 2 nm, a similar steep drop takes place at
even lower temperatures of 500 and 600 K. This large shift in
the transition temperature indicates that the NP diameter of
2 nm is smaller than a critical size that would yield a behaviour
comparable to bulk Au. For the last case of Au NPs with a di-
ameter of 1 nm, we observe a smooth 8 curve, and the critical d
value is reached at approximately 300 K. A similar behaviour is
observed for the Pt NPs. For all Pt NPs with diameter larger
than 2 nm, a phase transition is identified between 1200 and
1300 K. The difference between the melting temperature of
bulk Pt, which is close to 2100 K, and 1200 K is much larger
than the respective temperature difference in the Au case. This
can be attributed to the lower cohesive energy of the Au unit
cell compared to the Pt unit cell. Although both Au and Pt share
the same FCC structure, the cohesive energy is larger in Pt;

thus, the restoring forces to the equilibrium crystal positions are
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stronger. This is also supported by the findings shown below in
Figure 6. The transition temperature is lowered to 900 and
300 K for the NPs with diameters of 2 and 1 nm, respectively.
The 8 curve becomes smooth for the NP with a diameter of
1 nm akin to the Au case.

Furthermore, we utilized the Ackland—Jones method to esti-
mate the degree of crystallinity of each NP and monitor the
crystallization process (Figure 4). The temperature dependence
of the percentage of identified atoms belonging to an amor-
phous (Figure 4a,b) and to an FCC (Figure 4c,d) domain is
shown for the Au (Figure 4a,c) and Pt (Figure 4b,d) NPs. The
NP diameters range from 1 to 8§ nm. We note that, for both Au
and Pt NPs, the sum of the two percentages is not equal to
100%. The reason is that a small proportion of the atoms are
classified as atoms belonging to alternative structures, that is,
BCC, HCP, or icosahedral structures. These structures should
be considered as intermediate unstable states or as grain bound-
aries of the thermodynamically stable FCC domains in the NPs.
In all cases, the percentage of FCC atoms at high temperatures
is almost zero, and the amorphous atoms have the highest abun-
dance. This observation supports the assumption that the NPs
have been fully melted and there are no remnants of the initial
FCC structure. With the exception of the NPs with a diameter of
1 nm, the percentage of FCC atoms exhibits a strong increase

when the transition temperature is reached, which is coupled to
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arapid decrease in the fraction of amorphous atoms. The transi-
tion temperature in each case is the same as the one identified
by monitoring the Berry parameter. For the NPs with a diame-
ter of 1 nm, there is a very weak dependence of both amor-
phous and FCC atoms on the temperature, and the fractions of
FCC atoms are close to zero. This finding supports the idea that
the smallest NPs are supercooled amorphous nanomaterials
with no persistence of any structural features. For a given diam-
eter, the final percentage of FCC atoms in Pt NPs is always
higher than the one in Au NPs. This observation could be attri-
buted to the higher cohesive energy of the Pt unit cell com-
pared to the Au unit cell and the stronger interactions between
Pt atoms than between Au atoms. Moreover, there is a stronger
dependence of the number of FCC atoms on the NP diameter.
Indirect evidence of the crystallization taking place in the NPs
is provided by the visualizations shown in Figure S1 and Figure
S2 of Supporting Information File 1. Snapshots of Au and Pt
configurations with diameters of 2 and 8 nm are presented. A
simple visual inspection confirms the formation of a multifac-
eted crystal surface at low temperature, while a smoother and

uniform surface is seen at high temperature.

The temperature dependence of the average coordination num-
ber as a function of the NP diameter is shown in Figure 5 for the
Au (Figure 5a) and Pt (Figure 5b) NPs. We observe that an
increase in temperature results in a smaller coordination num-
ber. The temperature dependence is more pronounced for the
NPs with diameters larger than 2 nm. For these NPs, an abrupt
reduction of the coordination number occurs close the transi-
tion temperature identified by the Berry parameter. The most
stable crystal unit cell for both bulk materials under relevant

Beilstein J. Nanotechnol. 2024, 15, 995-1009.

conditions is the FCC structure [82] with a lattice constant of
0.4065 nm for Au and 0.3912 nm for P, that is, the latter being
slightly shorter. The coordination number in an FCC unit cell
without defects and for cutoff distances somewhat larger than
the lattice constant is 12. Thus, for the lower temperatures
considered, such as 100 K, the atoms exhibit preferably the
equilibrium FCC structure, and the coordination number tends
to the theoretical value of 12. Additionally, an increase in tem-
perature leads to less dense NPs, as indicated by the number
density variation in Figure 2, and in greater spatial fluctuations
from the lattice positions dictated by the FCC structure. More-
over, the formation of crystal structures such as BCC and HCP,
which have a lower density than FCC, becomes less energetical-
ly prohibitive. When focusing on the morphology of the NPs,
the coexistence of several small crystal domains interconnected
via amorphous grain boundaries is favoured at higher tempera-
tures, while the crystallization process at lower temperatures
leads to larger crystal domains with smaller boundaries as
pointed out in Figure 4.

The temperature dependence of the average potential energy of
an atom as a function of the NP diameter is shown in Figure 6
for the Au (Figure 6a) and Pt (Figure 6b) NPs. The NP diame-
ters range from 1 to 8 nm. The temperature dependence of bulk
FCC Au and Pt crystals is also included in the panels. We
observe that the magnitude of the potential energy becomes
greater with increasing NP diameter or with decreasing temper-
ature. For the NPs with a diameter larger than 1 nm, a signifi-
cant decrease in the potential energy occurs, which is another
manifestation of a first-order phase transition. When comparing
Au NPs with Pt NPs with the same diameter and at the same
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Figure 5: Temperature dependence of the average atomic coordination number for Au (panel a) and Pt (panel b) NPs. The NP diameters range from
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temperature, we observe that the potential energy is higher in
the case of Pt. It reflects that Pt crystal structures have a higher
cohesive energy than the respective Au ones [82] and that amor-
phous Pt materials have a greater density than Au ones. The
NPs with 1 nm diameter have qualitatively the same tempera-
ture dependence as the bulk materials, that is, a proportional
linear relationship can be seen. This behaviour suggests that the
NPs do not undergo any phase transition in the considered tem-
perature range; this is similar to their bulk counterparts, which
display only one stable phase. The dependence of the potential
energy on the NP diameter is more pronounced for the smaller
NPs considered, while an almost marginal difference between
the NPs with 7 and 8 nm is noted. Nevertheless, the gap be-
tween the NP with 8 nm diameter and the bulk material is large
enough to suggest that finite-size effects as well as geometrical
deviations from a flat surface are strong for the considered di-
ameters.

With the knowledge of the coordination number and the poten-
tial energy per atom at hand, we can utilize our in-house QSAR
model [75] to assess qualitatively the effect of temperature and
NP size on toxicity. Although the model has been trained on
data for Ag, TiO,, and CuO NPs, its applicability to Au and Pt
NPs is justified since Ag, Au, and Pt are pure metallic NPs and
the corresponding bulk materials crystallize in FCC structures
where only the lattice spacing differs. We observe that the small
NPs at high temperatures have a larger score than the larger
ones at lower temperatures. The classification of the adverse
effects is “high” for the former and “low” for the latter ones.
The critical NP size for the classification is 4 nm for both Au
and Pt NPs.

The last atomic quantity we are exploring is the mean force
applied to an atom. The temperature dependence of this parame-
ter as a function of the NP diameter is shown in Figure 7 for Au
(Figure 7a) and Pt (Figure 7b) NPs. The mean force becomes
greater when the temperature is raised or the NP diameter is in-
creased. For a fixed NP diameter, a temperature reduction
results in smaller spatial fluctuations, expanded in size and
number of crystal zones, as well as more ordered NP configura-
tions that are closer to FCC structures. Thus, the required
restoring forces exerted on each atom to bring the NP to a
single-domain equilibrium crystal become smaller. Contrary to
the potential energy and the coordination number cases, there
are discontinuities in the mean force—temperature curves. A
smooth phenomenological relationship between the mean force
and the square root of the temperature can be derived from the
plotted data in both Au and Pt case. The dependence of the
mean force on the NP diameter appears to weaken for larger
sizes in the Au case, while it becomes stronger in the Pt case.

One common measure of surface roughness, as well as a proxy
to NP reactivity, is the surface area-to-volume ratio [83]. Its
variation with the NP diameter for Au (blue line) and Pt (orange
line) NPs at 100 K is shown in Figure 8. In general, it is ex-
pected to be inversely proportional to JN where N is the num-
ber of atoms in the NP. Indeed, the observed trends are in accor-
dance with this intuitive scaling law. There are only limited
differences between the Au and Pt NPs; the most notable one is
for the smallest NPs with 1 nm diameter. The temperature de-
pendence of the surface area-to-volume ratio for all NP diame-
ters is presented in Figure S3 of Supporting Information File 1.

Despite the phase transitions that the NPs undergo, the tempera-
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Figure 8: Variation of the surface area-to-volume ratio with the NP diameter for Au (blue points) and Pt (orange points) NPs. The temperature is

100 K.

ture dependence is weak, and a temperature increase leads to
marginally higher ratios. As a conclusion, the dependence of the
surface area-to-volume ratio on the NP diameter is consider-
ably stronger than on the temperature of the NP.

The modifications in the shape of the NPs are tracked by the
asphericity, acylindricity, and shape anisotropy parameters. The
temperature dependence of these three parameters for the Au
and Pt NPs with diameters of 1 nm (i.e., the smallest NPs) and
8 nm (i.e., the largest NPs) is shown in Figure 9. All three pa-

rameters span from zero to one. If the shape of a NP has a
spherical (tetrahedral) or higher symmetry, then the parameters
are equal to zero. In the case of a cylindrical symmetry, that is,
the symmetry that a rigid-rod NP possesses, the acylindricity is
zero, while the relative shape anisotropy is one. We observe a
distinct behaviour of the small NPs compared to the large ones.
In the latter case, the variation in the shape is weak, and minor
changes occur only near the transition temperature identified by
the Berry parameter. The actual values are close to zero, signi-
fying a slightly deformed spherical shape, which is also con-
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firmed by the atomistic configurations visualized in Figure
S1(C,D) and Figure S2(C,D) in Supporting Information File 1.
The slight increase in the asphericity parameter can be attri-
buted to the formation of a crystallized external surface, which
deviates from the curved amorphous surface structure above the
transition temperature. In the case of the small Pt NPs, the pa-
rameters are proportional to the temperature and vary from
values close to zero at 100 K, implying a spheroid, to values
close to 0.1 or higher, implying an irregular NP form. In the
case of the small Au NPs, a significant variability of the shape
parameters with temperature is observed around the mean
values of 0.11, 0.07, and 0.02 for, respectively, asphericity,
acylindricity and relative shape anisotropy. These findings are
also supported by the visualizations in Figure S1(A,B) and
Figure S2(A,B). The differences between the small and the
large NPs can be attributed to the higher cohesive energies of
the latter.

The simulated X-ray powder diffraction patterns of selected Au
and Pt NPs at two temperatures are shown in Figure 10. The NP
diameters are 1 nm (Figure 10a,c) and 8 nm (Figure 10b,d). The
considered temperatures for the Au NPs (Figure 10a,b) are
100 K (blue line) and 1200 K (orange line), while, for the Pt
NPs (Figure 10c,d), they are 100 K (blue line) and 1800 K
(orange line). Similar to the number density distribution, the ob-
tained diffraction pattern predictions at high temperature share
the same characteristics regardless of the NP diameter and the
chemical constitution. We observe two pairs of peaks and
valleys, which are rather broad and relatively wide. For the Au
NPs, the peaks are located at roughly 40° and 78°, for the Pt
NPs at approximately 41° and 76°. These peaks appear also in
diffraction patterns of bulk Au and Pt materials [81]. There are
no persistent features in the diffraction patterns, such as peaks
at multiples of characteristic length scales, and the profiles vali-
date the notion that the NPs are amorphous. The diffraction
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(panels a and c) and 8 nm (panels b and d). The temperatures of the Au NPs are 100 K (blue line) and 1200 K (orange line). The temperatures of the

Pt NPs are 100 K (blue line) and 1800 K (orange line).

patterns of the small NPs at 100 K are still similar to each other.
They are also analogous to the patterns at high temperature,
however, the peaks have become sharper, and a third distinct
peak at roughly 135° is clear now. These findings support the
idea that the small NPs are primarily amorphous, which can be
confirmed by inspecting the temperature dependence of the
Berry parameter. Much more pronounced differences are seen
in the diffraction patterns of the large NPs at 100 K. These NPs
have a high degree of crystallinity leading to multiple distinct
peaks in their diffraction patterns. Differences between the Au
and the Pt NPs are also noticeable since Au and Pt do not have
the same crystallization pathways. The two peaks observed at
high temperature are still present but much sharper. The new

peaks in the Au (Pt) pattern are consistent with the peaks
spotted at 63.032° (66.502°) and 111.486°-129.757°
(115.343°-120.212°) in the pattern of a periodic bulk Au (Pt)
FCC unit cell.

In Figure 11a, the variation of the surface energy as a function
of the NP diameter for Au and Pt NPs at 300 K is shown. This
quantity offers an assessment of comparative stability and
potential reactivity. The surface energy is determined by
subtracting the potential energy of the equivalent bulk structure,
for the same number of atoms, from the configuration energy of
the NP. The resulting value is then divided by the surface area
of the NP [84]. In general, a high value of the surface energy in-
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dicates a high potential for reactivity. We observe that the sur-
face energy decreases with bigger NP diameters. Thus, the
lesser structured amorphous spherical surfaces of the small NPs
have a higher potential reactivity than the more organized crys-
talline multifaceted surfaces of the large NPs. This is in agree-
ment with previous findings for Ag NPs with a similar diame-
ter range [49]. It should be noted that the considered variations
in the NP size are rather subtle and below detection for current
analytical capabilities [85]. There are slight disparities between
Au and Pt NPs of the same diameter, indicating that reactivity
differences are expected to be limited. The surface energy of the
NPs can be lowered by resorting to thiolate protection of the
surface or by making use of other passivating agents. In Figure
S4 of Supporting Information File 1, we provide the tempera-
ture variation of the surface energy for Au and Pt NPs with NP
diameters from 1 to 8 nm. The dependence on the temperature
is much less pronounced than the dependence on the NP diame-
ter. In Figure 11b, the variation of the water—-NP potential
energy with the NP diameter for Au and Pt NPs at 300 K is
shown. In most applications, NPs suspended in biological fluids
and aqueous solutions can serve as a proxy system that is easy
to control [86]. The NPs are either bare or coated with a corona,
the coverage of which may fluctuate, again leaving the NP sur-
face exposed to the solvent [87]. Thus, it is important to investi-
gate the water—NP energetic interactions. A quadratic depen-
dence of the water—NP potential energy on the diameter is iden-
tified; it is related to the scaling of the available NP surface for
interactions with the surrounding water molecules with their di-
ameter. Although both Au and Pt NPs interact favourably with

the water solvent, the interactions are much stronger for the Pt

NPs compared to the Au NPs. Therefore, the expected struc-
tural modifications and potential partial oxidation in the Pt case
are going to be stronger than in the Au case. Although partial
oxidation can be addressed directly via molecular simulations
by means of reactive force fields [88], the size of the systems
and the number of contained molecules render such an ap-

proach almost computationally unattainable.

Conclusion

In the present simulation study, we focused on the thermal be-
haviour of Au and Pt NPs experiencing rapid cooling. Both Au
and Pt bulk materials share the same FCC unit cell structure.
The primary goal was to discern the morphological changes
occurring in the NPs. An additional aim was to quantify the in-
fluence of temperature, chemical composition, and NP size on
these transformations. The NPs were initially spherical, with di-
ameters ranging from 1 to 8 nm, and melted. Because of the
small size of the NPs under consideration, the structural modifi-
cations observed pose challenges for experimental techniques.
The adopted approach can be readily applied to investigate
other metallic and metal oxide nanomaterials.

Relatively large NPs, with a diameter greater than 3 nm, exhib-
it a transition temperature from a melted/amorphous state to a
highly crystalline one that is nearly independent on the NP di-
ameter. Nevertheless, it notably differs from the corresponding
temperature observed for the bulk materials. The transition tem-
perature varies significantly with size for NPs with diameters
below 3 nm. Comparing Au and Pt NPs, the latter exhibit a

higher degree of crystallinity under similar conditions, as
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revealed by the Ackland—Jones parameter and the atomic coor-
dination number. This behaviour is attributed to the stronger
cohesive forces driving the crystallization process; this is sup-
ported by inspecting the atomic potential energy and atomic
forces in the NPs. Moreover, the simulated X-ray powder
diffraction patterns of the nanomaterials show the formation of
crystalline phases at low temperatures with the same diffraction
patterns as the bulk materials. Large NPs present a multifaceted
crystal surface, maintaining a nearly constant shape despite
temperature fluctuations. In contrast, small NPs feature a
smoother surface, while their shape varies considerably with
temperature as quantified by the acylindricity and asphericity
shape parameters. Indirect evidence of NP toxicity and reactivi-
ty was obtained by examining surface quantities such as the
potential energy of surface atoms, the water—NP surface energy,
and some descriptors that are commonly used in nano-QSAR
(quantitative structure-activity relationship) models. The toxici-
ty and reactivity are expected to be inversely proportional to the
NP size but proportional to the temperature, with the former
showing a more pronounced effect. Based on our results, the Pt

NPs are predicted to be more reactive than the Au NPs.

Supporting Information

The file contains four figures. The first two are
visualizations of Au and Pt NPs with varying temperature
and diameter. The third figure depicts the temperature
dependence of surface area-to-volume ratio for Au and Pt
NPs. The temperature dependence of the average surface
potential energy per atom for Au and Pt NPs is shown in
the last figure.

Supporting Information File 1

Additional figures.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-81-S1.pdf]
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Abstract

Metal oxide nanoparticles (MONPs) are widely used in medicine and environmental remediation because of their unique properties.
However, their size, surface area, and reactivity can cause toxicity, potentially leading to oxidative stress, inflammation, and cellu-
lar or DNA damage. In this study, a nano-quantitative structure—toxicity relationship (nano-QSTR) model was initially developed to
assess zebrafish toxicity for 24 MONPs. Previously established 23 first- and second-generation periodic table descriptors, along
with five newly proposed third-generation descriptors derived from the periodic table, were employed. Subsequently, to enhance
the quality and predictive capability of the nano-QSTR model, a nano-quantitative read across structure—toxicity relationship (nano-
gRASTR) model was created. This model integrated read-across descriptors with modeled descriptors from the nano-QSTR ap-
proach. The nano-qRASTR model, featuring three attributes, outperformed the previously reported simple QSTR model, despite
having one less MONP. This study highlights the effective utilization of the nano-qRASTR algorithm in situations with limited data
for modeling, demonstrating superior goodness-of-fit, robustness, and predictability (R%2 =0.81, 0% 00 = 0.70, O%g1/R%pRrED =
0.76) compared to simple QSTR models. Finally, the developed nano-qRASTR model was applied to predict toxicity data for an

external dataset comprising 35 MONPs, addressing gaps in zebrafish toxicity assessment.

Introduction
Nanomaterials, which are defined as materials that fall in the  because of their stable and unique performance, small size, and
range of 1-100 nanometers two-dimensionally, are commonly large surface area [1]. Nanomaterials encompass a range of

used in the fields of biomedicine, catalysis, and electricity  substances that can be categorized as carbon-based, metal
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oxides, semiconductors, polymers, clays, emulsions, or metals
[2]. Metal oxide nanoparticles (MONPs) are metallic oxides
that exist within the nanoscale range and can be intentionally
created or occur naturally [3]. Under the rapid development of
nanotechnology, more and more MONPs including zinc, iron,
titanium, and copper are being explored in therapeutic applica-
tions such as drug delivery, bioimaging, biosensing, bioelec-
tronics, and tissue engineering applications [4-6]. Simultaneous-
ly, many of these particles also presented strong antibacterial,
antifungal, antidiabetic, antioxidant, anticancer, and photocata-
lytic activities [7-9]. Besides the medical field, they are also
commonly used in commercial products such as fuel cells and
plastics, and environmental applications such as analysis,
sensing, remediation, and amendments. However, it is concern-
ing that the environment is affected because of the enormous

production and inadvertent use of nanomaterials.

Nanoparticles have been identified in wastewater streams,
drinking water sources, and tap water in amounts ranging from
nanograms to micrograms per liter [10]. Also, it was reported
that MONPs have been found in human tissues such as brain,
heart, and liver [11] and that occupational exposure to metal
oxide nanomaterials increased oxidative stress biomarkers,
suggesting potential DNA oxidative damage and lipid peroxida-
tion [12]. Given the limited data available from human studies,
researchers have turned to zebrafish and their embryos for toxi-
cological investigations. Zebrafish embryos are commonly used
to identify environmental heavy metal pollution [13]. As a
multicellular organism, zebrafish can offer more comprehen-
sive insights into nanomaterials’ kinetics, migration, and trans-
formation than in vitro cell culture assays [14]. Meanwhile, it is
considered an equivalent model for investigating develop-
mental toxicity and genotoxicity because around 85% of its

genes are comparable to those found in humans [15].

The potential harm to human health posed by newly created
MONPs, particularly those used in biomedical applications,
necessitates the implementation of safety-by-design strategies
for these materials. The potential to lower development time-
frames, costs associated with experiments, and late-stage attri-
tion, in addition to ethical, societal, and regulatory pressures to
minimize animal testing, make it worthwhile to create computa-
tional models that can accurately predict the toxic hazard of
novel MONPs before experimental testing and, ideally, before
synthesis, based on the intrinsic, synthesis-controlled properties
of the MONPs [16-18]. Over the years, QSAR/QSPR/QSTR
techniques have been employed to establish correlations be-
tween various characteristics of nanomaterials and their toxici-
ty [19-23]. Nano-quantitative read-across structure—toxicity
relationship (nano-qRASTR) models are an advanced approach

that builds upon the principles of nano-quantitative
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structure—toxicity relationship (nano-QSTR) models. These
models integrate read-across techniques with traditional quanti-
tative structure—activity relationship (QSAR) methods to en-
hance the predictive capabilities, particularly in datasets with
limited data points [19].

Using quantum chemical descriptors, researchers have created
several models to evaluate the toxicity of MONPs to different
species covering multiple endpoints, and their work has pro-
duced significant and trustworthy findings [24-27]. However,
significant computational resources and time are needed for the
usage of quantum descriptors for modeling purposes. Not only
that, but the reproducibility of quantum descriptors is also an
issue because of the usage of different quantum methods and
basis sets [28,29]. In contrast, periodic table descriptors were
derived or directly obtained from the periodic table. They were
able to produce models that were comparable to, or even better
than, those of quantum-based descriptors in many cases [30-32],
which in turn helped to reduce the amount of time needed for
computation followed by without using any computational

resources.

However, the periodic descriptors of the previous first and
second generations have their limitation such as being unable to
deal with the influential observations that exist in the present
dataset. In this study, we have proposed five third-generation
periodic table descriptors along with the application on
modeling enzyme inhibition of the zebrafish hatching enzyme
ZHE]1 with the nano-qRASTR approach to improve the model
quality, predictability, and reliability significantly.

Materials and Methods

Dataset

The percentage decrease in enzymatic activity expressed in the
form of enzyme inhibition to zebrafish in % (%El eprafish) Of the
zebrafish hatching enzyme (ZHE1) of 24 MONPs is utilized for
the modeling study [33]. The experimental data (%EI eprafish)
ranged from —1.04 (Co30y) to 44.72 (Cry03).

Descriptor calculation

Models were developed based on the fundamental properties of
these metal oxides that can be obtained from the periodic table.
A total of 28 periodic table descriptors were utilized for nano-
QSTR followed by nano-qRASTR modeling. The list of all
derived descriptors along with their meaning and symbol is
given in Table 1. Periodic table descriptors offer the advantage
of rapid acquisition without the need for extensive calculations
or software utilization, unlike quantum chemical descriptors. In
our earlier work, we have proposed seven and sixteen descrip-
tors, which were classified as first- and second-generation peri-

odic table descriptors, respectively [31,34]. In this study, we
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Table 1: List of periodic table descriptors used for model development.

Description

molecular weight of the metal oxide

number of metal atoms per molecule

number of oxygen atoms per molecule

metal electronegativity

total metal electronegativity in the specific metal oxide

total metal electronegativity in the specific metal oxide relative to the
number of oxygen atoms

oxidation number of the metal

atomic number of the metal
number of valence electrons of the metal
period number of the metal

core environment of the metal, defined by the ratio of the number of
core electrons to the number of valence electrons

valence of the metal

core count, gives a measure of the molecular bulk

electronegativity count of the metal

electronegativity count of oxygen

total electronegativity count of the metal oxide

summation of epsilon relative to the number of atoms in the molecule
square of summation of alpha, gives a measure of molecular bulk

No. Generation Mathematical expression

1 first generation MW

2 Nmetal

3 Noxy

4 X

5 2X

6 Y x/nO

7 Xox

8 second generation  Zpetal

9 Z'metal

10 PNmetal

11 A = (Zmetal = Z'metal)/Z’metal

12 M =1/(PNmetai = 1) -
13 Vmetal

14 Ometal = A4 -
15 2 Ometal = OmetalNmetal -
16 2 Oloxy = Noxy'0.33 —
17 2 0=} Ometal + X Coxy

18 Emetal = ~Ometal + (0.3"Z'metal)

19 Eoxy = —Ooxy + (0.3:Z%0yy)

20 2 & = Emetal’Nmetal + €oxy"Noxy

21 Y elN

22 (Y2

23 (ZeiN)?

24 third generation ap

25 Tion

26 Ometal

27 Ea

28 14

have proposed five more periodic table descriptors, termed
third-generation periodic table descriptors. These are atomic
radius, crystal ionic radii, density of the metal, electron affinity,
and ionization energy. The atomic radius is a fundamental prop-
erty that influences many physical and chemical characteristics
of an element. In the context of nanoparticles, the size of the
metal atoms directly affects the overall size and surface area of
the nanoparticles, which are critical factors in their reactivity
and interaction with other materials. The ionic radius is essen-
tial for understanding the metal’s behavior in different oxida-
tion states. This is particularly relevant in nanoparticle chem-
istry, where redox reactions are common. The density of a metal
is a macroscopic property that influences the mass and volume
of nanoparticles. Electron affinity measures the energy change
when an electron is added to a neutral atom, reflecting the ten-

dency of the metal to gain electrons. The first ionization energy

summation of epsilon divided by the number of atoms squared

atomic radius of the metal (pm)

crystal ionic radius of the metal (pm)
density of the metal (g/cmd)

electron affinity (eV)

first ionization energy of the metal (eV)

is the energy required to remove the outermost electron from a
neutral atom, which is a critical factor in determining the
metal’s reactivity and stability. For the present study, descrip-
tors of all three generations are computed and employed for
modeling. All descriptor values can be found in Supporting
Information File 1. Also, an example calculation of all descrip-
tors for Al,Oj3 is given in Supporting Information File 1.

Splitting of the dataset

The selection of training and test sets was based on the prin-
cipal component analysis score with guaranteed uniform distri-
bution, as we previously reported [34]. In this study, we used
the same dataset-splitting method. In our previous study, we re-
moved compound CoO because of outlier behavior that signifi-
cantly impacted our model quality. However, as we have pro-

posed five new third-generation periodic table descriptors for
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modeling, in the present study we have included CoO to check
the modeling, as well as the prediction capability, of the newly
introduced descriptors along with the existing ones. The details
of training and test sets can be found in Supporting Information
File 1.

nano-QSTR model development
The best subset selection (BSS) approach was used to identify
the optimal combination of descriptors. The BSS tool can be

accessed at https://teqip.jdvu.ac.in/QSAR_Tools/. It systemati-

cally evaluates all possible subsets of descriptors to determine
the best combination based on a specified criterion, providing a
comprehensive search for the most predictive model. This
method was preferred over stepwise regression analysis through
backward elimination because BSS ensures that the chosen
subset is truly optimal by considering all possible models,
whereas stepwise regression may overlook some combinations
because of its iterative nature. Afterward, the selected descrip-
tors were employed to develop the final model using a multiple
linear regression (MLR) statistical tool, which can be accessed
at https://teqip.jdvu.ac.in/QSAR_Tools/ [35]. Pearson correla-
tion among descriptors was also checked, which aimed to create

a more dependable model and reduce the possibility of intercor-
relation among the descriptors.

Calculation of RASTR descriptors and development
of nano-qRASTR model

RASTR is a method that integrates the ideas of read-across and
QSTR for g-RASTR analysis (here we are modeling nanoma-
terials, hence the term nano-qRASTR) [36]. This method calcu-
lates similarity and error-based RASTR descriptors for training
and test sets. The RASAR-Desc-Calc-v2.0 tool employs three
similarity-based techniques to produce 15 descriptors, namely,
SD_Activity, SE, CVact, MaxPos, MaxNeg, Abs Diff,
Avg. Sim, SD_Similarity, CVsim, gm (Banerjee-Roy coeffi-
cient), gmAvg. Sim, gmSD_Similarity, Pos.Avg.Sim, and
Neg.Avg.Sim. These descriptors are essential for identifying
structural similarities and predicting biological activity. The
tool’s algorithm uses the weighted standard deviation of pre-
dicted values, the coefficient of variation of computed predic-
tions, the average similarity level of close training compounds
for each query molecule, and other advanced metrics to ensure
accurate predictions. Further details about the tool and its fea-

tures can be found at https://sites.google.com/jadavpuruniver-

sity.in/dtc-lab-software/home [37].

After computing the RASTR descriptors for both the training
and test sets, these descriptors were merged with existing
periodic table descriptors. Feature selection was then per-
formed using the BestSubsetSelection_v2.1 tool, which can be
found at https://teqip.jdvu.ac.in/QSAR_Tools/. This tool

Beilstein J. Nanotechnol. 2024, 15, 1142—1152.

produces a comprehensive set of model combinations for a
user-specified number of descriptors while ensuring that the
intercorrelation does not exceed a certain threshold. The MLR-
based nano-qRASTR model was evaluated using the MLRPlus-
Validation 1.3 software package, which can be found at https://
teqip.jdvu.ac.in/QSAR_Tools/.

Validation, applicability domain, and
Y-randomization

The nano-QSTR model and the nano-qRASTR model were
validated through measurements of the goodness-of-fit and the
internal validation tool of leave-one-out cross-validation (Q2).
The goodness-of-fit of the models was measured using the coef-
ficient of determination (R2), which indicates how well the
model’s predictions match the actual data. Internal validation
was performed using the leave-one-out cross-validation (LOO-
CV) method:

2
Z (Y obs(training) — Ypred(training) )

—\2
Z(Yobs(training) - Ytraining )

2
Oroo =1-

This technique involves removing one data point at a time from
the dataset, building the model on the remaining data, and then
predicting the excluded data point. The process is repeated for
each data point, and the Q% metric is calculated to assess the
model’s predictive accuracy. Details of the validation metrics
can be found in our previous works [17,19,23,36].

We also examined the applicability domain (AD) using the
leverage technique to generate the Williams plot [38]. A
Y-randomization study was also performed to determine if the
produced model was generated by chance or not, which entailed
performing the model’s calculations 100 times by rearranging
the dependent variables while maintaining the original indepen-
dent variables constant [39]. A Y-randomization study has been
performed employing “MLR Y-Randomization Test 1.2”, avail-
able at https://teqip.jdvu.ac.in/QSAR_Tools/. Following the

Y-randomization procedure, the study calculated the mean

values of R? and Q2 for the 100 randomly generated models.

External dataset for data gap filling and prediction
reliability

Our prepared external dataset consists of 35 MONPs that were
used to predict toxicity for zebrafish. External prediction quality
is also checked through the “Prediction Reliability Tool” that
employs the AD to our external prediction that is evaluated by
three criteria: (1) The mean absolute error is calculated for
leave-one-out predictions using the ten most similar training
compounds for each query molecule. (2) The standardization

approach determines the applicability domain based on simi-
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larity. (3) The proximity of the predicted value of the query
compound to the experimental mean training response is evalu-
ated [40].

Results and Discussion nano-QSTR toxicity model
Equation 1 has been developed employing the BSS-MLR ap-
proach for the inhibition of ZHE1 hatching enzyme activity:

Y%ELprafish =105.05(£16.74) - 5.66(£1.94)- >«
+0.14(20.04)-(Ya)’ - 0.44(£0.08) a

(H
Nygin =16,R*=0.72, R2; =0.65, 0?50 =0.51;
train —* P> T Y- 14 Radjusted ~ Y- 7QLOO_ il

Niest =8, R2 =0.72, 03, = 0.72, 0%, = 0.70

The first descriptor ZX represents the total metal electronega-
tivity in a specific metal oxide and shows a negative correlation
to the inhibition of the ZHE 1 hatching enzyme. In this case, an
increase in electronegativity will result in a decrease in toxicity.
For instance, SnO; has a %EI of 7.12 while having a total metal
electronegativity of 3.56. In contrast, the total metal electroneg-
ativity of WO3 is 1.65, and its observed %Elep afish 1S 42.72.
The descriptor (Zot)z gives a measure of the molecular bulk,
which has a positive correlation to the enzyme’s activity. CeO,
has an (Zot)z value of 12.50 while it has a %EI value of 2.56;
in contrast, TiO; has a (Z OL)2 value of 143.76 and a %EI value
of 13.28. The last descriptor in our nano-QSTR model is the
atomic radius, a,. The model presents a negative coefficient for
the atomic radius (—0.439), suggesting that nanomaterials
composed of atoms with larger radii are associated with a de-
crease in %El ¢prafish- A larger atomic radius might indicate
weaker bonding and less effective interaction with the enzyme
or its substrate, leading to less enzyme inhibition. This could be
due to the diffuse nature of the outer electrons in larger atoms,
which might reduce the efficiency of electronic interactions
essential for binding or catalytic activity.

Our nano-QSTR model suggests that the enzymatic activity of
ZHEI in zebrafish is influenced negatively by the total electro-
negativity of metals and the atomic radius of the nanomaterial
components but positively by the molecular bulk of the nano-
materials. Electronegativity and atomic size determine the reac-
tivity and contact strength of nanomaterials with biological
systems, whereas the molecule bulk affects the mechanism of

inhibition through steric effects.

nano-qRASTR toxicity model
To improve the statistical quality of the nano-QSTR models, we
have employed read-across descriptors employing modeled

descriptors. Later, all descriptors are merged together and em-
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ployed for modeling using the BSS-MLR approach. Equation 2
presents the developed nano-qRASTR model:

YELgpragish = ~2-01(+4.38)~0.17(£0.06)- (Yo}’
+5.10(+0.84)-SE(LK))

—10.93(+5.83)-CVsim (LK) -

2 2 2
Ntrain = 16,R = 081, Radjusted :0.77, QLOO 2070,

Nyt =8, R* =0.81, 02, =0.76, 02, = 0.74

Like the nano-QSTR model, the nano-qRASTR model also has
the (Zoc)z descriptor with a positive contribution to the toxici-
ty. Also, there are two new descriptors from RASTR, namely,
SE(LK) and CVsim(LK). “SE” stands for standard uncertainty
in the observed response values for the chosen proximate source
compounds related to each reference compound. It has a posi-
tive contribution to our model with a coefficient of +5.10. The
effect of SE(LK) can also be observed in our training set. ZnO
has the highest %EI value (42.72) in our training set, while it
also has the highest SE(LK) value of 11.47. Conversely, In,O3
has a SE(LK) value of 2.21, and the experimental %EI value is
only 7.12. CVsim(LK), which stands for the coefficient of vari-
ation of the similarity values, has a negative contribution to the
model. In our dataset, CVsim(LK) did not show a large varia-
tion in the values. However, we can observe that Al,O3 has a
relatively large CVsim(LK) value (1.25), while MnyO3 has a
relatively small CVsim(LK) value of 1.06; their corresponding
%EI values are 3.44 and 17.2, respectively.

Quality of the nano-gRASTR model

The quality of the nano-qRASTR model was also checked ac-
cording to the criterion by Golbraikh and Tropsha, with all the
metrics falling within the stipulated threshold [41] as follows:

0% =0.67,R* =0.81,|i —1§?| = 0.17,k = 0.90,k" = 0.98.

The Y-randomization test was also performed to validate if the
model was generated by chance. After shuffling all descriptor
values, 100 random models were generated. As a result, the av-
erage R? value is 0.20, while the average Q2 value is —0.60,
which cannot qualify the threshold of 0.5 for both parameters,
suggesting that our original model was not developed by chance
(details in Supporting Information File 1).

The scatter plot (Figure 1a) suggests that all MONPs are very

close to the best-fit line concerning the experimental toxicity

and predicted toxicity values, which further supports the
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Figure 1: Scatter plot (a) and Williams plot (b) for the nano-qRASTR
model. The red dashed line indicates the highest Hat or leverage
value, that is, the h* cut-off line.

validity of the model. A Williams plot (Figure 1b) was used to
verify the prediction reliability by carrying out the applicability
domain analysis using the leverage approach. Our result indi-

Ta)? -
SE(LK) o

CVsim(LK) . -
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cates that one training compound (Fe3O,) is above the leverage
critical value. It will be considered as influential X outlier.
There is also a test date that has a higher value than 2* and will

be considered as outside of the AD.

The SHAP plot (Figure 2) indicates that (Z(x)z has a predomi-
nantly positive effect on the predictions of the model, as the
SHAP value increases with increased values of (ZOL)Z. The
descriptor SE(LK) shows a more pronounced positive influence
on the predicted values. This is consistent with the positive
coefficient in our regression equation, and the slight trend from
blue to red dots suggests a correlation between feature values
and impact. Conversely, CVsim(LK) predominantly affects the
model predictions negatively, as evidenced by its SHAP values
being mainly on the left side.

Mechanisms of ZHE1 enzyme inhibition

The incorporation of third-generation descriptors significantly
improves the predictive power of the nano-qRASTR model.
MONPs with higher metal electronegativity may interfere more
strongly with cellular functions of zebrafish, but this does not
invariably heighten toxicity; in some instances, it may mitigate
oxidative stress and membrane disruption, thereby diminishing
toxic effects. Conversely, MONPs with larger atomic radii and
crystal ionic radii tend to exhibit a lower surface area-to-volume
ratio, which can reduce their cellular interactions and uptake.
This reduction in uptake can lead to less cellular dysfunction
and toxicity. Larger atomic radii may result in MONPs that are
less likely to penetrate cell membranes, thereby decreasing their
potential to cause cellular damage and toxicity. However,
MONPs with increased molecular bulk can enhance toxicity via
several mechanisms. They can physically damage cell mem-
branes, potentially causing cell death. Their size may lead to al-

ternative, more detrimental cellular uptake pathways or provoke

High

-10 0

10

T T

30 Low

20

SHAP value

Figure 2: SHAP plot for the nano-qRASTR model.
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harmful responses by accumulating on cell surfaces. Such
MONPs might also elevate oxidative stress by triggering the
production of reactive oxygen species, which damage cellular
components. They can obstruct vital biological processes and,
through aggregation, cause localized toxicity to zebrafish. Addi-
tionally, their size affects biodistribution and clearance, with
larger MONPs tending to accumulate within the zebrafish or-
ganism, further exacerbating toxicity (Figure 3). In zebrafish,
these mechanisms can manifest in several ways, affecting not
only individual cells but also developmental processes. The
implications for zebrafish embryos include potential deformi-
ties, impaired development, and mortality. Employing zebrafish
as a biological model facilitates the evaluation of toxicity,
offering an integrative perspective on the hazards that MONPs

may present in aquatic ecosystems and living organisms.

Comparison with previously published models

Compared to our previous nano-QSTR model (QEOO =0.68,
Q%l =0.74, and ngz = 0.70) [34], the current nano-qRASTR
model demonstrates improvements in these three critical
metrics with enhancements of 0.01, 0.02, and 0.05, respectively.

Although these improvements might seem minimal, it is crucial

Beilstein J. Nanotechnol. 2024, 15, 1142-1152.

to note that in the preceding study, we were able to model 23
MONPs, excluding CoO, which significantly impacted the
quality of the model because of its outlier behavior. In contrast,
the current study successfully models all 24 MONPs without
compromising the model’s quality and predictability, leading to
improved results. This suggests that the nano-qRASTR ap-
proach is a suitable choice for modeling in cases involving

small and complex datasets.

External dataset prediction

Predictions for 27 out of 35 MONPs were within the AD, indi-
cating that the nano-qRASTR model confidently predicts
77.14% of the MONPs (Table 2). However, predictions for
eight MONPs were considered unreliable as they fell outside
the AD. For the MONPs within the AD, the predicted enzyme
inhibition (%EI) in zebrafish ranges from 32.42% to 76.16%.
Within this spectrum, Ta;O3 exhibits the highest toxicity, while
V,03 shows the least.

Conclusion
We have investigated the toxicity of MONPs against zebrafish
using a nano-qRASTR model with newly introduced third-gen-
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Figure 3: Mechanism of zebrafish hatching enzyme inhibition by MONPs according to the developed models. The figure is “Created with
BioRender.com” (https://biorender.com/) with a purchased academic license. This content is not subject to CC BY 4.0.
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Table 2: Predicted values for an external dataset employing the nano-qRASTR model.

Metal oxide Modeled descriptors
(Y2 SE(LK)

Ago0 544.29 8.58
Aus0 994.14 15.14
Auo03 1036.20 15.14
BaO 32.83 9.87
BeO 1.77 10.01
BirO3 52.27 6.58
CaO 11.09 9.60
Cdo 36.97 9.85
Co203 86.92 6.49
Gap03 52.02 6.58
GeOs 8.96 9.97
HfO» 58.68 9.93
HgO 66.10 8.65
IrOs 84.46 9.00
MgO 8.01 9.59
MnOo 20.19 9.99
Mo2O3 461.82 9.80
NboO3 440.58 9.22
Os0» 64.96 9.45
PbO 17.89 9.09
PbO, 20.79 9.14
PdO 0.52 9.58
PtO 247.43 10.63
PtO, 257.92 10.63
ReO» 63.36 8.74
Rh2O3 528.54 11.23
RuO» 130.19 8.92
Sco03 53.63 7.62
SrO 23.33 9.88
TaxO3 230.74 9.62
TcO2 33.47 9.66
TI,O 115.13 7.09
TloO3 129.73 7.12
V203 11.49 7.84
WO, 61.78 8.65

eration periodic table descriptors along with first- and second-
generation ones. Our results highlight the significance of specif-
ic nanoparticle properties influencing the degree of zebrafish
toxicity (i.e., the degree of enzyme inhibition), including elec-
tronegativity, molecular bulk, and atomic radius of the metal.
The developed nano-qRASTR model provides a robust frame-
work for predicting the toxic effects of MONPs based on these
fundamental characteristics. Additionally, the introduction of
nano-qRASTR model represents a significant methodological
enhancement, offering improved predictive accuracy and relia-

bility over previous approaches.

Predicted AD status

%Elzebrafish
CVsim (LK)
0.73 128.34 out
2.1 225.01 out
2.1 232.33 out
0.58 47.63 in
0.57 43.14 in
0.75 32.45 in
0.54 42.89 in
0.43 49.94 in
0.98 35.54 in
0.73 32.63 in
0.56 44.24 in
0.68 51.40 in
0.33 49.92 in
0.43 53.80 in
0.54 42.28 in
0.54 46.52 iln
1.05 116.71 out
0.87 112.16 out
0.46 52.45 in
0.36 43.42 in
0.35 44.33 in
0.52 41.21 in
1.34 80.54 out
1.34 82.36 out
0.28 50.52 in
1.36 132.23 out
0.85 56.79 in
0.34 42.42 in
0.56 46.21 in
1.00 76.16 in
0.41 48.52 in
0.57 47.95 in
0.51 51.25 in
0.69 3242 in
0.54 46.92 in

The adoption of third-generation periodic table descriptors has
demonstrated that even in the absence of complex quantum
chemical calculations, we can achieve high predictive accuracy.
This simplification of the descriptor calculation process not
only makes the approach more accessible. It also significantly
reduces the computational resources required, thus, making it a
viable option for rapid screening of nanoparticle toxicity. Our
study’s ability to accurately predict the toxicity of a broad range
of MONPs to zebrafish highlights its potential as a valuable tool
in the safety assessment of nanomaterials. The prediction of 35

diverse MONPs as external dataset also helped to fill the toxici-
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ty data gap of zebrafish. The model’s capability to identify
compounds with potentially high toxicity offers a pathway to
preemptively address the environmental risk assessment and
health impacts of nanomaterials. However, only a relatively
small number of nanoparticles is included in our training set.
While our model shows promising predictive power, the limited
diversity and quantity of the training data could restrict the
generalizability and robustness of the model. Furthermore, we
have only proposed five new third-generation periodic table
descriptors. Future work can focus on developing more diverse
molecular descriptors with higher effectiveness. Including addi-
tional descriptors that capture other critical physicochemical
properties could provide a more comprehensive understanding
of the mechanisms driving MONP toxicity.

The findings of this study have significant implications for the
use of MONPs in medical applications. Nanoparticles are
increasingly explored regarding drug delivery, imaging, and
therapeutic purposes. Understanding the toxicity mechanisms
and predicting potential adverse effects of MONPs can guide
the design of safer nanomedicines. MONPs are also being
utilized in environmental remediation efforts to remove pollu-
tants from water and soil. The insights gained from this study
can help in selecting nanoparticles that are effective in remedia-
tion without posing significant risks to aquatic life and ecosys-
tems. For example, nanoparticles with lower toxicity profiles, as
predicted by the nano-qRASTR model, can be prioritized for
use in environmental cleanup projects. Additionally, the explo-
ration of MONP toxicity through this advanced modeling aligns
with the broader goals of sustainable nanotechnology. The
nano-qRASTR model aims to reduce the reliance on animal
testing by providing a robust in silico method for toxicity
prediction, aligning with the ethical goal of reducing animal use
in scientific research. By providing a means to predict and miti-
gate the adverse effects of nanomaterials before they are synthe-
sized and used in applications, this study contributes to the real-
ization of safer nanomaterials production. The complete study is
also incorporated into the QSAR model reporting format
(QMRF) proposed by the Organization for Economic Coopera-
tion and Development (OECD), which is provided as Support-
ing Information File 2. The QMRF will offer a standardized
framework of the reported g-RASTR models, ensuring consis-
tency and comparability across studies. With detailed documen-
tation of the model, it promotes transparency, helping others
understand the model’s assumptions and limitations. The provi-
ded QMREF aligns with OECD principles for validation, facili-
tating regulatory acceptance, and use in decision-making. Addi-
tionally, the QMRF will support communication among scien-
tists and regulators, improve model quality by promoting best
practices, and aid in the development of non-animal testing

methods for chemical safety assessments.

Beilstein J. Nanotechnol. 2024, 15, 1142—1152.
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Abstract

Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface
favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the
material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We
focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as,
toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive clas-
sical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO sur-
faces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA ex-
hibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between
the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper
understanding of GO’s environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface

functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.

Introduction
Graphene oxide (GO) has many potential applications in elec- sheet with surface oxygen functional groups such as epoxide,
tronics, advanced materials, bio-medicine, energy, agriculture, ketone, hydroxy, carboxyl, ether, and carbonyl groups. The

and environmental technology [1-3]. It consists of a graphene sheets present different levels of oxidation as well as specific
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structures such as edges, wrinkles, and holes. Because of its sur-
face chemistry, GO has better water solubility than graphene;
furthermore, it is straightforward to be functionalized and syn-
thesized on larger scales [4]. Nowadays, there is an increasing
commercial availability of graphene-related products and
companies with large-scale production capabilities of these ma-
terials, which includes GO as an intermediate or final product
[5-7]. Because of the growing industrial and technological rele-
vance of GO, it is necessary to ensure its safe application,
disposal, and regulation. This begins with understanding the be-
havior of this material in the environment and its impact on

living organisms.

Once in a biological/environmental medium, GO undergoes
processes such as aggregation, phototransformation, and degra-
dation [8]. Furthermore, because of the presence of sites for dif-
ferent types of interaction mechanisms (i.e., hydrogen bonding,
van der Waals interaction, and 7—m stacking), its structure
favors the adsorption of different molecules (i.e., biomolecules
and organic pollutants) and metal ions [8-10]. The physico-
chemical changes and interactions undergone by GO in the
environment greatly influence the biological effects of this ma-
terial. Recently, Bortolozzo et al. [11] showed that GO degrada-
tion by sodium hypochlorite resulted in the mitigation of GO
toxicity to Caenorhabditis elegans. Ouyang et al. [12] showed
that small molecules (e.g., polycyclic aromatic hydrocarbons)
and heavy metals, present in the natural water as nanocolloids,
potentiate GO’s phytotoxicity. Moreover, biomolecules such as
polysaccharides, proteins, lipids, and humic acids may interact
with the material’s surface, influencing GO’s colloidal stability,
reactivity, and interactions with living organisms. As a conse-
quence, these interactions can lead to diverse effects, ranging
from the mitigation of toxicity [12-14] to the enhancement of its
toxicity [15,16]. However, microscopic understanding of these

processes is missing.

Tannic acid (TA) is an environmentally abundant and commer-
cially available polyphenol with relevant industrial and techno-
logical applications [17-20]. TA’s structure comprises five
digallic acid units ester-linked to a glucose core. These pyro-
gallol hydroxy groups participate in hydrogen bonding as well
as hydrophobic and electrostatic interactions; also, they are re-
sponsible for TA’s high solubility, reactivity to metal cations,
binding capacity to molecules and surfaces, and significant
reducing and radical scavenging properties [19,21-24]. This
range of characteristics made TA attractive to nanomaterial syn-
thesis and functionalization for applications in nanomedicine,
sensors, electronics, and composites [25-27]. In these different
fields, TA has been applied in green alternative methods
of GO synthesis and physicochemical modifications (e.g.,

reduction and functionalization) [28-30]. In this sense, studying
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the interaction between TA and GO and the effects on
the material toxicity is of technological and environmental rele-

vance.

The nematode Caenorhabditis elegans is a well-established in
vivo model in human health science and has been considered a
promising model in studies of environmental toxicology [31].
Because of its abundance in the environment, its important role
in the decomposition and cycling of nutrients, and its sensi-
bility to environmentally relevant concentrations of hazard
products, C. elegans is considered a good environmental indi-
cator of pollution [32]. Among the advantages of using this or-
ganism are growth and rapid reproductive cycle, translucent
body, well-known genome, and availability of commercializa-
tion of different genetically modified strains [33]. Recent
studies of our research group showed that GO presents lethal
toxic effects to C. elegans at low concentrations (e.g., above
0.1 mg-L"]) [11,14]; the main mechanisms of toxicity reported
in literature are damage to intestinal cavity and secondary
organs, such as reproductive organs and neurons [14,34,35].
The sensibility of the nematode to GO made it a good model to
understand how GO’s toxicity changes regarding surface modi-
fications such as interactions with biomolecules.

In this study, we investigate the interaction of GO with TA
linked to its impacts on surface chemistry, colloidal stability,
lethality, and biodistribution in the C. elegans model for the
first time. Furthermore, we study in detail TA interactions with
GO’s surface employing computational modeling to analyze the
interaction mechanisms and GO’s surface modification by TA.
The application of in silico methodologies is advantageous in
understanding phenomena that cannot be easily accessed exper-
imentally but are useful to predict and interpret experimental
results. We performed, therefore, a multilevel study with differ-
ent theory levels; reactive classical molecular dynamics enabled
the exploration of the chemical and conformational changes
of TA and GO, whereas ab initio calculations provided
information regarding the electronic properties of the system,
such as the most reactive sites and their interactions. Our find-
ings provided new insights into toxicity mitigation and behav-
ior of GO in the environment, as well as, the safety of applica-
tion of TA for synthesis and functionalization of this nanomate-
rial.

Results and Discussion

Experimental characterization

TA is a relevant component of the dissolved organic matter in
the environment originating especially from vegetable organic
decomposition [17]. Furthermore, because of unique physico-
chemical properties, TA has been increasingly applied for GO

syntheses and surface engineering [29]. Evaluating the changes
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of GO properties and biological effects after interaction with
TA is essential to give us insights into how organic matter
affects the behavior and toxicity of this material under real envi-
ronmental conditions as well as the biological aspects of GO
modifications by TA.

To understand the features related to the material’s colloidal be-
havior, biological effects, and interaction with biomolecules, it
is essential to characterize its surface chemistry and dispersion
in the medium befitting toxicological studies before and after
molecular interactions. The complete characterization of the GO
sample is available in [36]. Atomic force microscopy (AFM),
Raman spectroscopy, and X-ray photoelectron spectroscopy
(XPS) were used to assess size, morphology, number of layers,
and surface chemistry of GO. The GO sample used in this study
consists of single layers with less than 1.5 nm thickness and a
flake size distribution from 18 to 308 nm. The calculated ratio
between the intensity of the D (Ip) and G (Ig) bands of Raman
is Ip/Ig = 0.85, indicating that the material has a high number of
defects, an indirect indication of oxidation. The surface chemi-
cal composition analyzed by X-ray photoelectron spectroscopy
(XPS) is 68% of carbon and 32% of oxygen. The functional
groups and bonds of carbon are distributed among epoxy/
hydroxy (C-0) (52%), carboxyl/esters (C=0) (9.4%), and T
(4.2%) moieties, besides graphitic/aromatic carbon (C sp2)
(5.7%) and aliphatic carbon (C sp3) (28%). The properties of
this material are in accordance with other GO samples used for
nanotoxicology and environmental applications. In this work,
we characterized the material after interaction with the moder-
ately hard reconstituted water defined by the U.S. Environ-
mental Protection Agency (EPA), herein named EPA medium,

in absence and presence of TA.

Atomic force microscopy

AFM has been extensively used to characterize the distribution
and morphology of biomolecules on the surface of nanomateri-
als, especially 2D materials [37]. Figure 1a and Figure 1b
show AFM images of GO sheets after incubation in EPA
medium with and without the addition of TA, respectively.
We observed that TA interacts with the GO surface forming
a cover up to 3 nm of height, as shown in the height profile
analysis. In the absence of TA, GO sheets presented heights
from 1.3 nm, indicating single-layer sheets according to data re-
ported in the literature for graphene materials [38], to 2.0 nm in
double-layer spots caused by the incubation in the EPA medi-

um.

Spectroscopy characterizations
Spectroscopy analysis showed the main chemical groups on the
material’s surface, and how their composition changed in the bi-

ological medium. In the Fourier-transform infrared spectrosco-
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py (FTIR) analysis (Figure 2a), we observed bands between
3000 and 4000 cm™! related to —OH strength in all spectra. GO
spectra presented fingerprint bands at 1734, 1625, 1390, 1230,
and 1068 cm™!, which correspond to C=0 stretching vibrations,
aromatic C=C stretching vibrations, C—OH traction, C-O
(epoxy) stretching vibrations, and C-O (alkoxy) stretching
vibrations, respectively, indicated by the numbers 1 to 5 in
Figure 2a [28,39-41]. Important TA bands include 1704, 1600,
1310, and 1180 cm™! (numbers 6 to 9 in Figure 2a), which cor-
respond to C=0, aromatic C=C, phenolic C—-OH, and C-O from
esters groups connecting the aromatic rings [28,42-44]. Impor-
tant shifts are observed in the C=0O-related band of GO. For TA,
this band appears at 1704 cm™! (number 6 in Figure 2a) and for
GO at 1734 cm™!, while there is a decrease in intensity and a
possible blueshift on this band in EPA medium and in the inter-
acting system. The C=C band presented a blueshift from
1625 cm™! to 1610 and 1600 cm™! in the EPA medium and in
the presence of TA, respectively. The C—OH band present in
GO at 1390 cm™! was shifted to 1360 cm™! after incubation
with TA for 24 h. Furthermore, the C-O related bands at 1180
and 1230 cm™! in the spectra of TA and GO, respectively,
appeared at 1215 cm™! in the interacting system and had a de-
creased signal when GO was dispersed in EPA medium in
absence of TA. The changes in the vibration energy of these
chemical groups indicate that the interactions with TA occur
through C=0, C—OH, C-0, and sp? carbon structures present in
GO. Such interactions may involve, for example, hydrogen
bonds and interactions between 7 orbitals, which is in agree-
ment with literature regarding humic and tannic acid interac-
tions with GO [45,46]. In the absence of TA, the modulation of
the C=0 stretching vibration intensity may indicate coordina-
tion of the divalent metal ions Ca2* and MgZ* present in EPA
medium [47]. The intensity ratio between I and /g bands in
Raman spectroscopy analysis ranges from 0.94 + 0.01, for the
GO sample, to 1.02 = 0.01 and 1.05 = 0.005 when the material
was incubated in EPA medium without and with TA, respec-
tively (Figure 2b). All Raman spectra were normalized to the
intensity of the respective G bands. X-ray photoelectron spec-
troscopy (XPS) presented the composition of GO surface in the
presence of TA. XPS survey data suggest that GO after 24 h
in EPA medium is composed of 75.33 + 0.40% carbon and
24.67 £+ 0.40% of oxygen, whereas GO after interaction with
TA presents 73.30 £ 0.40% of carbon and 26.70 + 0.44% of
oxygen. High-resolution C 1s XPS analysis showed a C—C/C-H
peak contribution of 57.96% * 0.13% to GO in EPA medium
and 55.68% = 1.26% when TA interacts with GO. The oxygen-
ated peaks were 36.35% + 0.22% (C-0O) and 5.69% + 0.11%
(C=0) for GO in EPA medium and 38.03% * 1.26% (C-0O) and
6.28% * 0.01% (C=0) after TA interaction. Thus, spectroscopy
analysis showed no significant changes in GO surface composi-

tion after interaction with TA.
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Figure 1: Characterization of the GO and TA interaction system. AFM images of (a) GO and (b) GO incubated with TA (10 mg-L~"). The height profile
plots on the right present the topology of the marked regions of each sample image.

Colloidal Stability

The study of the colloidal behavior of the material in relevant
biological media (regarding, e.g., salinity, pH, or biomolecules)
is essential to understand its toxicological outcomes since the
aggregation state of this material directly affects delivered dose,
internalization, and biodistribution in organisms. In the EPA
medium, GO exhibited aggregation and precipitation at concen-
trations of 5.0 and 10 mg-L~!, respectively, a phenomenon
attributable to the screening effect of salt ions diminishing the
repulsive forces between GO sheets. TA did not improve the
stability of these samples. After the 24 h, only the suspensions
of 1 mg-L™! of GO did not exhibit visual precipitation (Support-
ing Information File 1, Figure S1a). The results of dynamic

light scattering (DLS) measurements presented in Table S1

(Supporting Information File 1) confirm the aggregation and the
subsequent precipitation of GO in the EPA medium; it is notice-
able that hydrodynamic diameters rapidly increase in this medi-
um. Although higher TA concentrations slow down aggrega-
tion and lead to smaller hydrodynamic diameters after 3 h, after
24 h the samples were completed aggregated with a high poly-
dispersity index. The quality criteria of DLS analysis for GO
with a concentration lower than 10 mg-L~! were not satisfac-
tory; therefore, they could not be used to evaluate the disper-
sion state of more diluted GO suspensions, such as 1 mg-L™! of
nanomaterial. However, it is well known that in more diluted
suspensions, nanomaterials tend to present better dispersibility,
and it is expected that GO remains stable in EPA medium for a

longer time.
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Figure 2: Characterization of GO and TA system. a) FTIR showing absorption signals related to —OH strength band, GO’s fingerprint region with
1734(1), 1625(2), 1390(3), 1230(4), and 1068(5) cm~' bands, and TA-related bands at 1704(6), 1600(7), 1310(8), and 1180(9) cm~'; b) Raman spec-
tra normalized by intensity of G band; High-resolution C 1s XPS analysis of ¢c) GO and d) GO with TA (10 mg-L~") showing the peaks of carbon

sp2+sp° and oxygenated carbon bonds C—-O and C=0.

Computational simulation of GO-TA

interactions

To analyze the surface modification of GO by TA and gain
insights into the mechanisms of toxicity mitigation, we em-
ployed a computational workflow that involved studying the
interactions between GO and TA at different theoretical levels.
Molecular dynamics (MD) simulations were performed using
the ReaxFF reactive force field to examine the evolution of TA
conformation on the surface of a GO flake in an aqueous envi-
ronment. This allowed us to explore the chemical and confor-
mational changes occurring in TA and GO. Additionally, ab
initio calculations were conducted to investigate the electronic

properties of the system, including the identification of the most
reactive sites on GO, as well as an understanding of how the
environment and interactions impact these properties. The
combined approach of MD and ab initio calculations provided
comprehensive insights into the surface modification process
and the underlying mechanisms involved in the interactions be-
tween GO and TA.

The MD simulations were performed with TA initially placed at
five different sites of GO flakes, namely, the center and the four
edges, with the closest atoms at at approximately 2 A from the

sheet. The four edges of the flake differ regarding the carbon
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configurations (i.e., zigzag or armchair) and defects, one of the
armchair edges presents hydroxy groups and one of the zigzag
edges presents a broken epoxy site. Figure 3 presents the dy-
namics of a representative configuration of TA interacting with
GO flake. Comparing the evolution of the TA’s configurations
in the different simulations, the molecule interacted preferen-
tially with oxygenated groups of GO and with armchair edges
rather than zigzag edges. Regarding the latter, the TA molecule
moved from the zigzag edge to the armchair edge or even
moved away from the GO sheet. We split NPT trajectories into
equally spaced snapshots to analyze the TA conformations on
the GO surface and to calculate the adsorption energy of TA
with density functional theory (DFT). Most interactions be-
tween TA and GO occurred through the oxygenated defects in
the middle of the sheet and TA oxygen functional groups, as
shown in Figure 3. However, it is also possible to identify inter-
actions between these groups and GO’s carbon structure and be-
tween carbon atoms of both structures. Furthermore, we
analyzed the maximum heights of TA-plus-GO conformations
among the snapshots. The values range from 1.5 to 3.0 nm,
which corroborates with AFM topography results and indicates
that TA mostly forms a single layer of stronger interacting mol-
ecules close to the surface.

DFT calculations allowed us to evaluate the electronic and reac-
tivity properties of the system TA and GO. Fukui functions are
a concept used to study the local reactivity of molecules/materi-
als. They provide information regarding how the loss or gain of
electrons affects the spatial electronic density of the atoms
[49,50], revealing the most reactive sites of the system. We
applied Fukui functions to assess the most reactive sites of GO
in its initial configuration and after evolution of the sheet con-
figuration in water without TA. Figure 4a and Figure 4b show
the charge density plot of the functions f* and f~ of GO before
and after NPT MD simulation in an aqueous environment at
300 K. We observed an augmentation of sheet folding and the
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occurrence of broken bonds, which increased the reactivity of
the central oxygenated groups in the flake, where the TA mole-

cule showed preferential interaction in the trajectories.

The adsorption energy of TA on the GO surface ranges from
—1.55 to 0.35 eV, with a mean binding energy of Eg = —0.49 +
0.08 eV. By selecting the snapshot with the minimum adsorp-
tion energy, we calculated the charge transfer of the system
using Bader charge analysis, which was 0.1e™ from GO to TA.
The low value of charge transfer indicates that van der Waals
(vdW) interaction forces dominate the binding between GO and
TA. This is confirmed by the unfavorable binding energy (i.e.,
positive values up to +2 eV) obtained from DFT calculations
when dispersion corrections are not applied. The adsorption
energy value is determined by the number and types of interac-
tions involved, such as hydrogen bonds, as well as carbon—car-
bon and carbon-hydrogen interactions. Supporting Information
File 1, Figure S2 shows that the number of interacting atoms
(i.e., atoms with distances less than 3.0 A) between TA and GO
is not directly correlated with the binding energy. However, a
higher number of weak vdW interactions can lead to similar
binding energies as those of snapshots that have fewer inter-
acting atoms but a higher number of hydrogen—oxygen interac-
tions.

To evaluate the influence of the GO surface’s degree of oxida-
tion on the TA adsorption, we performed MD simulations of
TA interactions on periodic GO sheets with oxidation degrees
ranging from 1% to 32%. The NPT trajectories were split into
equally spaced snapshots, and the average binding energies and
standard error of the mean between TA and GO structures were
calculated from DFT calculations. Figure 5 shows that the inter-
action between TA and GO increases with the oxidation level of
the GO surface, which can be explained by the increased num-
ber of functional groups that participate in stronger van der
Waals interactions (Supporting Information File 1, Figure S3).

Figure 3: Snapshot of TA on the GO surface obtained from NPT MD at 300 K, parameterized with the ReaxFF reactive force field. The molecular
structure view was generated with the VMD software developed with NIH support by the Theoretical and Computational Biophysics group at the
Beckman Institute, University of lllinois at Urbana-Champaign (http://www.ks.uiuc.edu/) [48]. This content is not subject to CC BY 4.0.
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Figure 4: Reactive sites of GO (a) before and (b) after NPT dynamics in agueous environment. Fukui functions f* in yellow (positive) and blue (nega-
tive), £~ in purple (positive) and green (negative). Isosurface of 1 x 10-3 e/A3. The molecular structure view was generated with the VMD software de-
veloped with NIH support by the Theoretical and Computational Biophysics group at the Beckman Institute, University of lllinois at Urbana-Cham-
paign (http://www.ks.uiuc.edu/) [48]. This content is not subject to CC BY 4.0.

Biological effects in C. elegans

C. elegans has been considered a relevant in vivo model for
nanomaterials toxicity and ecotoxicity. Several works demon-
strate that this organism shows sensibility to GO in low doses.
In previous works, our research group found that GO decreased
nematode survival at concentrations above 0.1 mg-L™! [11,14].
GO potentially affects the intestinal cavity and secondary
organs of C. elegans. The intestine is the primary organ to be
exposed to ingested hazardous substances or materials and plays
an important role in protecting other organs. Different studies
show an increased intestinal permeability after exposure to GO,
enabling the material to reach adjacent organs such as the

gonads [14,51,52]. Wu et al. [51] found that prolonged expo-
sure to GO causes significant damage to intestinal microvilli
cells . Furthermore, Dou et al. [53] showed that GO triggers cell
autophagy as a protective response to the material. Apoptosis
was observed in germline cells, indicating that GO can damage
gonad development and reduce the reproduction rate of
C. elegans [35,54]. Oxidative stress is one of the central mecha-
nisms and, in fact, the main cause of the toxicity outcomes dis-
cussed above. It is associated to changes in the function or
expression of superoxide dismutase, “Rieske” iron-sulfur pro-
tein, mitochondrial complex I, and the ubiquinone biosynthesis
protein COQ7 [51,53-55]. The co-exposure of GO with antioxi-
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Figure 5: Adsorption energy of TA on GO surfaces with different oxidation degree. The error bars indicate the standard error of the mean from up to

ten configurations.

dant molecules, such as L-cysteine and ascorbate, can mitigate
the oxidative effects of the material and minimize GO’s toxici-
ty [35,53]. Moreover, GO also shows important neuronal
effects; for example, it influences protein—protein binding in the
organism, activating or suppressing neuronal receptors and
influencing the neurotransmission process in C. elegans
[34,35,56].

GO’s toxicity is highly related to its surface chemistry; changes
of the functional groups of the surface impact its biological
effects. Yang et al. [57] showed that changes in the oxygen
content of GO may improve its biocompatibility. They found
that GO sheets with reduced oxygen content and relatively more
—COOH groups did not presented the common GO toxicity
effects to C. elegans, such as increased intestinal permeability,
microvilli damage, material translocation to other organs or oxi-
dative stress. Similarly, Rive et al. [58] did not detect any detri-
mental effects in C. elegans exposed to amino-functionalized
GO. Moreover, biomolecules interacting with the GO surface
also have an effect on its toxicity, Coa et al. [14] observed that a
bovine serum albumin corona mitigated the acute toxicity of
GO, although it did not fully suppress long-term effects such as

reproductive toxicity.

Acute toxicity

In this work, we found that the lowest GO concentration that
caused significative effects on survival was 1.0 mg-L™!, with a
mortality of approximately 30%. Concentrations of 5.0 and
10 mg-L™! of GO yielded similar mortality rates, up to 40% of

mortality, which may be an effect of aggregation and precipita-

tion of the material in the test medium. The colloidal instability
of the nanomaterial in the test medium impacts the dose
bioavailable to C. elegans, which stays on the well’s bottom
most of the time. At 5 mg-L™!, GO aggregates and precipitates
in EPA medium, which increases the exposure to C. elegans.
The amount of material ingested by the nematode is limited by
the size of its mouth, which is where most of the uptake occurs.
C. elegans exhibits a size-selective feeding mechanism, which
transports particles in the size range from 0.5 to 3 pm to the
intestinal lumen [59,60]. Therefore, even at higher doses, we
did not observe a linear relationship between C. elegans’

survival and the material’s concentration.

Considering this, we evaluated the effects of tannic acid on the
GO toxicity in a co-exposition system. The survival rates of
C. elegans at GO concentrations ranging from 0.0001 to
10 mg-L~! were analyzed in the presence of 1 and 10 mg-L™! of
TA. Figure 6 shows the survival rates of C. elegans after expo-
sition to only GO and to GO in the presence of TA. We ob-
served a dose-dependent mitigation effect of TA. A concentra-
tion of 1 mg-L™! TA raised the lowest observed adverse effect
level of GO to 5 mg-L™!; 10 mg-L~! of TA completely miti-
gated the acute effects of GO under the conditions tested.

Biodistribution study

Confocal Raman spectroscopy analyses were conducted to eval-
uate the effects of TA on the biodistribution of GO in nematode
tissues. The unique signature of GO’s Raman spectra, with the
two distinct D (=1300 cm™!) and G (21600 cm™!) bands,

enables the localization and identification of the material in bio-
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Figure 6: Effects of GO in presence or absence of TA on C. elegans’ survival. o and B indicate survival rates significantly different from the control
(100% of survival) with p < 0.05 (one-way ANOVA). *** and ** indicate difference in the treatments with p < 0.001 and p < 0.05 (two-way ANOVA), re-
spectively. The error bars are calculated from 16 to 18 data points on survival.

logical tissues. Depth profile measurements were performed in
the head, pharynx, intestine, gonad, and egg regions. At each
point, the upper cuticle was considered as the distance 0 pm,
and to differentiate GO’s internal and external signals, Raman
spectra were acquired from —30 to 120 pm, with steps of 5 um.
The intensity of the G band at each depth was recorded in the
profiles shown in Figure 7, which were normalized regarding
the maximum intensity found in the region. The intensity
profiles and the respective spectra, were used to draw conclu-
sions about GO’s internalization in the organisms. According to
Figure 7, GO was found along the entire nematode cuticle.
Furthermore, GO was found internally in the head, intestine,
and pharynx of nematodes, regardless of the presence of TA.
Internalization of GO in the gonads was also observed and to
some extend in eggs, although in the latter the occurrence of
GO signal decreased after the addition of TA.

Raman analysis showed that TA does not affect the biodistribu-
tion of GO in C. elegans, including in secondary organs, al-
though it changed the mortality caused by the material. Experi-
mental and theoretical characterization show that TA can
interact with the GO surface. DFT calculations demonstrated
that TA adsorbs at the most reactive sites of GO, which can be
related to the decrease of the material’s toxicity by impairing
these sites to interact with critical molecules or tissues that

initiate acute toxicity pathways. However, because of the

translocation of GO to different organs in the presence of TA,
GO still might cause long-term effects, which need to be subject
of further investigations. Concomitantly, it is known that the
polyphenols such as TA exhibit properties that are beneficial to
health, such as antimicrobial, anti-inflammatory, and antioxi-
dant capacities [61,62]. Saul et al. [63] showed that different
polyphenols have life-prolonging and stress-reducing proper-
ties to C. elegans. Up to 300 uM (=500 mg-L~!) TA promotes
longevity in C. elegans, which is called hormesis effect; at
higher concentrations, TA is actually toxic [64]. TA exposure
induces different resistance mechanisms against pathogens,
heating stress, and oxidative stress, which may increase the
resistance against the hazardous effects of GO. TA upregulates
natural protective pathways against oxidative stress, increasing
the expression of antioxidant systems such as reduced
glutathione, superoxide dismutase, and catalase [61]. Besides
that, the metal chelating properties of TA may influence oxida-
tive pathways dependent of these cofactors, such as Fenton’s
reaction and copper-mediated formation of free radicals.
TA may also act as direct radical scavenger in these reactions
[65-68]. Moreover, TA exhibits an antinutritional effect and
may induce the calorie restriction (CR) pathway in C. elegans,
which is a potential cause of the TA-mediated lifespan exten-
sion [63,64]. The CR effect could decrease the acute toxicity
effects of GO by decreasing the ingestion of the material by

C. elegans.
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tissues of nematodes.

Conclusion

Assessing the effects of TA on GO toxicity, we gained insights
on how components in environmental media, such as organic
matter, modulates the biological effects of GO, which are still
not entirely understood. Experimental and theoretical analyses
have demonstrated that TA interacts with GO surfaces via
oxygen-containing functional groups, resulting in enhanced
binding energies. Nevertheless, the adsorption of TA also
involves weaker interactions mediated by the carbon frame-
work. DFT calculations using Fukui functions demonstrated

that TA interacts with the most reactive sites of GO, and van

der Waals interaction forces dominate the binding energy. We
observe a dose-dependent mitigation effect of TA on the toxici-
ty of GO in the model C. elegans. TA at a concentration of
1 mg-L™! raised the lowest concentration of GO affecting the
survival of C. elegans to 5 mg-L™!; at 10 mg-L™!, it mitigated
completely the mortality effects of GO under the tested condi-
tions. TA did not alter the biodistribution of GO in the intestinal
lumen, head, gonads, and eggs of the nematodes. Possible
mechanisms for the reduced toxicity are (i) hindering of reac-
tive sites of the GO surface from interactions with molecules or

tissues that play a role in the toxicity pathways, (ii) TA-induced
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stress resistance mechanisms in C. elegans alleviating the
effects of GO’s acute toxicity, such as oxidative stress, and (iii)
TA acting directly as antioxidant or chelating cofactor in oxida-
tive pathways in C. elegans. Further experimental analysis
should be carried out to evaluate the effects of TA on the long-
term toxicity effects of GO and confirm the TA mitigation
mechanisms. This work contributes towards a more realistic
view of GO toxicity and fate under environmental conditions.
Furthermore, it highlights the potential of TA in surface engi-
neering of graphene-based nanomaterials.

Methods
Materials

GO was synthesized via chemical exfoliation of graphite by
modified Hummers method [69] according to [70]. Graphite
(5.0 g) and NaNOj3 (3.75 mg) are added to a reaction flask in a
bath of ice and covered with concentrated HySO4 (370 mL).
The mixture is stirred for 20 min, then KMnOy4 (22.5 mg) is
added gradually over 1 h. The reaction is kept under stirring for
72 h at room temperature, and then it is diluted with 300 mL of
deionized water and kept for another hour at 95 °C. The temper-
ature is then reduced to 60 °C, and H,O, (15 mL, 30% w/w) is
added to complete the oxidation of graphite and the reduction of
residual KMnOy; the mixture is left under stirring overnight. At
the end, the material is precipitated by centrifugation and
washed with H,SO4 (3.0%) and H,O, (0.5%) to remove
residues of oxidants and inorganic impurities. The remaining
residuals of salts are removed by dialysis in distilled water for
approximately three days. The obtained GO suspension is then
lyophilized for storage [36].

Characterization

The physicochemical and colloidal characterization of nanoma-
terials is essential to their toxicity assessment and biological/
environmental application. The properties of the materials in bi-
ological environments may differ significantly depending on the
composition of the medium (e.g., aggregation state, surface

charge, and dissolution) and determine their biological effects.

Therefore, the initial step to assess nanomaterials toxicity is to
evaluate their colloidal characteristics. GO stock dispersions
(400 mg-L™!) were prepared according to OECD Guideline no.
318 [71]. The GO powder (10 mg) was pre-wetted with 1 mL of
ultrapure water and left as a wet-paste for 24 h. Then, ultrapure
water (25 mL) was added, and the suspension was sonicated in
an ultrasonic bath. The sonication time was controlled by
analyzing the material’s hydrodynamic diameters by dynamic
light scattering (DLS). Dispersion aliquots for measurement
were collected every 10 min, and the sonication was performed
until there were no significant changes in the hydrodynamic di-

ameter. Both conditions were tested, the time for the first
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dispersion and for the redispersion of GO. The GO stock
suspensions were stored for a maximum of 14 days, as recom-
mended by OECD Guideline no. 318 [71].

The colloidal characteristics of GO were evaluated according to
toxicity assay conditions by photographic monitoring and
DLS. The behavior of environmental relevant concentrations
(10-20 mg-Lfl) of tannic acid solution in the test medium and
the influence on the colloidal stability of GO were also
analyzed. The toxicity assays in Caenorhabditis elegans were
performed in moderately hard reconstituted water defined by
the U.S. Environmental Protection Agency (named here as
EPA medium), whose composition includes 60.0 mg-L™!
CaS04-2H,0, 60.0 mg-L™' MgS0y, 96.0 mg-L~! NaHCO3, and
4.0 mg-L~! KCI. The initial range of GO concentration tested
against C. elegans was 0.0001 to 10 mg-L™!, and the duration of
exposure was 24 h for acute toxicity assays. Visual monitoring
of the colloidal behavior of GO was performed for a period of
24 h, comparing the stability of 1.0, 5.0, and 10 mg-L~! suspen-
sions of nanomaterial in EPA medium with and without the
presence of 10 mg-L~! of tannic acid. A GO suspension of
10 mg-L™! in ultrapure water was used as a control. Further-
more, a 10 mg-L~! TA solution was also observed for this
period of time regarding precipitation or possible change of
color due to reactions such as oxidation. The colloidal stability
of all suspensions with 10 mg-L~! GO, with and without TA,
was also monitored by DLS. Furthermore, a new sample,
10 mg-L™! GO and 20 mg-L™!' of TA in EPA medium, was
monitored in order to test if a higher concentration of TA would
improve the colloidal stability of GO.

AFM (MultiMode VIII microscope, Bruker), Raman spectros-
copy (XploRA PLUS, Horiba), FTIR spectroscopy (IRSpirit
Shimadzu), and XPS (K-Alpha XPS Thermo Fisher Scientific)
were used to assess changes in the morphology and surface
chemistry of GO while interacting with TA. For AFM analysis,
10 mg-L™! GO was incubated in EPA medium for 24 h with and
without 10 mg-Lfl TA. Then, to avoid salt interference, the
suspension was washed three times with deionized water and
dripped on mica substrate. The incubation procedure was
repeated for spectroscopy analysis. For Raman and FTIR analy-
sis, the suspensions were dried using the speed-vacuum method
at room temperature; for XPS, the suspensions were dripped on
a silicon substrate.

Computational methods

MD simulations of interactions between TA and the GO sur-
face were performed in LAMMPS, applying ReaxFF reactive
force field [72]. MD simulations were conducted under con-
stant pressure (P) and temperature (7), the so-called NPT condi-
tions, for a period of 4.00 ns, with a time step of 0.25 fs, starting
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from the system in equilibrium at 300 K. The initial system con-
sisted of a representative GO flake obtained from [73], with
dimensions of 42 x 20 A and an oxidation level of 12.5%, and
the TA free-energy-minimum conformer calculated in aqueous
environment obtained from a previous work [74]. TA was
initially placed in five different positions, that is, the center and
the four different edges of the GO flake, with the closest atoms
at approximately 2 A distance from the sheet. The simulations
were performed in a box of 60 x 60 x 60 A filled with water
molecules to reach a density of 1 g/cm?3. In order to evaluate the
effects of the GO oxidation level on the interactions with TA,
we also performed MD simulations with periodic GO sheets
with oxidation levels from 1 to 32%, the latter corresponding to
the oxidation degree of the samples used in the toxicity assays.
Periodic system simulations were performed under NPT condi-
tions for 2.5 ns at 300 K. TA was initially placed at the center of
the box at approximately 2 A distance from the sheet. The box
dimensions were approximately 40 x 35 x 40 A filled with
water molecules to reach the density of 1 g/cm?.

DFT calculations were performed using VASP [75,76]. The
Perdew—Burke-Ernzerhof (PBE) generalized gradient approxi-
mation was used for the exchange—correlation term [77]. The
kinetic energy cutoff for the plane-wave expansion was 520 eV.
Furthermore, the nonlocal van der Waals density functional
(vdW-DF) method was applied to account for dispersion inter-
actions [78]. To account for solvation effects, the implicit solva-
tion model developed by Mathew et al. was applied in the
calculations [79]. To evaluate reactivity changes, Fukui func-
tions were calculated [49,50,80-82], analyzing differences in
electron density when an electron is removed (Equation 1) or
added (Equation 2) to the molecule:

S~ =p(Ne)=p(Ne—1), (1)

ST =p(Ne+1)=p(Ne), @)

where the electron densities p(N,), p(Ne — 1), and p(Ne + 1) cor-
respond to systems with N, Ne — 1, and N, + 1 electrons, re-

spectively.

Biological assays

Initial toxicity assays were conducted to evaluate the effects of
GO on the survival of C. elegans. Acute toxicity assays were
performed according to the protocol developed by Maurer et al.
[83]. The toxicity experiments were conducted in 24-well plates

with a total test volume of 1.0 mL per well. Each well contained
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~20 young adult C. elegans, that is worms between the stages
L2 and L3 of development, approximately 30 h of age, ob-
tained through the synchronization procedure described in
[14,84]. The worms were exposed to GO at final concentrations
of 0.0001, 0.001, 0.01, 0.1, 1.0, 5.0, and 10 mg-L~! in EPA me-
dium. Furthermore, negative controls were carried out using
ultrapure water as the test substance because the GO stock
dispersions were prepared in this medium. The nematodes were
exposed for 24 h, and live organisms were counted using a
stereomicroscope at the end. To evaluate the effect of tannic
acid on the GO toxicity, the survival rates of C. elegans at GO
concentrations ranging from 0.0001 to 10 mg-L~! were also
analyzed in the presence of 1 and 10 mg-L™! of TA. Each expo-
sure condition was performed in independent triplicates, with
six replicates each. Consequently, each condition yielded be-
tween 16 and 18 data points. To assess statistical differences in
survival rates, we conducted a one-way ANOVA followed by
Dunnett’s multiple comparison post-hoc test to evaluate signifi-
cance among the GO concentrations and the control, and a two-
way ANOVA to determine significance among conditions with
and without 1 and 10 mg-L™! TA.

The biodistribution of GO in nematodes was investigated using
confocal Raman spectroscopy. Young adult worms were
exposed to a concentration of 5 mg-L™! of GO material, both
with and without TA, at concentrations of 1 and 10 mg-Lfl,
following the same protocol used in the acute toxicity assays.
After 48 h, the nematodes were fixed with 4% paraformalde-
hyde (Lot #SLBF2268V, Sigma-Aldrich) and washed twice
with EPA medium to remove any excess nanomaterial. Raman
spectra were obtained from various parts of the nematodes, in-
cluding the head, pharynx, intestine, gonad, and eggs. To differ-
entiate between internal and external signals of GO, depth
profiles ranging from —30 to 120 ym (assuming O um as the
upper cuticle) were acquired at each position, with steps of
5 pum [85,86]. Raman spectra were acquired using a confocal
Raman spectrometer equipped with an optical confocal micro-
scope (50x objective). The excitation wavelength was set at
532 nm, and spectra were acquired with five accumulations of
5 s each. The slit width was set to 50 um, and the hole width
was set to 100 pm, resulting in a laser spot of approximately
1 um on the sample.
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Abstract

This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC),
artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the
accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of
nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient
and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted
in knowledge and structured information management serves as a foundational element, establishing a framework for representing
materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive fea-
tures of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in
research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in estab-
lishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technol-
ogies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to

support the adoption of digital methodologies in advanced research.

Introduction
Digital technologies have ushered in a new era of materials computational modelling and simulation, researchers can simu-
science, enabling unprecedented advancements in the design, late and predict properties and behavior of materials with

characterization, and optimization of materials. By leveraging remarkable accuracy, explore a vast design space, and predict
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the properties and performance of materials before they are syn-
thesized [1-3]. This approach enables the discovery of materi-
als with, for example, improved mechanical strength, enhanced
thermal conductivity, superior electrical properties, or other
tailored characteristics. Simulations provide crucial insights at
different time and length scales, from atomic and molecular-
level interactions to the macroscale, that govern the structural,
mechanical, and thermal properties of materials [4,5]. More
recently, data-driven approaches, such as machine learning
(ML) and artificial intelligence (Al), are revolutionizing materi-
als research by extracting valuable patterns and correlations
from vast amounts of experimental and computational data
[6-9]. These approaches enable researchers to uncover hidden
relationships between composition, structure, morphology, pro-
cessing, and properties, accelerating the discovery of novel ma-
terials with tailored functionalities and enabling the identifica-
tion of patterns and trends. Moreover, high-throughput compu-
tational screening allows for the rapid evaluation of extensive
material libraries, providing researchers with a systematic and
efficient approach to identify promising candidates for specific
applications [10]. In addition to materials design, digital tech-
nologies can enhance the characterization and understanding of
materials. Advanced imaging techniques, coupled with compu-
tational analysis, enable researchers to examine the microstruc-
ture and behavior of materials at unprecedented resolutions [11-
13]. This aids in the understanding of fundamental properties
and the identification of structure—property relationships. The
integration of digital technologies with experimental tech-
niques also enables real-time monitoring and control of materi-
als synthesis processes, leading to improved reproducibility and
quality control. By combining these digital technologies with
integrated data management workflows, materials scientists
can, in principle, smoothly organize, share, and analyze large
volumes of materials data, fostering collaboration and enhanc-
ing the overall efficiency of materials research. The integration
of digital technologies into materials science has, thus, opened
up exciting new possibilities for materials design, discovery,
and innovation [14]. New, fully digitalized research directions
for materials development are therefore emerging at the conver-
gence of a broad range of advanced digital technologies
(Figure 1).

One significant area where these technologies can have a
profound impact is in the design and development of advanced
nanomaterials [15,16], where the relationship between structure
and morphology at different scales, processing, and resulting
properties is particularly intricate. The steady and recent
advances in hardware and software technologies have propelled
materials development in the field. On the hardware front, the
continuous improvement of high-performance computing
(HPC) systems has enabled researchers to tackle complex

Beilstein J. Nanotechnol. 2024, 15, 1498—-1521.
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Figure 1: Main digital technologies for materials innovation.

computational challenges with greater speed and efficiency.
The availability of powerful processors, increased memory
capacity, and enhanced parallel computing architectures has
significantly accelerated materials simulations and modelling
[17]. In parallel, software technologies have undergone remark-
able advancements. ML frameworks and algorithms have
evolved to handle large and diverse datasets, enabling the ex-
traction of valuable insights from materials data [6]. Additional-
ly, software advancements have facilitated the integration of
different computational models, enabling multiscale simula-
tions of materials across a broad range of length and time scales
[4,18]. Furthermore, the development of user-friendly inter-
faces and visualization tools has improved the accessibility and
usability of these advanced hardware and software technologies
[19,20].

In parallel to the use of large-scale computing infrastructures,
consumer-driven off-the-shelf computational technologies have
emerged as powerful tools for materials simulations, empow-
ering researchers with accessible and affordable solutions. One
notable example is the utilization of consumer graphics process-
ing units (GPUs) for accelerated materials simulations [21,22].
Modern GPUs, originally designed for gaming and multimedia
applications, possess immense parallel processing capabilities
that can be harnessed for scientific computations. Researchers
have successfully leveraged GPUs to accelerate computation-
ally intensive simulations, such as molecular dynamics and
quantum chemistry calculations [23,24]. Even more significant
has been the impact of GPU computing on Al. GPUs are inher-
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ently designed for parallel processing, making them exception-
ally well-suited for the demanding calculations and massive
data throughput required in Al tasks. Accordingly, GPUs are
nowadays considered the most efficient technological platform
for performing Al and data-intensive tasks [13,25]. This has
enabled the development of complex models that can process
vast amounts of materials data. Another consumer-driven tech-
nology that has boosted the digitalization of materials research
is cloud computing. Cloud-based platforms provide on-demand
access to HPC resources and large databases and infrastruc-
tures. Cloud-based infrastructures for materials research offer
scalability, flexibility, and accessibility, empowering research-
ers to collaborate, analyze data, and perform simulations more
effectively [14]. The application of cloud computing to materi-
als research include the use of materials data repositories (e.g.,
Materials Project [26] and NOMAD [27]), HPC clouds (includ-
ing commercial providers), materials simulation platforms
(Materials Cloud [28]), collaborative research environments
(ResearchGate Labs [29], Mendeley Data) and other services
for Al, data analytics, visualization, and training. Cloud plat-
forms have also been used to perform simulations in the materi-
als science domain [30] and to perform automated data analysis
[31]. However, the power of cloud computing is being enforced
even in other computationally intensive domains such as
climate modelling [32], further highlighting how this computing
paradigm can be a crucial enabler for higher-scale simulations
and modelling activities. Moreover, the continuous develop-
ment of efficient open-source software packages has boosted
the field of materials simulations. Advanced tools for the simu-
lation of materials across a broad range of scales, such as Quan-
tum ESPRESSO [33], LAMMPS [34], GROMACS [35], and
OpenFOAM [36], implement complex simulation algorithms,
making it easier for researchers to perform complex simula-
tions without extensive programming knowledge. The open-
source nature of these packages encourages community contri-
butions, fostering a collaborative environment and driving con-
tinuous improvement in materials simulation capabilities. Addi-
tionally, consumer-driven technologies like virtual reality (VR)
and augmented reality (AR) have shown promise in materials
visualization and design. VR and AR platforms offer immer-
sive and interactive experiences, enabling researchers to visu-
alize complex material structures, analyze properties, and
manipulate models in real time. These technologies enhance the
path towards the development of new materials, facilitating
informed decision-making and accelerating the design of novel
materials with desired characteristics [37-39]. These key tech-
nologies can enable the disruptive potential of digital technolo-
gies in materials development by addressing aspects related to
both predictivity and automation. The integration of multiscale
physical and data-driven modelling of materials can support the

prediction of materials properties and the design of novel mate-
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rials and processes. In addition, digitalization also enables the
uptake of automation in materials development. Beside the
implementation of automation and robotics in the development,
synthesis, and characterization of materials, automation in
modelling has emerged as a powerful approach to streamline
and enhance the efficiency of computational studies. By lever-
aging digital technologies and advanced algorithms, research-
ers can automate different aspects of the materials modelling
process, from data generation to model selection and parameter
optimization [7,40,41]. Furthermore, automation enables the
integration of experimental data with computational models,
facilitating the calibration and validation of models and provid-
ing a more comprehensive understanding of materials behavior
[10]. The automation of various modelling tasks, such as data
preprocessing, model generation, and parameter optimization,
through the use of advanced algorithms and software tools,
streamlines computational workflows and minimizes manual
effort. This automation not only improves efficiency but also
enhances reproducibility and reduces the potential for human

€rror.

User-friendliness of software platforms and frameworks used
for materials modelling tasks has also significantly improved in
recent years. Ready-to-use software packages provide pre-
implemented algorithms and methods, eliminating the need for
researchers to develop complex simulation platforms from
scratch. The availability of software platforms and packages
and interfaces enables a more efficient translation of scientific
and technological questions into simulation and modelling
workflows [42,43]. Additionally, these tools often come with
pre-built databases, libraries, and visualization capabilities,

further enhancing their usability and efficiency.

In this work, we outline different aspects of data-intensive
digital and integration technologies, outlining their role as key
enablers for the realization of digital twins (DTs) in the context
of materials and nanomaterials development. We will also
showcase some of the work carried out towards these goals,
illustrating the main principles behind the development of tools
and approaches. The paper is structured as follows: The first
section revolves around data-centric approaches for materials
development, emphasizing the pivotal role of data; the second
section is about the realization of digital twins of nanomaterials,
elucidating conceptualization and implementation; the third
section is about key enabling digital technologies in materials
development, highlighting a fully digital, data-centric approach
through the integration of HPC and ML technologies; in the
fourth section, we outline the role of semantic technologies for
the management of data and information within materials devel-
opment; in the fifth section we describe infrastructures support-

ing data-centric workflows, covering common development

1500



tools for research on nanomaterials, workflow building tools,
and deployment strategies such as virtualization and container-
ization; finally, we describe a typical application scenario
featuring most of the approaches and technologies discussed in
the paper.

Data-centric approaches for materials
development

Data-centric approaches are revolutionizing conventional mate-
rials development pipelines by streamlining and informing the
entire workflow. Traditionally, materials development relied
heavily on experimental characterization and trial-and-error
methods, which can be time-consuming and resource-intensive.
However, with the rise of digital technologies, data-centric ap-
proaches have emerged as a more efficient and effective alterna-
tive [6,8,44,45].

The role of data-centric approaches in the development of mate-
rials, typically occurs at three levels, that are related to (i) intrin-
sically digital data, (ii) experimental data from high-throughput
setups, and (iii) complex and integrated datasets. Approaches
based on intrinsically digital data, such as those originating
from virtual systems, digital twins, computational modelling,
HPC, edge computing, and Internet of Things, can, in principle,
be directly integrated within data-centric frameworks. As we
will see later on, however, the issues related to data integration
are also relevant in this case. The analysis and elaboration of
data obtained from high-throughput experimental techniques,
such as signals and images, have been greatly enhanced by
digital technologies, enabling researchers to extract valuable
insights and drive materials development [12]. High-through-
put experimental methods generate vast amounts of data, which
require efficient analysis techniques to uncover meaningful
patterns and relationships. Digital technologies provide ad-
vanced algorithms and tools to process and interpret these data,
enabling researchers to extract quantitative and qualitative
information [3,11,46,47]. The integration of data from high-
throughput experiments with computational modelling and
simulation further enhances the understanding of materials
properties and behavior. By combining experimental and
computational data, researchers can validate and refine models,
improving their accuracy and predictive power [48]. The analy-
sis and elaboration of complex and integrated datasets that com-
bine simulation data with data flows from experiments and
measurements have been significantly enhanced by digital tech-
nologies. These datasets offer a comprehensive and holistic
perspective on materials behavior, enabling researchers to gain
deeper insights and make informed decisions. Through the inte-
gration of simulation data with experimental measurements, re-
searchers can validate and refine computational models, im-

proving their accuracy and reliability. Advanced data analysis
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techniques, such as statistical analysis, machine learning, and
data fusion methods, enable the integration and interpretation of
diverse datasets. By applying these techniques, researchers can
uncover correlations, extract meaningful features, and reveal
hidden patterns within these complex datasets. Additionally,
digital technologies facilitate the visualization and interactive
exploration of integrated datasets, allowing researchers to visu-
alize and comprehend intricate relationships between different
variables and parameters [24]. This integrated data analysis ap-
proach fosters cross-disciplinary collaboration, facilitates know-
ledge transfer, and enhances the overall understanding of mate-
rials properties and behavior. By leveraging the power of digital
technologies, researchers can accelerate materials research,
streamline materials design processes and foster scientific
breakthroughs. A depiction of the interplay between this differ-
ent technologies and a potential resulting workflow is depicted
in Figure 2.

The implementation of digital strategies for materials/nanoma-
terials development faces several key challenges that must be
addressed for successful integration. One of the main issues is
the availability and quality of data. Digital strategies heavily
rely on data from various sources, including experimental mea-
surements, simulations, and literature databases. However,
ensuring the accessibility, reliability, and interoperability of
data remains a significant hurdle. Standardization efforts and
data sharing platforms are essential to promote cohesive inte-
gration and enable effective collaboration among researchers
[14,50]. Additionally, the computational infrastructure required
to support digital strategies poses a challenge. Accessing and
maintaining HPC resources and advanced software tools can be
costly and may require specialized expertise. Efforts to enhance
the accessibility and affordability of HPC resources, along with
user-friendly software interfaces, can help overcome these chal-
lenges [19,42,43]. Moreover, the integration of experimental
and computational data presents a significant hurdle. Aligning
experimental protocols and data formats with computational
frameworks is crucial for effective integration and accurate
prediction of materials properties. Data security and privacy
are also important considerations, requiring robust security
measures and adherence to data privacy regulations. Estab-
lishing secure data management practices and implementing
encryption techniques can help safeguard intellectual property
and confidential information [51,52]. Furthermore, the skills
and training needed to leverage digital strategies are crucial. Re-
searchers and practitioners need to acquire expertise in compu-
tational modelling, data analytics, and relevant software tools.
Investing in education and training programs can empower the
workforce with the necessary skills to effectively utilize digital
strategies in their research endeavors. By addressing these main

issues, the implementation of digital strategies can unlock new
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Figure 2: Merging ML with HPC infrastructures can be done in three different ways: ML-in-HPC uses Al/ML surrogate models to replace simulations,
ML-about-HPC complements and potentially directs traditional computational tasks, and ML-out-HPC employs high-level Al/ML algorithms, such as
active learning or reinforcement learning, to dynamically control the overall workflow. ML-in and ML-about directly produce output for analysis, while
ML-out drives this production. This figure was reprinted from [49] by Jha, S.; Pascuzzi, V.; Turilli, M., "Al-coupled HPC Workflows" in "Artificial Intelli-
gence for Science: A Deep Learning Revolution", Choudhary, A.; Fox, G.; Hey, T. Eds. p. 515-534, Copyright 2023 World Scientific Publishing. It is
used with permission from World Science. This content is not subject to CC BY 4.0.

opportunities and drive advancements in materials and nanoma-

terials development.

One of the challenges in implementing digital strategies for ma-
terials/nanomaterials development lies in translating high-end
technologies into specific and narrow research domains. While
digital technologies offer tremendous potential, their applica-
tion in specific research domains requires careful adaptation and
customization. Each research domain has its unique require-
ments, experimental techniques, and data formats, which may
not readily align with existing digital tools and frameworks.
Translating high-end technologies to these specific domains
involves developing domain-specific models, algorithms, and
data processing pipelines that cater to the specific needs and
constraints of the research area. This requires interdisciplinary
collaboration between materials scientists, domain experts, and
computational researchers to identify the most relevant and
impactful digital technologies, adapt them to the specific
research domain, and validate their applicability. Additionally,
effective communication and knowledge exchange between dif-
ferent research communities are crucial to ensure a logical inte-
gration of digital technologies into specific research domains.
By addressing the challenge of translating high-end technolo-

gies into narrow research domains, the full potential of digital

strategies can be harnessed to accelerate materials discovery
and development in targeted areas. For an example of the
process that lead from horizontal technologies to a vertical inte-
gration to the materials science domain see Figure 3.

The successful implementation of digital strategies for materi-
als/nanomaterials development relies on the crucial role of
“translators” who bridge the gap between domain-specific re-
searchers and digital technology experts. Translators should
ideally possess a deep understanding of both the research
domain and the capabilities of digital technologies, acting as
intermediaries, facilitating effective communication, collabora-
tion, and knowledge exchange between the two groups. Transla-
tors potentially play a pivotal role in identifying the specific
needs and challenges of the research domain and articulating
them to digital technology experts, supporting the translation of
domain-specific requirements into technical specifications, and
enabling the development of tailored digital solutions. Like-
wise, translators interpret the capabilities and potential of digital
technologies to domain experts, showcasing how these technol-
ogies can address their research questions and enhance their
workflows. By serving as a liaison, translators ensure that
digital strategies are effectively applied in materials/nanomate-

rials development, leading to more informed decision-making,
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Figure 3: The funnel for the convergence of a manifold of digital technologies towards the materials domain. The included icons are accredited as
follows: The HPC icon is from https://www.svgrepo.com/svg/484996/server-network-part-2 under the CCO License; the machine learning icon is from

https://www.svgrepo.com/svg/447866/ai-mi-algorithm under the Public Domain License or CCO License; the data workflows icon is from https:/
www.svgrepo.com/svg/7371/data-flow-chart under the CCO License; the infrastructure icon is from https://uxwing.com/web-service-icon/. This content
is not subject to CC BY 4.0; the integration icon is from https://www.svgrepo.com/svg/439194/integration-testing under the MIT License (see https:/

www.svgrepo.com/page/licensing/#MIT), by Andreas Mehlsen. This content is not subject to CC BY 4.0; the simulation icon is from https:/
www.svgrepo.com/svg/165724/science-symbols-on-computer-screen under the CCO License; the nanomaterials technologies icon is from https://
www.svgrepo.com/svg/304458/cells-molecule-science-biology-microscope-lab under the CCO License.

accelerated discovery, and innovation. Figure 4 summarizes the
key point of this sections through a SWOT (“Strengths, Weak-
nesses, Opportunities, Threats”) analysis.

Towards a digital twin of nanomaterials

Enabling a “digital twin” of nanomaterials is a critical aspect of
digital strategies for materials/nanomaterials development [16].
A digital twin represents a virtual replica of a physical material,
capturing its properties, behavior, and performance in a digital
form. Creating a digital twin involves integrating various types
of data, such as experimental measurements, simulation results,
and materials databases, into a unified model. This digital repre-
sentation enables researchers to explore and analyze materials
in a virtual environment, providing insights that would other-
wise require extensive and time-consuming experimental testing
[53,54]. The digital twin serves as a powerful tool for predic-

STRENGTHS WEAKNESSES

Streamlines and informs the
workflow

Reduces reliance on
trial-and-error methods

e Enhances reproducibility and
efficiency

e Integration challenges with diverse
data types
e Highinitial setup costs

OPPORTUNITIES oT THREATS

Ssw

e Data privacy and security issues

e Dependence on the quality of
input data

Advanced data analysis leading to
new insights

Potential for integrating loT and
edge computing

Figure 4: SWOT analysis of data-centric approaches in materials
science.
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tive modelling, optimization, and design of materials, allowing
researchers to assess performance under different conditions,
predict degradation mechanisms, and optimize material proper-
ties. It also facilitates virtual experimentation, reducing the need
for costly and resource-intensive physical trials. The develop-
ment of digital twin frameworks requires interdisciplinary
collaboration between materials scientists, data scientists, and
computational experts to ensure accurate representation and
reliable predictions. By enabling a digital twin of materials,
digital strategies offer a transformative approach to materials
development, unlocking new avenues for innovation and accel-

erating the design and optimization of advanced materials.

The concept of a digital twin within the materials domain
encompasses the integration of both models and data-driven ap-
proaches. It involves linking physical and statistical models to
data-driven techniques to create a comprehensive digital repre-
sentation of materials. This integration enables researchers to
benefit from the strengths of each approach, combining the
fundamental understanding provided by models with the rich-
ness and complexity of real-world data. By linking models with
data-driven approaches, the digital twin concept offers a power-
ful framework for advancing materials research, accelerating
materials design, and enabling more informed decision-making
in the materials domain. Models provide a mathematical or
computational description of the behavior of materials, cap-
turing physical, chemical, and mechanical properties. Data-
driven approaches leverage large datasets, including experimen-
tal measurements, to extract patterns, correlations, and trends in
materials behavior. By combining both model-based and data-
driven approaches, a digital twin can encompass the complete
picture of the performance of materials under different condi-
tions. This mutual positive feedback between model-based

simulations and data-driven methods is depicted in Figure 5.

In the context of nanomaterials, the digital twin concept
involves utilizing models to represent the underlying physics or
chemistry of the system, while incorporating data-driven ap-
proaches to enhance the accuracy and predictive power of these
models. Data-driven techniques provide valuable insights into
the complex relationships and interactions within the material,
capturing real-world behavior and enabling better calibration
and validation of the models. This integration allows research-
ers to refine and improve the models, making them more accu-
rate and reliable in predicting material properties, performance,
and behavior under different scenarios. Physics-based models
are built upon fundamental principles and equations, capturing
the underlying physics or chemistry of materials. These models
describe the interactions between atoms, molecules, or particles,
allowing researchers to simulate and predict material properties

and behavior at different scales. Physics-based models provide
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Figure 5: Main building blocks for a workflow comprising data collec-
tion, ML model training, and deployment on cloud and HPC cluster.
This is a virtuous cycle where each step leads to the next one and then
back to first. This figure was published on Future Generation Comput-
er Systems, vol. 134, by J. Ejarque, R. M. Badia, L. Albertin, G. Aloisio,
E. Baglione, Y. Becerra, S. Boschert, J. R. Berlin, A. D'Anca, D. Elia, F.
Exertier, S. Fiore, J. Flich, A. Folch, S. J. Gibbons, N. Koldunov, F.
Lordan, S. Lorito, F. Levholt, J. Maci-as, M. Volpe, "Enabling dynamic
and intelligent workflows for HPC, data analytics, and Al convergence”,
p. 414—429, Copyright Elsevier (2022) [55]. It is used with permission
from Elsevier. This content is not subject to CC BY 4.0.

insights into the fundamental mechanisms governing materials
phenomena, such as structural changes, phase transitions, and
mechanical responses. Empirical models, in contrast, are
derived from experimental observations and statistical analyses.
These models rely on data collected from experiments and mea-
surements to establish relationships between input variables and
desired outputs. Empirical models are often used when the
underlying physics or chemistry is not fully understood or when
experimental data is abundant. They offer a practical and effi-
cient approach to predict material properties and behavior based
on empirical correlations and trends. Data-driven models
leverage machine learning and statistical techniques to extract
patterns and relationships from large datasets. These models
learn from existing data to make predictions or classifications
without explicit knowledge of the underlying physical princi-
ples. Data-driven models can be trained on diverse datasets, in-
cluding experimental data, simulation data, and literature data,
enabling the discovery of complex relationships and the identi-
fication of new material properties or behaviors. The integra-
tion of these different types of models is crucial for digital
strategies in the development of materials and nanomaterials.
Combining physics-based models with empirical or data-driven
models allows researchers to benefit from both the under-
standing provided by fundamental principles and the predictive
power of data-driven approaches. The synergy between models
enables more accurate predictions, enhances the exploration of
materials design space, and accelerates the discovery of novel
materials with desired properties. A SWOT analysis of DT ap-
plications in the materials development domain is shown in
Figure 6.
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Figure 6: SWOT analysis of digital twin applications for the materials
science domain.

Key Enabling Digital Technologies for
Materials Development

New paths for materials design and development leverage on
digital technologies, merging multiscale physical modelling,
data-driven modelling, artificial intelligence, and innovative
hardware and software technologies and infrastructures [41,56].
Multiscale modelling constitutes one of the crucial ingredients
for linking a physical description of materials to new digital and
data-intensive technologies. Accordingly, multiscale modelling
has recently gained popularity as the approach of choice in
several application domains where the properties of advanced
and complex materials are exploited [5,18]. Methods applied in
multiscale materials modelling address a broad range of phe-
nomena from the electronic/atomistic to the macroscopic scale.
However, the application of comprehensive multiscale models
to relevant application scenarios requires a significant amount
of computational power at hand, which translates into the need
for efficient hardware and software infrastructures and technol-
ogies. These requirements often call for the application of HPC
and large-scale infrastructures, which require considerable
efforts in terms of implementation, management, resources, and
power. These strong constraints on infrastructures, compe-
tences, and resources constitute a significant barrier for non-
specialists or non-academic institutions, for example technolog-
ical SMEs. Current multiscale approaches also lack a high
degree of automation and are more similar to a custom, tailor-
made process. The overall modelling workflows can therefore
be very time-consuming, in terms of human power required,
especially when a broad range of interlinked multiscale models
is involved. The lack of consolidated automation workflows
turns into a relatively low throughput of multiscale modelling
approaches in current scenarios. In recent years, however, we
have begun to witness the success of Al and ML for materials
development [7,13]. This is particularly evident, for example, in
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the application of Al-related methods for the prediction of
structure—property relationships in materials [6]. Despite these
successes in delivering accurate and reliable property predic-
tions based on training datasets, several other extremely power-
ful applications of Al still need to be fully unraveled. For exam-
ple, efficient routes for translating the methodologies borrowed
from the impressive progress of natural language technologies
to the materials domain are just at their early stage. In other
words, the application of ML to materials development is
largely still at the “empirical” level, that is, supporting the
prediction of materials properties within a relatively simple,
though numerically very intensive, methodological framework
[57]. Largely relying on the property prediction and design
sides, data-driven approaches seem to be still quite distant from
the concept of a working, comprehensive digital twin of materi-
als. This unstructured approach results in an evident lack of
standardization (for example, in the definition of features for
materials data across multiscale domains), poor links with spe-
cific application domains, and a consequent narrowing of poten-
tially interested communities. Overall, the limitations in the in-
tegration between multiscale modelling, Al, and related infra-
structures described above, constitute a major obstacle to the
implementation of efficient technology transfer pathways for
materials development to boost the impact of innovative digital
tools to broad socioeconomic sectors. The transfer of know-
ledge and technology from basic research to applications indeed
requires consolidated practices and a sort of robustness of the
approaches undertaken. Moreover, the research in the field is
still at a lower technology readiness level (TRL) with respect to
what is needed for transferring knowledge to real-life applica-
tions and scenarios. As stated above, even low-TRL basic
research lacks most of the requirements to initiate a path
towards standardization and industrial validation. The technical
limitations outlined above result in significant issues for tech-
nology transfer in the field. These include the lack of industry-
grade standards, which results in the adoption of case-by-case
approaches and, consequently, in significant requirements in
terms of resources. Most application fields and domains also
lack consolidated approaches to deal with uncertainties, thus

hampering the overall impact of digital tools for materials.

A fully digital data-centric approach

Integration technologies try to tackle the issues outlined above
by exploiting the efficiency of digital and data-centric ap-
proaches within a specific domain [48,58,59]. In this respect,
integration merges tools and technologies within a customized
framework and toward a specific goal, thus differentiating from
typical consumer-side applications. This approach to integra-
tion can therefore be considered at the intersection of know-
ledge acquired on the domain and data-science specific tools
(Figure 7).
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Integration frameworks are implemented as data-centric work-
flows, where data and information link the components at dif-
ferent abstraction levels [60]. The practical implementation of
this kind of integration strategy requires a strong low-level inte-
gration technology involving a broad range of components [11].
Robust and efficient software infrastructures are at the core of
integration frameworks and should feature a good mix of highly
specialized and general purpose tools. Software tools must be
paralleled by high-performance hardware infrastructures. These
must be able to deal with extremely CPU-intensive and
memory-intensive tasks (for example, for dealing with multi-
scale physical models) and support GPU computing (for deep
learning but also for advanced visualization) [61]. The large
amount of materials data involved in typical development pro-

problem-solving language

e |

constraints

inference
use case engine
USER

LEVEL

user
interface
knowledge

advice base

SEMANTIC LEVEL

problem
class

feasibility
and
solution

Beilstein J. Nanotechnol. 2024, 15, 1498—-1521.

cesses often requires high-performance and high-end storage
systems (>100 TB) and high-performance networks and inter-
connections (100 Gbps and 10 Gbps for local and geographical
connections, respectively). On the basis of these conceptual and
technical requirements, we can define the generic architecture
of a workflow-oriented data-driven high-throughput framework
that can be applied to implement a digital multiscale materials
development pipeline (Figure 8).

The general structure of this framework is based on a set of
interfaces and different abstraction layers. General user queries,
related to use cases, are translated into tasks and workflows,
returning advice and support to decision making [60]. The reali-
zation of the framework is based on the interplay between the
different levels of abstraction and the corresponding implemen-
tation. At the higher abstraction level, semantic technologies
constitute a very powerful approach to represent knowledge.
This level of abstraction connects high-level information across
the framework, guaranteeing consistency from the formulation
of queries to the definition of tasks. Ontologies, in particular,
constitute an efficient and common way to formally represent
knowledge. Accordingly, recent collaborative work has focused
on the development of materials ontologies, aiming at devel-
oping a shared framework for representing knowledge in the
domain [14,50,60,62,63]. The scenarios depicted above require
the definition of semantic assets tailored to specific applica-

data-enabled
framework

low-level
implementation
(wrappers, etc.)

problem
solving
method

workflow

implementation

I N I
il —
e Use-cases HPC storage
e Pre-and post-requisites system
ontologies e Tasks

Figure 8: The general architecture of a workflow-oriented data-driven framework for materials development. The components of the framework imple-

ment different levels of abstraction depending on their function.
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tions of multiscale materials and nanomaterials, thus covering
concepts and terms covering both very general purpose domain
semantics, typical even in mid-level ontologies, and specific ap-
plications. In the ideal scenario, the development of ontologies
is therefore driven by workflows designed by end users. A
SWOT analysis about the use of semantic technologies in mate-
rials science is shown in Figure 9.

STRENGTHS WEAKNESSES

Enhances data processing Development and implementation
efficiency can be time-consuming
Enables richer, more expressive e Requires thorough knowledge of

data queries ontologies
e Facilitates integration of diverse

types

SW
OPPORTUNITIES . ©OT THREATS

e Improved data interoperability e Potential for semantic mismatches
e Enhanced collaboration through leading to data inconsistency

shared data frameworks e High learning curve for new users

Figure 9: SWOT analysis of semantic technologies in materials
science.

With these criteria in mind, we recently worked at the develop-
ment of MAMBO, the “Materials and Molecules Basic Ontolo-

”

gy -

MAMBO - the Materials and Molecules
Basic Ontology

In the context of the applications of semantic technologies, a
solid ontology is the ground of a robust infrastructure. In real-
world applications, access to the so-called mid-level domain on-
tologies is particularly relevant. These are ontologies that
enforce more abstract assets defined in higher-level ontologies
to formalize knowledge about a more specialized domain (for
example, workflows and real-world scenarios). These ontolo-
gies serve as the link between general principles and very spe-
cific applications. This was the main reason behind the develop-
ment of an ontology dedicated to molecular materials, that is,
MAMBO (the Materials And Molecules Basic Ontology)
[64,65]. MAMBO aims to cover areas of knowledge in particu-
lar in the domain of molecular materials and nanomaterials.
Despite the large amount of work already carried out in the field
of ontologies for generic materials and chemical entities, several
essential concepts required to deal with the peculiar aspects of

molecular materials and nanomaterials are still largely missing.

The development of MAMBO followed an hybrid approach

mixing top-down and bottom-up processes. To accurately
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capture the distinct characteristics of concepts integral to the
formulation of the MAMBO ontology (both the more general
concepts and the more specific ones), we initially constructed a
set of qualitative relationships among the identified main terms
(such as the concept of “material”, or the concepts of “experi-
ment” and “simulation”). We then refined these concepts,
mainly through the results of interviews with domain experts,
which have been asked to describe many specific aspects of
their research work and activities. Throughout this process, we
established the actual classes of the ontology, further enhancing
and clarifying their interconnections; with regard to the
concepts discussed before, we formally defined classes like Ma-
terial, Experiment and Simulation for the core of the ontology,
and we started to add concepts that are specific to molecular
materials, nanomaterials and related domains, such as Molecu-
larAggregate. The main core of the ontology can be seen in
Figure 10.

Figure 10: MAMBO main core classes and relationships: the ontology
revolves around the concepts of Material, Simulation and Experiment.
An object (Material) is represented by its structural features (Structure)
and properties (Property), while computational (Simulation) and experi-
mental (Experiment) workflows are connected through a common inter-
face to Property and to Structure.

As shown in Figure 10, one of the main design choices we
made for MAMBO is the representation of both the modelling/
simulation activities and the experimental ones using separated
classes and hierarchies. This choice allows us to address large
parts of the same knowledge base from two different perspec-
tives. From this core, we developed deeper and more special-
ized hierarchies, which are functional to talk about more
specialized concepts such as Molecule, Atom, and so on. The
role of these more specific classes is to give us the possibility to
talk about the specific entities and concepts required to describe
our research activities and to better define real-world work-
flows that enforce those concepts in order to link our scientific

questions to the final results we need.

1507



Although still in the early development stages, MAMBO
proved to be expressive enough to let us represent the know-
ledge related to computational workflows, using concepts
defined in the ontology. This is a first step towards a formal
definition of each step of more complex research workflows
and for enabling more powerful semantic technologies, where
data and the metadata are all encoded using the semantic assets
defined in the ontology. This approach leads to a more efficient
data processing, as a result of the logical consistency of the
definitions used. Data then can act as the glue that make inter-
connections between different steps of the workflow possible
and easier. Moreover, with this kind of representation, we can
use as data not only the main information related to a specific
workflow, but we can enrich the general knowledge with
several other information concerning for example the use of

resources or provenance.

Case-study application of MAMBO

The applicability of MAMBO in the organization of knowledge
in the target domain was assessed by analyzing simple typical
workflows related to R&D for materials and in particular mo-
lecular materials. In this section, we will discuss a case study
related to the implementation of simulation workflows for in-
vestigations of the properties of molecular materials and nano-
scale molecular aggregates. To this end, we will use MAMBO
classes and relationships that, for the sake of brevity, we cannot
introduce here. Interested readers can find more details in
[64,65]. The analysis of a case study focusing on simulation
workflows, in particular, allows us to define technical require-
ments and possibly tune the expressiveness of MAMBO in
addressing the specific knowledge involved in the description of
materials at different scales (from particles to aggregates). Our
approach is based on analyzing a general workflow that
connects initial information and conditions (pre-requisites) and

the final output (post-requisites) of the problem under investiga-
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tion, further decomposing the problem into tasks and subtasks.
The definition of tasks and subtasks and the domain knowledge
is organized in terms of the structure provided by MAMBO. Let
us first consider a simulation workflow for the evaluation of the
physicochemical properties of a molecular aggregate made of
identical molecules based on force-field molecular dynamics
(MD). While simple, this workflow exhibits the main features
of more complex simulations. The consistent representation of
this workflow within MAMBO can therefore be instructive of
the approach pursued and gives possible hints of the ability to
formalize more complex cases. This macrotask can be decom-
posed into several interconnected computational subtasks,
which involve different operations on structured data. From the
practical point of view, the overall workflow is generally real-
ized by applying specialized simulation software, which imple-
ments specific computational methods, operating on structured
input files and producing output files as results. Other opera-
tions may require the manipulation of files and data structures.
In the case of the considered workflow, we need, for example,
input files containing information about the structure of the
molecule under study. This information is further processed by
specialized software, implementing computational methods,
which provide an output in terms of molecular properties. These
methods can include, for example, structure manipulation tools
(such as simulation box builders) and MD-specific algorithms
for equilibrating molecular aggregates under different condi-
tions [66,67]. The workflow produces structured information
containing, for example, a snapshot of the structure of the simu-
lated aggregate under the considered conditions and/or derived
properties (for example, the computed equilibrium density of
the aggregate in kg-m~3). A sketch of this workflow is shown in
Figure 11.

The decomposition of the workflow sketched in Figure 11 high-
lights the parallelism between the involved knowledge and

Input files Computations Output files
StructureManipulation (Algorithm)
aggregate.xyz
moleculel.xyz
MD (Algorithm) density

w.itp

(InteractionPotential)

Figure 11: A visual description of the workflow discussed. The first block contains the input files, which are representable as MolecularSystem
instances as individuals; the second block consists of all the files and software needed to perform the actual simulation; finally, the third block repre-
sents the output obtained from the simulation, with information about the structure of the molecular aggregate and the resulting computed density.

1508



instances of MAMBO classes. For example, we can identify the
following: (i) The initial information about the molecular
system considered is an instance of the Structure class, which is
linked to the Material class via the has_structure relationship.
In particular, the information pertains to the MolecularSystem
subclass. (ii) More detailed knowledge on the molecular system
considered can be structured in terms of instances of the Atom
class, which contains information about individual atoms of the
molecule. In turn, the position of individual atoms corresponds
to instances of the CartesianCoordinates class. (iii) Informa-
tion on the tools for the manipulation of data structure and on
MD algorithms can be represented as instances of the Computa-
tionalMethod class. (iv) In analogy with the input data, part of
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the information provided by the workflow can be represented as
an instance of the Structure class. In particular, the simulated
structure of the molecular aggregate is an instance of the Molec-
ularAggregate class. (v) The computed property of the molecu-
lar aggregate (for example, the computed density) is an instance
of the Property class.

An example of the parallelism between the structural informa-
tion on a molecule stored as a file and encoded in a standard
format in the context of molecular simulations (xyz format) and
corresponding attributes of MAMBO classes is shown in
Figure 12. A similar example for attributes of classes pertaining
to the ComputationalMethod class is shown in Figure 13.

103 number_of atoms
1= B NEN= -512.5522004041
Ir 11.2560005000 12.5219995000 13.6504995000
C 10.0482967139 8.9072459132 11.6389600069
C (9.1201046852 9.0358137716 12.6940716033)—+ CartesianCoordinates
N 10.9081356654} S IR b ot Ea e X
C 10.5567420412 (10.8381236717) 127631577918 Y
N 9.4640412685 10.2153326871 13.3608023235 Z
C 8.8834634507 10+8582624402 144703170447
C 9.5785517790 12.0800741352 14.8206601988 MolecularSystem
C 9.0545602402 12.8043171865 15.9049322579
H 9.5578395928 13.7167500432 16.2196197303 | —— Structure

Figure 12: An excerpt of a real-world input file containing structural information about a molecule encoded in the standard xyz format. In particular,
the file contains information on the Cartesian coordinates and symbols of all the atoms in the molecule and the total number of atoms. Some of the
involved MAMBO instances and class attributes are highlighted in different colors. Black: Structure instance, blue: MolecularSystem instance, orange:

Atom instance and attributes, and red: CartesianCoordinates instance and attributes.

BondedPotential

TwoBody

force constant

ComputationalMethod
integrator = steep
nsteps = 1000
[ bonds ]
! j funct length force.c.
(1 2 1 0.1 345000 0.1 345000 —
1 3 1 (0.1) (345000 0.1 345000 —
[ angles ]
51 j k funct angle force.c.
(2 1 3 1 109.47 383 109.47 383}

equilibrium_distance

ThreeBody

Figure 13: An excerpt of a real-world configuration file containing information about a simulation. This example shows possible encoding in formats
used by common software packages for MD simulations (here, a syntax borrowed from the Gromacs [35] format is considered). In particular, the file
contains information about the type of Integrator, the definition of the interaction potential used in MD simulations (for example, parameters for bonded
potential terms, collected by an instance of BondedPotential). Involved MAMBO instances and class attributes are highlighted in different colors.
Black: ComputationalMethod instance, green: BondedPotential instance, blue: ThreeBody instance, red: TwoBody instance and attributes and yellow:

Integrator instance and attributes.
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The link between the structure provided by MAMBO and the
data defining a specific computational workflow can be provi-
ded by metadata and/or annotations, which can be implemented
in a variety of standard formats [68]. The applicability of
MAMBO in the definition of the workflow considered above
and defined by exploiting problem-solving methods [69]
(competences - input/output, operational specifications and
requirements) shows the potential of the proposed approach in
the context of specific applications in the materials develop-
ment pipeline. This approach can be easily extended to more
complex systems and processes. The semantic interoperability
ground provided by MAMBO in the materials science domain
provides the basic components to represent complex workflows
in terms of basic and reusable building blocks enabling high-

throughput and automated data processing.

IATA Frameworks

Integrated Approaches to Testing and Assessment (IATA)
frameworks constitute another key set of technologies in the
context of materials digitalization. IATA tools combine various
testing and assessment methods to provide a comprehensive
evaluation of materials, including nanomaterials. In particular,
IATA frameworks leverage computational models, experimen-
tal data, and ML techniques to predict properties and behavior
of materials, thus facilitating the integration of diverse data
sources and tools to develop predictive models under a struc-
tured assessment strategy. Among the broad range of tools
available for supporting the development of digital twins of ma-
terials and the evaluation of molecular descriptors within an
IATA framework, there are the following:

VMD (Visual Molecular Dynamics) is a molecular visualiza-
tion program that provides a platform for the modelling, visuali-
zation, and analysis of molecular and biological systems. It is
widely used for the development of materials’ digital twins and
the calculation of molecular descriptors that can be integrated
into ML models [70].

Enalos NanoInformatics Cloud Platform is a web-based plat-
form that allows users to design and build nanomaterials. It
supports the calculation of molecular descriptors and the inte-
gration of these descriptors into ML models for predictive anal-
ysis [71]. Moreover, it is tailored to the safe-by-design para-

digm, making it an essential tool for future researches [72].

ASCOT (an acronym derived from Ag-Silver, Copper Oxide,
Titanium Oxide) is a tool for the automated construction and
optimization of molecular structures for, as the name suggests,
silver, copper oxide, and titanium oxide [73]. ASCOT assists in
the generation of high-quality digital twins of materials and the

computation of relevant molecular descriptors.
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Nanotube Modeler is a software tool designed to create three-
dimensional coordinates for various nanoscale carbon struc-
tures, including nanotubes, nanocones, and fullerenes. The soft-
ware generates precise xyz coordinates for these molecular
models. Users can visualize the resulting structures using either
the built-in viewer or by exporting the data to their preferred vi-
sualization software [74,75].

Infrastructures for Data

To fortify the foundation given by the robust data structures and
metadata that derive from the usage of ontologies, it must be
noted how the ability to easily upload and share the resulting
data plays a pivotal role. In the realm of contemporary data
management, the advent of cloud technologies has emerged as a
pivotal catalyst, revolutionizing the infrastructures for data [28].
Cloud technologies represent the most efficient and dynamic
means to facilitate the seamless sharing of knowledge across
diverse platforms. The inherent scalability, flexibility, and
accessibility of cloud-based systems provide researchers and
organizations with unprecedented capabilities to store, process,
and retrieve vast volumes of data [17]. However, harnessing the
full potential of cloud technologies demands a conscientious
commitment to deep structuring and restructuring of data. This
intricate process involves the precise organization and optimiza-
tion of information repositories to ensure optimal performance
and resource utilization. Consequently, the synergy between
cloud technologies and meticulous data structuring heralds a
new era in scientific inquiry, empowering researchers to navi-
gate the complex landscape of information with unprecedented
efficiency and agility.

Development tools

In the realm of computational research, the use of local devel-
opment tools (both on workstations and on HPC facilities) plays
a pivotal role in facilitating research, enabling scientists to
smoothly transition from theoretical concepts to practical work-
flows and results. In this section, we are going to highlight
some of these tools.

The Jupyter ecosystem

In recent years, we have seen the rise of the Jupyter ecosystem,
a set of tools developed to make scientific programming easier
(even for novices), interactive, and reproducible, while giving
the possibility to mix actual code with a markdown text and dif-
ferent media, an approach very akin to that of literate program-
ming [76]. The main component of the Jupyter ecosystem is the
Jupyter Notebook. The Jupyter Notebook provides an interac-
tive computing environment that combines code execution, rich
text, and multimedia elements into a single document [77].
Scientists can leverage Jupyter notebooks to develop, docu-

ment, and share computational workflows. These notebooks
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serve as an interface where theoretical concepts are trans-
formed into executable code, enhancing collaboration and
reproducibility in research. We can use notebooks to turn the
general concepts and the usual scripts, files, software configura-
tions, and the documents containing technical and scientific ex-
planations into a series of unified files that serve as both the
actual executables and the explanatory file. Thanks to the possi-
bility offered by Jupyter notebooks to integrate code with
explanatory text (with the rich text rendering capabilities of
markdown documents), images, plots, and visualizations in
general, researchers can create comprehensive narratives around
their computational experiments. This integration fosters a
seamless transition from theoretical concepts to practical work-
flows. Researchers can articulate their thought processes,
present results visually, and iterate on their code, fostering
a dynamic and iterative research environment. Moreover,
thanks to the different media we can integrate inside a note-
book and thanks to the possibility to use notebooks for a
growing number of programming languages [78], even new re-
searchers with no prior experience with computational tools and
HPC as a whole can start to develop their workflows and
computational experiments through a friendly, powerful, and

intuitive environment.

To make notebooks even more powerful, the Jupyter project
introduced a new editor called Jupyter Lab. Jupyter Lab repre-
sents the next-generation interface for Jupyter notebooks,
offering an actual integrated development environment (IDE)
with enhanced features [79]. Its modular architecture allows
users to arrange and organize components to suit their work-
flow preferences, providing a more versatile and customizable
experience compared to traditional Jupyter notebooks. Other
than the familiar notebook file format and interface, Jupyter Lab
offers better filesystem navigation and better visualization capa-
bilities; it also offers the possibility to edit standard text files
together with notebooks. Moreover, Jupyter Lab offers real-
time collaboration editing capabilities [80], allowing research-
ers to collaboratively edit their notebooks, meaning that the
code, the explanatory text, images, and the visualization of
results can be turned into a fully collaborative effort. In addi-
tion, Jupyter Lab offers a very powerful plugin and extensions
system and an application programming interface (API) [81]
that allows developers and researchers to add new functionali-
ties to the notebook IDE, making it even more powerful. Partic-
ularly relevant to the scope of this paper are extensions meant to
make Jupyter Notebooks integrated with classical HPC facili-
ties [82]. At the same time, it is worth highlighting that there are
other ways to use notebook in standard HPC settings, like using
SLURM [83] interactive sessions and start a Jupyter kernel
inside one of them. Thanks to this kind of integrations or solu-

tions, researchers can ensure that resource-intensive calcula-
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tions can be executed efficiently, expanding the scope of
research possibilities while preserving the advantages of using

the Jupyter notebook interface.

The final piece of the puzzle is finding a way to share and store
Jupyter notebooks within the team and the research community
in general. However, simply saving them is not a sufficient
target since we also want to preserve the possibility to execute
the notebooks. In a nutshell, we want to integrate the Jupyter
notebooks with the cloud architecture, while preserving their
interactive nature. To this very end, Jupyter Hub was intro-
duced in the Jupyter ecosystem. Jupyter Hub serves as a central-
ized platform for managing and deploying Jupyter notebooks
[84]. It enables multiple users to access shared resources,
fostering collaborative research efforts. Jupyter Hub can be par-
ticularly advantageous in educational settings, research groups,
or institutions where researchers need a centralized hub for their
computational chemistry endeavors.

Leveraging all these software products, we can obtain a unified
platform for saving and sharing an interactive and multimedia
coding environment, which also allows researchers to docu-
ment and explain their code and research questions. Thanks to
the cloud nature of this platform, researchers can save and share
their work, and all the editing activity is immediately visible to
other researchers. This editing can also be a real-time collabora-
tion between different researchers, further accelerating their ac-
tivities and the process of getting results. Also, the platform can
be developed and deployed following the FAIR principles [85],
meaning that all the results and the respective workflows are
shared between different teams and are, more generally, freely
accessible through the platform. This way, different teams can
start from where previous work ended, making it easier to
reproduce results but also to re-use previous pieces of research
as the starting point of new discoveries. Jupyter has also been
used as a tool for sharing computational tasks and workflows
[86] to make it easier for researchers to co-operate during the
development through a uniform interface [87] and also to build

interactive training resources and textbooks [88].

Workflow management

While Jupyter notebooks are very useful to write and explain
the reasoning behind it, they are still far from being a full work-
flow management solution. Other than being hard to orches-
trate and use together in complex pipelines, they still require
that researchers write code in order to be built and that they
open and read notebooks in order to see if a specific notebook is
useful for them. In recent years, low-code approaches are
emerging also in the context of research and HPC applications
[89]. This approach is particularly appealing as it allows re-

searchers to build even complex workflows and pipelines only
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using visual tools and connecting functional blocks with logic

and temporal order relations.

Wireframe sketching

To enhance clarity and structure within computational experi-
ments, the use of wireframe sketches can be invaluable. Wire-
frames can serve as templates, guiding researchers to structure
the workflow of activities systematically. A well-designed wire-
frame sketch might include sections for input parameters, code
execution, visualizations, and textual explanations, promoting
consistency and clarity in workflow organization. Wireframes
are already a standard tool in software development [90-92],
and they are meant to help developers to define the data-flow
and execution logic of the software using abstract building
blocks and links. Accordingly, wireframes can identify flaws in
the general reasoning and improve the logic of the development
roadmap. This set of tools can provide computational scientist
with systematic ways to better plan the research activities,
leaving the implementation work to a later stage. Moreover, this
step can benefit from the availability of semantic assets that
describe the entities and operations related to research work-
flows. The actual implementation of a workflow usually follows
the complete definition of the generic features in terms of a
wireframe sketch. This is when software that is specifically de-
veloped in order to give the possibility to implement real-world
pipelines with a low-code approach comes to play since it
allows to implement a working research flow with a syntax and

visual features that are very similar to those of the wireframes.

Workflow building tools

Workflow building tools and platforms can assist development
and implementation steps starting from wireframe sketches.
Workflow builders usually enable the representation of a com-
plex workflow as a sequence of operations connected by
sequential and/or logical relationships. The operations are
usually represented as blocks or modules, connected to previous
blocks via a chain of input/output data structures. The relation-
ships that links these inputs and outputs can be as simple as
“after this, do that” or can be more involved and include logical
conditions (like: “if this is the output, then do this, or if this is
the output, do this instead”). Several general-purpose workflow
building platforms have recently gained interest for imple-
menting computational and modelling workflows.

KNIME (Konstanz Information Miner) is an open-source data
analytics, reporting, and integration platform [93]. KNIME
allows users to visually create data workflows, ranging from
simple data preprocessing to complex machine learning and
data mining tasks. KNIME provides a graphical interface where
users can drag and drop nodes to design and execute data analy-

sis workflows. KNIME employs a node-based workflow design,
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where each node corresponds to a specific operation or task.
Users establish connections between nodes to construct a work-
flow, allowing data to flow between nodes for diverse opera-
tions. The platform boasts an extensive node repository that
includes pre-built nodes for tasks like data cleaning, transfor-
mation, analysis, and machine learning, giving users the possi-
bility to create custom nodes, thereby expanding the flexibility
and the functionality of the platform. Also, KNIME supports
the incorporation of data from diverse sources, such as data-
bases, flat files, and web services, providing specific connec-
tors and nodes to ensure smooth data integration and manipula-
tion. Offering high flexibility and extensibility, KNIME allows
users to integrate external tools and scripts into workflows,
facilitating the inclusion of custom functionalities and algo-
rithms. Moreover, interactive data exploration is facilitated
through the provision of interactive views and visualization
tools, empowering users to scrutinize and analyze data at
various workflow stages. KNIME has also been developed to
allow for consistent integration with external tools and
languages (with particular focus on popular scientific languages
like R and Python), enabling users to harness the capabilities of
these tools within the KNIME environment. All these features
are further empowered by the community, which developed
several extensions and integrations. All these qualities contrib-
ute to make KNIME a powerful and user-accessible instrument
for the orchestration of workflows and for data analytics in
general and to make it widely embraced in both academic and
industrial spheres for a diverse spectrum of tasks associated
with data manipulation and analysis. KNIME has been used in
various nanomaterials research projects for data analysis and
workflow automation. For instance, it has been used to develop
workflows for the analysis of nanomaterials and nanoparticles
toxicity [94] and to aggregate data about biological activities of

compounds coming from different sources [95].

The Galaxy Project is an open-source platform designed for
accessible and reproducible data-intensive research [96]. While
it was conceived for biomedical applications, it is now a more
general purpose tool for research workflow automation. Galaxy
provides a user-friendly interface facilitating data analysis for
scientists, researchers, and analysts. Through a series of inte-
grated tools and workflows, it offers features such as a web-
based platform. This web-based interface allows users to access
and perform data analysis tasks using a standard web browser,
promoting collaboration and ensuring ease of use. Akin to
KNIME, Galaxy supports the creation and execution of data
analysis workflows. Users can design workflows visually by
connecting tools and processes, making it intuitive for research-
ers with varying levels of expertise. Also, Galaxy incorporates a
diverse range of bioinformatics and data analysis tools, consis-

tently integrating them into the platform. Galaxy is designed
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from the ground up in order to be compatible with various
bioinformatics file formats, allowing users to integrate their
custom tools, workflows, and results into the platform. Users
can then access and execute this plethora of tools within their
analysis workflows [97]. By putting strong emphasis on repro-
ducibility in scientific research, Galaxy enables easy sharing of
workflows. This feature allows others to reproduce analyses and
verify results, fostering transparency and collaboration in scien-
tific endeavors. The Galaxy Project leverages an active commu-
nity of users and developers and, in general, follows a commu-
nity-driven approach in order to foster improvement, support,
and the development of new features and tools. In addition,
Galaxy provides educational resources, tutorials, and training
materials to assist users, especially those new to bioinformatics,
in getting started with the platform and enhancing their analyti-
cal skills. The Galaxy Project is widely utilized in the field of
bioinformatics and computational biology, offering a collabora-
tive and user-friendly environment for researchers to conduct
data analysis and share their findings with the scientific

community.

A SWOT analysis related to the technologies discussed in this
section is shown in Figure 14.

STRENGTHS WEAKNESSES

Automation of modelling tasks
reduces manual effort
Improved user-friendliness of
software

Enhances reproducibility and
efficiency

e Complexity in integrating various
digital technologies

e Requires interdisciplinary
collaboration

sw)
OPPORTUNITIES Qy

Development of new, efficient
computational tools
Cross-disciplinary innovations in
materials science

THREATS

e Fast-evolving technology
landscape may render current
tools obsolete

e High dependency on technology
providers

Figure 14: SWOT analysis of the main rising digital technologies and
their applications to the materials science domain.

Deployment

APIs in materials informatics

APIs are standardized sets of protocols and tools that allow dif-
ferent software applications to communicate with each other.
They serve as intermediaries, enabling interactions between
various systems, applications, and databases. APIs are essential
in modern software development, providing the building blocks
for creating robust, scalable, and interoperable applications and
defining clear methods for requesting and exchanging data,
facilitating integration and automation, which are crucial for

efficient workflow management. In the context of materials
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informatics, APIs are gaining increasing importance as they
facilitate streamlined data exchange. Thanks to APIs, research-
ers can automate workflows, access updated datasets, and
utilize computational tools without the need for manual data
management. This interoperability is crucial for accelerating
research by enabling efficient integration of experimental and
computational resources. Furthermore, by providing standard-
ized interfaces, APIs ensure that various components of the ma-
terials informatics ecosystem can operate together harmo-
niously, thereby improving the efficiency, reproducibility, and
scalability of research processes. In the work of Hu et al. [98], a
multialgorithm-based mapping methodology called ChemProps,
implemented through RESTful APIs, was proposed to address
the inconsistency of polymer indexing due to the lack of unifor-
mity in polymer name expression. Another interesting ap-
proach can be found in the work of Hu et al. [99], which
proposes the development of MaterialsAtlas.org, a web-based
materials informatics toolbox, to address the limited adoption of
materials informatics tools due to the lack of user-friendly web
servers. This platform includes essential tools for materials
discovery, such as composition and structure validity checks,
property prediction, hypothetical material searches, and utility
tools. MaterialsAtlas.org aims to facilitate exploratory materi-
als discovery by providing accessible and user-friendly tools for
materials scientists, thereby accelerating the materials discovery
process. The tools are freely available at , and the authors advo-
cate for the widespread development of similar materials infor-

matics applications within the community.

Virtualization and containers

Generally, both containerization and virtualization are two of
the most widely used techniques when hosting an application on
a computer system. Virtualization relies on virtual machines as
its essential element, while the fundamental unit of container-
ization is the container. Clearly, both approaches have advan-
tages and disadvantages. Virtualization involves running an en-
tire guest operating system on a virtual machine, sharing the
hardware resources of the physical machine. This introduces a
certain overhead, as it is necessary to duplicate the operating
system and allocate dedicated resources to each virtual machine.
In contrast, containerization can be defined as OS-level virtual-
ization that allows running applications in isolated environ-
ments known as containers, sharing the host operating system
kernel. Containers are lighter than virtual machines; typically,
the startup time of a container is very low, comparable to that of
a native application [100,101]. Frequently, containers can run
inside virtual machines, and this is one of the most common
scenarios encountered when discussing cloud computing. In
recent years, multiple containerization technologies have
emerged, with Docker [102], Apptainer (formerly called Singu-

larity) [100], and Linux Containers [103] standing out as some
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of the most utilized and well-known. Docker, in particular, has
often become the preferred solution in cloud computing. Singu-
larity was developed with the specific aim of facilitating
containerization in the field of HPC. It offers several advan-
tages, notably in terms of use, as it operates without the need for
root privileges and lacks daemon processes. Additionally,
Singularity provides native support for HPC architectures such
as GPUs and Infiniband, enabling simplified communication
between different computing nodes. Docker has been already
used extensively for making research activities and workflows
more easy to reproduce, as shown by recent work [104-106].

Orchestration

Container orchestration is the process of automating the
majority of operations required to run containerized workloads
and services. Specifically, orchestration automates develop-
ment, management, scaling, and networking of containers. Key
orchestration tools, such as Apache Mesos, Docker Swarm, and
Kubernetes, provide frameworks for container management. In
a typical orchestration tool like Kubernetes, the configuration of
an application is described using standard files like YAML or
JSON. Once the application specification is planned, the orches-
trator assumes various tasks. Primarily, it plans and distributes
container resources, makes decisions based on available hard-
ware resources (e.g., CPU, RAM, and storage), and dynami-
cally manages containers in response to workload demands.
Network management is crucial, involving the creation of
virtual networks for container communication internally
and externally through port management. Notably, container
orchestration also plays a vital role in data persistence, ensuring
storage operations even when a container is recreated. Contain-
er orchestration is an essential component for advanced and
efficient management of containerized applications in distribut-
ed environments. Through orchestration, which coordinates
resource distribution, supports horizontal scalability, and
manages critical aspects such as network and data persistence,
a complex and reliable management system is achieved.
Recently, Zhou et al. [107] discussed a novel framework that
integrates a resource management layer powered by Kuber-
netes, demonstrating its application in the field of materials
science. This framework leverages Kubernetes for efficient
management and orchestration of computational resources. By
ensuring dynamic scaling and optimal allocation of both CPU
and GPU resources, Kubernetes facilitates job scheduling and
execution across heterogeneous computing nodes, significantly
enhancing computational efficiency and resource utilization in

materials science research.

Virtualization and containerization in HPC
Given the significant rise of containers in the development of

most common applications, there is a growing consideration for
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the applicability of containers for HPC. The majority of current
containerization implementations rely on Docker and Docker-
file manifests for building container images. However, the
direct adoption of container technologies like Docker in an HPC
environment proves to be a non-trivial and impractical task,
presenting a set of challenges in terms of security and usability
that are not easily surmountable. While the use of containers
offers an advantage by creating an abstraction layer that simpli-
fies software distribution and management, this abstraction can,
in many cases, lead to an increase in required resources and
computational effort. A direct consequence of the aforemen-
tioned is the emergence of a trade-off within the system soft-
ware, emphasizing the need for a meticulous and rigorous per-
formance evaluation to identify and quantify the compromises
associated with the use of these new container abstractions.
HPC clusters are commonly employed for applications
demanding low latency and high throughput. However, these
clusters are often not inherently equipped to accommodate com-
plex Al workflows along with their specific requirements.
Consequently, deploying new packages on such clusters can
be challenging for end users. Because of these challenges,
containerizing workflows, including intricate simulations inte-
grated with predictive workflows, emerges as an excellent solu-
tion. Containerization provides end users with a high degree of
customization for their working environment, offering a consis-
tent approach to managing and deploying Al workflows on
HPC clusters [108,109].

One of the primary challenges when utilizing conventional HPC
infrastructures lies in the fact that jobs are typically managed by
a workload manager, which often encompasses diverse respon-
sibilities, including managing the hardware resource limits of
the computer cluster, scheduling jobs, ensuring no interference
with concurrently running jobs from other users, determining
the priority of the different jobs and distributing jobs to avail-
able nodes in the most efficient way. As of now, orchestrators
such as Kubernetes and others do not possess the capability to
fulfill all of these requirements. Consequently, relying solely on
containers for cluster utilization proves to be complex. Various
works documented in the literature aim to address and over-
come these challenges, striving to effectively integrate contain-
ers within the HPC environment. Efforts in the literature, such
as the study conducted by Keller et al. [110], emphasize specif-
ic criteria for HPC container implementations. These criteria
include ensuring a secure implementation to safeguard the oper-
ating system in multitenant systems, guaranteeing minimal per-
formance overhead, and facilitating optimal system perfor-
mance through access to vendor-provided libraries and tools
tailored for specific HPC hardware. Noteworthy works, includ-
ing those by Ruiz et al. [111] and Torrez et al. [112], concen-

trate on the performance analysis within HPC. These studies
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highlight the gradual improvement in performance over time to
cater to the increasing demand for software flexibility in HPC.
Through experiments comparing container and bare-metal per-
formance using standard benchmarks, they contribute valuable
insights into the evolving landscape of HPC technologies. The
extensive efforts documented in the literature to address the
challenges of enabling containerized HPC applications, coupled
with studies on the integration between orchestrators and work-
load managers [113,114], underscore the promising trajectory
of this technology for HPC configurations. These collective
endeavors signify a significant step forward in achieving greater
flexibility and efficiency in HPC environments through
containerization. A particularly interesting use of containers,
especially Docker, can be found in the work of Franco-Ulloa et
al. [115], which discusses the development and capabilities of
NanoModeler, introducing it as the first webserver designed to
automate the construction and parametrization of nanoparticles
for molecular dynamics simulations. The NanoModeler
Webserver features a frontend built with Angular 6 and Boot-
strap for an enhanced, multidevice user experience. The
backend utilizes Docker containers, with NodelS for the orches-

trator and data persistence layer.

To close this chapter, Figure 15 shows a SWOT analysis
applied to the infrastructural technologies.

STRENGTHS WEAKNESSES

e Requires restructuring of data
repositories
e Potentially high operational costs

Cloud technologies offer
scalability and accessibility
Facilitates seamless data sharing

and collaboration
Supports integration of HPC
[sw
OPPORTUNITIES Qy
Global accessibility to datasets e Data security and privacy concerns
Potential for training e Risk of dependence on cloud

data-intensive neural networks, service providers
leading to new discoveries

THREATS

Figure 15: SWOT analysis of infrastructural technologies applied to
materials science.

Workflows for Property Predictions

If put together, all the techniques and technologies highlighted
above can be used to build a general framework that is able to
represent and to execute entire research workflows that lead
from scientific questions to their answers. Moreover, the work-
flow and its corresponding results will be semantically linked,
improving the reproducibility of the workflow itself and helping
in assessing the soundness of the entire pipeline. In addition, the
underlying semantics enables us to transform the workflow, the
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files that we need to perform it, and the final results into actual
data that can be stored and retrieved from a database technolo-
gy and, consequently, used to perform any kind of analysis on
them or to train ML models. In the next section, we will analyze
a specific case study related to computational workflows in ma-
terials and nanomaterials development and illustrate how we
envision the future of this approach through the integration of
digital technologies.

Predicting bulk properties of nanomaterials
from molecular properties by integrating
physical models and ML

In this section, we consider a specific workflow as an example
of implementation of the design schemes outlined above. The
use case considered consists in the computational modelling of
charge transport properties of bulk amorphous molecular mate-
rials. Namely, this application represents a typical scenario of
multiscale modelling of nanomaterials [116]. This example is
partially related to the use case introduced previously when
discussing possible applications of the MAMBO ontology. The
computational workflow uses the knowledge about the struc-
ture of the molecule and a set of procedures to compute the
properties of the resulting bulk. The standard workflow consid-
ered here is based on the evaluation of the electronic properties
of pairs of molecules in aggregates, which are subsequently
used in the evaluation of charge transport properties through
kinetic Monte Carlo simulations for the whole aggregate.

Further details on this approach are given in [117-119].

The whole computational experiment is structured as follows:
(i) We start from the information about the structure of a single
molecule (for example, a coordinate file in the standard xyz
format, with Cartesian coordinates and types of atoms). (ii) We
perform a set of molecular dynamics simulations on a set of
replica of the same molecule within a simulation box. The set of
simulations aims at reproducing the amorphous aggregation of
molecules within the bulk [2]. At the end of this process, we
obtain the morphology of a bulk aggregate. (iii) We extract
pairs of molecules from the morphology of the bulk aggregate.
To ensure a significant statistical coverage of intermolecular
pair configurations, the selection algorithm is biased towards
the extraction of pairs with a broad distribution of mutual dis-
tance and orientation. (iv) We perform DFT calculations on
each molecular pair extracted to compute the electronic cou-
pling. (v) We use the result of the DFT calculations to calculate
the charge transfer inside the bulk using kinetic Monte Carlo
methods.

As this list clearly shows, this experiment is built using many

different computational techniques and requires different infor-

mation, data structures, and knowledge across different domains
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and scales. The approach outlined in the previous sections can,
therefore, be used to achieve a higher degree of integration
across the whole workflow. The resulting integration should
lead to significant improvements both in efficiency and in the
realization of robust databases and infrastructures. One of the
main steps to be undertaken for the implementation of inte-
grated architectures concerns the definition of a shared and
unique way to represent all the different tasks of a given work-
flow in a uniform way. The definition and representation of
modular workflow tasks can also support interoperability and
the link between different stages of a complex workflow. The
development of an ontology, such as MAMBO, can be consid-
ered as an ingredient to support the consistent definition of
terms and relationships needed to describe a workflow. The ex-
ample shown in Figure 13 is an example of a possible represen-
tation of the content of files containing information on atom po-
sitions, encoding the structure of a molecule using different
concepts formalized within the reference ontology. Similarly,
we can also represent the workflow steps and simulations using
the corresponding concepts, thus semantically linking the indi-
vidual entities and steps to each other. The use of semantic
assets to define objects and relationships within the workflow
improves efficiency and interoperability and, at the same time,
enables modularity. We can then consider to use a workflow
building tool to automate the generation of a single executable
pipeline. In the example considered, we implemented the work-
flow within a local instance of the Galaxy platform. Namely, we
used both pre-defined blocks made available by the Galaxy
community and locally implemented modules. Once the work-
flow is defined, we can execute resource-intensive tasks on
HPC facilities. In the case of Galaxy implementation, we
connected the general workflow framework with the under-
lying HPC infrastructure by using a containerized (Docker)

deployment.

In principle, the implementation steps defined above could
connect the execution of workflows to centralized databases,
enabling the execution of queries. This is where the cloud tech-
nologies, if merged with actual database technologies, could
give an invaluable contribution to the field. Moreover, these
databases can be also realized to enforce the semantic assets
defined inside the chosen ontologies to make the queries even

more expressive.

The computational workflow defined above, however, exhibits
some significant computational bottlenecks. While the genera-
tion of the morphology of the bulk molecular aggregate is a rel-
atively quick computation, calculating the electronic coupling
for a substantial number of molecular pairs is rather expensive
and time-consuming since this computation can require several

minutes on a reasonably big HPC infrastructure. Therefore, we

Beilstein J. Nanotechnol. 2024, 15, 1498-1521.

also considered the connection of this workflow to ML plat-
forms to increase the overall time-to-solution efficiency.
Namely, we computed the electronic coupling only for a limited
number of pairs and then used those results to train a ML model
for predicting the coupling on the basis of the pair configura-
tion only. Once trained, the ML model is able to predict inter-
molecular couplings in a few milliseconds on a standard laptop,
enabling us to actually compute the electronic coupling for a
very large amount of molecules in few minutes. The ML-pre-
dicted electronic properties of molecular pairs can then be used
to compute the charge transfer in the bulk. We implemented the
corresponding tasks within the Galaxy workflow, leading to an
efficient and interoperable calculation pipeline. At the end of
the entire process, we have a fully automated pipeline, repre-
sented as a series of computation blocks and the sequential rela-
tions between them, that is able to calculate the charge transfer
of a bulk of a molecular materials in a few hours, while having
a standardized and logically consistent vocabulary to describe
workflow procedures and a unique access point for data.

Conclusion

In this article, we have explored the profound impact of digital
technologies on the realm of materials and nanomaterials,
encompassing both experimental and computational research.
Specifically, we analyzed the synergies among HPC infrastruc-
tures, ML, and data management technologies, elucidating how
these interactions empower materials scientists, enhancing the
efficiency and reproducibility of their workflows. Additionally,
we highlighted the ongoing research into advanced visualiza-
tion technologies, such as AR and VR, aimed at supporting de-
velopment in materials science. These technologies offer a
promising avenue for designing novel materials and devices by
providing intuitive visualizations. The semantic structuring of
data emerges as a pivotal capability, facilitating the creation of
expansive and comprehensive databases through integrated
semantic assets. Leveraging cloud technologies, these datasets
become globally accessible, fostering collaboration and facili-
tating the training of data-intensive neural networks. This, in
turn, accelerates investigations into materials properties and
expedites the discovery of new materials through enhanced
automation. The interconnected nature of these technologies
forms a virtuous cycle, each reinforcing and augmenting the
capabilities of the others. We showcased our in-house ontology,
MAMBO, as an illustrative example of the successful applica-
tion of such research activities. Notably, software tools such as
Jupyter notebooks, KNIME, and the Galaxy Project have signif-
icantly eased the interaction with computational infrastructures,
lowering entry barriers for researchers and innovators and
promoting the reproducibility of research across different areas.
Furthermore, the development of tools for building, deploying,

and maintaining diverse software components within an HPC
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facility is crucial. Virtualization and containerization technolo-
gies, exemplified by Docker and Apptainer, present promising

architectures for managing these intricate systems.

To provide a practical perspective, we introduced a research
workflow incorporating various digital technologies, including
ML, multiscale simulations, and workflow management. This
exemplifies a foundation for the realization of data-driven inte-
gration infrastructures, enhancing the efficiency and usability of
computational tools. This comprehensive approach has the
potential to establish consolidated and shared practices, leading
to robust standardization. Ultimately, it enables the implementa-
tion of technology transfer pathways for digitalization in nano-
materials development, fostering industrial uptake and paving

the way for the future of materials science.
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Abstract

A key step in building regulatory acceptance of alternative or non-animal test methods has long been the use of interlaboratory
comparisons or round-robins (RRs), in which a common test material and standard operating procedure is provided to all partici-
pants, who measure the specific endpoint and return their data for statistical comparison to demonstrate the reproducibility of the
method. While there is currently no standard approach for the comparison of modelling approaches, consensus modelling is
emerging as a “modelling equivalent” of a RR. We demonstrate here a novel approach to evaluate the performance of different
models for the same endpoint (nanomaterials’ zeta potential) trained using a common dataset, through generation of a consensus
model, leading to increased confidence in the model predictions and underlying models. Using a publicly available dataset, four
research groups (NovaMechanics Ltd. (NovaM)-Cyprus, National Technical University of Athens (NTUA)-Greece, QSAR Lab
Ltd.-Poland, and DTC Lab-India) built five distinct machine learning (ML) models for the in silico prediction of the zeta potential
of metal and metal oxide-nanomaterials (NMs) in aqueous media. The individual models were integrated into a consensus model-

ling scheme, enhancing their predictive accuracy and reducing their biases. The consensus models outperform the individual
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models, resulting in more reliable predictions. We propose this approach as a valuable method for increasing the validity of nanoin-

formatics models and driving regulatory acceptance of in silico new approach methodologies for the use within an “Integrated Ap-

proach to Testing and Assessment” (IATA) for risk assessment of NMs.

Introduction

Nanotechnology, defined as the ability to manipulate matter at
the nanoscale, has opened an array of possibilities for multiple
applications that take advantage of the unique properties of
nanomaterials (NMs). From targeted drug delivery to environ-
mental sensing, the versatility of NMs makes them ideal candi-
dates for a broad range of innovative applications [1]. However,
the complexity and unique properties of these materials also
present significant challenges, especially when it comes to the
assessment of their potential adverse effects. The integration of
in silico new approach methodologies (NAMs) within the area
of nanotechnology has created a plethora of possibilities for the
assessment of NM properties and toxicity to support and/or
substitute traditional experimental methodologies [2,3].

The field of nanoinformatics covers a broad range of computa-
tional and data-driven methodologies for the exposure, hazard,
and risk assessment of NMs, such as quantitative structure—ac-
tivity relationship models adapted to the specificities of NMs
(nanoQSAR) and grouping/read-across models, specifically de-
veloped to accurately predict NMs’ properties when small
datasets are available [4-6]. These in silico methodologies can
be used in the early steps of the “safe-and-sustainable by
design” framework and in the development of novel NMs to
filter out unpromising candidates and prioritize NMs with
desired properties. The rational use of in silico methods allows
for the identification of potential hazardous effects caused by
NMs’ interactions with biological systems with a simultaneous
decrease of workload, cost, research duration, and use of labora-
tory animals. Several computational approaches [7-9] and
predictive models [10-12] have been presented recently for
predicting various NM properties and toxicity effects.

The combination of multiple NAMs, both experimental and
computational, within an “Integrated Approaches to Testing and
Assessment” (IATA) framework will further improve the entire
risk evaluation of NMs and accelerate regulatory decision-
making procedures [2,5,13]. An IATA scheme for the predic-
tion of the short-term regional lung-deposited dose of inhaled
inorganic NMs in humans following acute exposure and the
longer-term NM biodistribution after inhalation, has already
been presented [14]. Another example of an IATA is the combi-
nation of predictions from two or more individual models under
a consensus framework. Consensus models combine outputs
from several individual models built upon different sets of

descriptors and/or machine learning (ML) algorithms, leading to

more trustworthy results and enhancing stakeholders’ confi-
dence. In detail, as each individual model covers a specific area
of the descriptor/property space, by combining them it is
possible to capture a wider range of factors that influence the
relationship between the NMs’ independent variables and the
endpoint [15,16] and, thus, to approach the problem from differ-
ent perspectives. Furthermore, by combining different models,
it is possible to address the limitations of each model and to
achieve more precise predictions (e.g., by avoiding the overfit-
ting phenomenon when small training datasets are involved)
[15,16]. Prediction combination can be performed in a regres-
sion problem through an arithmetic average or via a weighted
average scheme [17]. It has been demonstrated that consensus
QSAR models exhibit lower variability than individual models,
resulting in more reliable and accurate predictions [18,19]. In
the area of nanoinformatics, various consensus approaches have
been proposed over the past years for the prediction of different
NM endpoints, such as NMs’ cellular uptake [20], zeta poten-
tial (ZP) [16], and electrophoretic mobility [21].

The complexity of predictive models requires the development
of standardized protocols to ensure their accuracy and robust-
ness. Just as laboratory experiments rely on repeatability and
reproducibility to validate results, computational methods
require similar validation processes. Special emphasis is given
to the predictive accuracy of models. For this purpose, it is
sought that nanoinformatics models comply with a set of prede-
fined criteria, often supplemented by statistical methods recom-
mended by the Organisation for Economic Co-operation and
Development (OECD) [22] and the European Chemicals
Agency (ECHA) [23]. In addition, there is a growing effort
from various groups to enhance the transparency and, conse-
quently, the reproducibility of their results by delivering stan-
dardized reports along with their models (e.g., QSAR model
reporting format (QMRF) [24] and modelling data (MODA)
[14,25] reports). By documenting computational steps through
the standardized reports, it is possible to deliver reproducible
models within and between computational groups, and over
time, and to conduct interlaboratory comparisons (ILC) or
round-robin (RR) tests on the models and their outputs, like
those performed in laboratory settings to validate a new test
method or protocol [26,27].

The computational prediction of the ZP of NMs (Figure 1) has

been of high interest in the area of nanoinformatics during the
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Figure 1: Schematic representation of a negatively charged uncoated spherical NM. The ZP corresponds to the electric charge at the slipping plane.

last decade, given the role of surface charge in determining
NMs interactions with membranes and in driving toxicity,
whereby positively charged particles are generally more toxic
than negatively charged particles of similar composition [28-
30]. In fact, several in silico models for the ZP have been de-
veloped based on different theoretical and experimental descrip-
tors employing a range of approaches, that is, quantitative struc-
ture—property/feature relationship (QSPR/QSFR) modelling,
read-across, and deep learning models. Mikolajczyk et al. [16]
implemented a consensus nano-QSPR scheme for the predic-
tion of the ZP of metal oxide nanoparticles (NPs) based on the
size and a quantum mechanical descriptor encoding the energy
of the highest occupied molecular orbital per metal atom of
15 metal oxide NPs. Toropov et al. [31] developed, for a set of
15 metal and metal oxide NPs, a QFPR model considering both
the NPs’ molecular structure and the experimental conditions,
encoded in quasi-SMILES. Furthermore, research has explored
the computational assessment of the ZP in media besides water.
Wyrzykowska et al. [32] proposed a nano-QSPR model for the
prediction of the ZP of 15 NPs in a low-concentration KCI solu-
tion considering the NPs’ ZP in water and the periodic number
of the NPs metal.

Read-across approaches presented to date include a k-nearest
neighbours (kNN) model developed by Varsou et al. [33] to
predict the ZP of 37 metal and metal oxide NPs based on their

core type and the NPs main elongation (image descriptor

derived from microscopy images). Papadiamantis et al. [34] de-
veloped a kNN/read-across model for the estimation of the ZP
of 69 pristine and aged NPs, considering the size, coating,
absolute electronegativity, and periodic table descriptors.
Finally, advances of artificial intelligence (AI) have been also
considered in the computational assessment of the ZP. Yan et
al. [35] employed deep learning techniques and developed a
convolutional neural network to predict the ZP of 119 NPs
based on their nanostructure images. The abovementioned
studies are indicative examples of models that have been used
for the computational assessment of NPs ZP. As research
progresses, such models are expected to become increasingly
sophisticated and accurate, contributing to a deeper under-

standing of NP behaviour in diverse environments.

The diversity of datasets and endpoints measured is chal-
lenging when comparing or combining results between differ-
ent studies, making it crucial to ensure that data are compatible
in terms of metadata (e.g., used experimental protocol). Simi-
larly, models developed using different sets of descriptors need
to have a basis for comparison in order to drive regulatory
acceptance of models. To address this challenge, under the
NanoSolvelT EU project (https://nanosolveit.eu/) the first RR
approach in nanoinformatics was implemented, to computation-

ally assess the ZP of NPs. The RR exercise involved four
groups (NovaM, NTUA, QSARLab and DTC Lab), from both

academia and industry, from four countries (Cyprus, Greece,
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Poland, and India) who were asked to develop individual
models for the prediction of the ZP based on a common dataset
of metal and metal oxide-cored NPs. In this way, different
descriptors were employed, and various modelling approaches
were applied, including QSAR type and read-across models.
The developed models were later integrated into a consensus
modelling scheme by combining the predictions of the indi-
vidual models through average and weighted average, to
acquire more robust and stable results. While the dataset’s
extent and, consequently, the generated models’ applicability
domain are rather limited, this initiative underscores the poten-
tial of synergistic approaches in the nanoinformatics field.
By leveraging the collective knowledge of diverse teams
and perspectives, these approaches can effectively assess
the properties and toxicity of NPs and democratize decision-
making processes in the assessment of NMs’ exposure, hazard,
and risk.

Materials and Methods
Data overview

A dataset of 71 pristine engineered NMs was explored in silico
in order to predict their ZP based on physicochemical and mo-
lecular descriptors. The physicochemical characterization of the
NMs was performed under the EU-FP7 NanoMILE project
(https://cordis.europa.eu/project/id/310451) [36]. From the

available descriptors/properties [36], the following four were

included in this study because of the completeness of the data
(absence of data gaps): the NMs’ core chemistry, coating, mor-
phology, and hydrodynamic diameter measured using dynamic
light scattering (DLS). The ZP of the NMs was measured in
water (pH 6.5-8.5). To enrich the library of the NMs’ physico-
chemical properties and increase the amount of available infor-
mation, the corresponding sphere diameter (the diameter of the
sphere with a surface area equal to the area of the NM) was
calculated, as well as three molecular descriptors commonly
used in nanoinformatics studies [37]. These descriptors were
chemical formula-related descriptors, specifically the numbers
of metal and oxygen atoms present in the core’s chemical

formula and the molecular weight of the core compound.

Finally, the Hamaker constants [38] of the NMs were calcu-
lated in vacuum and in water using the NanoSolvelT Hamaker
tool (https://hamaker.cloud.nanosolveit.eu/). The Hamaker con-

stant is a material-specific value that quantifies the strength of
van der Waals interactions between NPs, depending on the ma-
terials and the surrounding medium. A higher (positive)
Hamaker constant indicates stronger attractive forces, while a
negative value suggests repulsive interactions between the NPs,
preventing aggregation or agglomeration. These calculations
were performed considering spherical and uncoated NMs. The

balance between the Hamaker constants (expressing van der

Beilstein J. Nanotechnol. 2024, 15, 1536—-1553.

Waals attraction between particles) and the ZP values of
particles (expressing their electrostatic repulsion) controls
the stability of colloidal dispersions according to the
Derjaguin—Landau—Verwey—Overbeek (DLVO) theory [39].
For the computational analysis, the TIP3P force field was em-
ployed for water, while the DREIDING force field was used for
the NMs. In the case of Zr-doped CeO, NMs (Ce,Zry,0O5), the
same density as for pure CeO, NMs was considered to main-
tain consistency. It should be noted that the different working
groups were free to enrich or transform the above-described
dataset, as it is explained in the next sections, to cover a wider
feature space with each individual model. All the information
about the available descriptors is summarised in Table 1. The
entire dataset used in the models can be found in the Support-

ing Information File 1 of this publication.

Modelling techniques

kNN/read-across model

The kNN/read-across model employs the k-nearest neighbours
approach, an instance-based method that predicts the endpoint
of a sample based on its k nearest neighbours in the data space.
The proximity between samples is measured using Euclidean
distance, which is adjusted slightly for categorical descriptor
values using a binary value (0 in the case of same class data
points or otherwise 1) [40,41]. The endpoint prediction, in this
case the ZP value, is the weighted average of the endpoint
values of the k closest neighbours, with each neighbour’s
weighting factor inversely proportional to its distance from the
evaluated sample [33,40].

The kNN algorithm can be incorporated into the general NMs
read-across framework because it relies on the similarity of
neighbouring NMs to estimate the endpoint of interest. Specifi-
cally, by identifying and analysing the resulting groupings, it is
possible to map the prediction space into distinct clusters of &
neighbours that can subsequently be explored to identify
patterns and similarities within the neighbourhood space, in
accordance with the ECHA’s read-across framework. The
EnaloskNN functionality offers the advantage of not only deliv-
ering predictive results but also identifying the specific neigh-
bours and their Euclidean distances, as well as enabling visuali-
zation of the overall prediction space [33,34].

Random forest regression model

Random forest regressor is an ensemble learning, tree-based
method. It combines multiple decision tree predictors to create a
more robust and accurate prediction, which individual trees
cannot always provide. This algorithm constructs a forest of in-
dependent trees. Each tree is being trained on a random subset
of data and features. The regressor’s output is calculated based

on the average predictions from all individual trees. Some bene-
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Table 1: Available descriptors in the dataset used to build the individual ZP models (five models from four labs).
Descriptor

chemical formula

equivalent sphere diameter

shape group

coating

hydrodynamic diameter measured by DLS
molecular weight

Hamaker constant of NMs in vacuum
Hamaker constant of NMs in water
number of metal atoms

number of oxygen atoms

sum of ionization potential energy of metals

a read-across-derived composite function that encodes chemical information from all the selected
structural and physicochemical features

coefficient of variation of the similarity values of the close source compounds for a particular query
compound

total number of atoms in a molecule

weighted standard error of the observed response values of the close source compounds for a
particular query compound

weighted standard deviation of the observed response values of the close source compounds for a
particular query compound

standard deviation of the similarity values of the close source compounds for a particular query
compound

average similarity values of the positive close source compounds for a particular query compound
average similarity values of the negative close source compounds for a particular query compound

Symbol Unit

CF —

Dsph nm
Shape —

CT —

DLS nm

MW g/mol
A1 x 10720
A132 x 10720
Nmetal —
Noxygen —
Metals_SumIP  kJ/mol
RA function

CVsim

Tot num atoms
SE

SD Activity
SD Similarity

Pos.Avg.Sim
Neg.Avg.Sim

the log-transformed hydrodynamic diameter measured by DLS
similarity value of the closest positive source compound

Banerjee—Roy similarity coefficient 1

Banerjee—Roy similarity coefficient 2

fits of this algorithm besides its robustness include resistance to
overfitting and the ability to process datasets with numerous
variables without the need of feature scaling [42]. This algo-
rithm was implemented in Python, using scikit-learn package, a
widely used library for ML models.

Adaboost regression model

The development of the ZP QSPR model involved the utiliza-
tion of the Adaptive Boosting (AdaBoost) ML methodology,
implemented through Python 3.8.8 and the scikit-learn library
(version 0.24.1). AdaBoost represents an early instance of
leveraging boosting algorithms to address complex problem
types within the domain of ML [43]. Like its counterpart, the
random forest algorithm, AdaBoost employs a multitude of
elementary classifiers to enhance the model’s predictive ability.
In brief, the AdaBoost model comprises an ensemble of
multiple “weak” estimators, such as decision trees, each
possessing modest individual predictive prowess. However,

when integrated into an ensemble, they collectively augment the

LOG_DLS
MaxPos

predictive efficiency of the model. A notable distinction be-
tween the random forest algorithm and AdaBoost lies in their
operational frameworks. In the random forest, individual esti-
mators function independently of each other, operating in
parallel. In contrast, in AdaBoost, the prediction process within
the ensemble unfolds sequentially, with each subsequent esti-

mator’s outcome influenced by its predecessor.

Stacked PLS and MLP g-RASPR models

The q-RASPR approach, combining read-across and QSPR, has
been recently introduced and applied to the prediction of NM
cytotoxicity [44], power conversion efficiency of organic dyes
in dye-sensitized solar cells [45,46], detonation heat for
nitrogen containing compounds [47], and to the prediction of
surface area of perovskite materials [48]. Both the QSPR and
read-across approaches are extensively used for data gap filling
(predicting activity/property/toxicity values of compounds
devoid of experimentally derived endpoint values). Recently,

Luechtefeld et al. [49] introduced the concept of classification-
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based read-across structure—activity relationship (RASAR) by
combining the concepts of read-across and QSAR using ML
algorithms. Banerjee and Roy [50] merged chemical read-across
and regression-based QSAR into quantitative RASAR
(q-RASAR). Several ML models can be applied including
partial least squares (PLS), linear support vector regression
(LSVR), random forest regression, Adaboost, multiple layer
perceptron (MLP) regression, and kNN regression. This study
reports the first application of -RASPR in a stacked modelling

framework.

Apart from the supplied structural and physicochemical infor-
mation of the engineered NMs, we have computed descriptors
based on the periodic table using the tool Elemental Descriptor

Calculator (https://sites.google.com/jadavpuruniversity.in/dtc-

lab-software/other-dtc-lab-tools). The complete descriptor pool

underwent feature selection using stepwise selection and a
genetic algorithm to obtain a reduced descriptor pool consisting
of 72 descriptors. A grid search/best subset selection was
applied to this reduced descriptor pool to obtain a combination
of ten different QSPR descriptors. Additionally, log-trans-
formed hydrodynamic diameter (LOG_DLS) was taken as an
additional descriptor. These eleven QSPR descriptors were used
to define similarity among the source and query compounds,
which is an integral part of the computation of the RASPR
descriptors using the tool RASAR-Desc-Calc-v3.0.2 available

from https://sites.google.com/jadavpuruniversity.in/dtc-lab-soft-

ware/home. This tool uses three different algorithms for
computing similarity, that is, Euclidean distance-based,
Gaussian kernel similarity-based and Laplacian kernel simi-
larity-based. The selection of the best similarity measure
and the optimization of the associated hyperparameters were
performed by dividing the training set into calibration and
validation sets, which were supplied as inputs for the
tool Auto_RA_Optimizer-v1.0 available from https://
sites.google.com/jadavpuruniversity.in/dtc-lab-software/home.

The combination of hyperparameters that generated the
best predictions for the validation set was selected as the
optimized hyperparameter setting and used to compute the
RASPR descriptors for the training and test sets. Clubbing
of the initially selected eleven QSPR descriptors with the
RASPR descriptors was performed, a process known as data
fusion [51]. This complete data pool underwent feature
selection to generate four different MLR q-RASPR models.
The predictions from these models were generated for
both the training and test sets since these predictive values will
serve as descriptors for the final stacking regressors. Finally,
PLS and MLP modelling algorithms were employed as the final
stacking regressors, where the optimized settings of the hyper-
parameters were obtained by grid search on the cross-valida-

tion statistics.

Beilstein J. Nanotechnol. 2024, 15, 1536—-1553.

Consensus modelling

The meta-modelling approach allows one to use the output of
one modelling approach as an input to another or the use of a
few models/algorithms in parallel or in sequence, allowing for
the strengths of individual models to be combined and their lim-
itations to be circumvented [15,52]. Consensus modelling is
based on the parallel approach where multiple ML algorithms
are used to investigate the available dataset and to find relation-
ships between the considered NMs’ features and the physico-
chemical descriptors or biological activity of interest. Each ML
algorithm has its strengths and weaknesses; thus, there is no
universal solution for modelling regression or classification
cases. The choice of the adequate ML method depends on the
problem to be solved and the available data, and in some cases
multiple methods are employed to decide which one works best
for each case [53,54]. Depending on the amount of available
data, different methods may be applied. In general, support
vector machines, decision trees, random forests, and neural
networks are methods good in generalisation of trends or behav-
iours and can lead to accurate predictions. However, in cases of
small datasets, the same ML methods may lead to the overfit-
ting and low predictivity of the model for untested samples. The
idea of consensus modelling by combining a set of diverse algo-
rithms for the prediction endpoint of interest is an efficacious
manner to achieve reliable results of data-driven analysis. How-
ever, this approach is also open to criticism that it is even more
“black box” than the individual models; thus, even more care
needs to be taken to fully document the predictive models with
their QMRFs reports and to fully describe the underpinning
datasets.

Here, a consensus strategy was employed in addition to the
individually developed models, based on the combination of the
predictions from the initial models generated by the four groups
NovaM, NTUA, QSARLab, and DTC Lab. Two techniques
were used to derive consensus predictions, namely, the simple
average of the predictions of the individual models and the
weighted average of the original predictions. Simple averaging
combines the predictions of all individual models equally, while
weighted averaging assigns more weight to models with higher
individual performance. This combination aims to leverage
the strengths of each model, reducing individual biases and
enhancing overall prediction accuracy.

Validation

In line with the OECD QSAR model validation principles
[22,55], all models presented in this work were validated exter-
nally using the exact same training and test sets, which were
produced by randomly dividing the original dataset using a ratio
of 0.75:0.25. The training subset was used each time to calcu-

late and adjust the model parameters, whereas the test subset
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was not involved in model development, and it was used as an
external validation set to assess the model’s generalization on
new (previously unseen) data, which is crucial for its practical

application in regulatory settings.

According to the OECD’s fourth principle [22], statistical
model validation is indispensable for assessing a model’s per-
formance. To quantify the model’s accuracy, appropriate
“fitness” metrics were employed, ensuring that the models’
predictions closely align with their actual values. This valida-
tion process helped to prevent underfitting and overfitting phe-
nomena. Upon training, the models generated endpoint predic-
tions for both the training and test subsets. The training subset
predictions served to evaluate each model’s goodness-of-fit,
while predictions on the test subset assessed the model’s
predictability, for example, its ability to generalize well to new
data [22]. The statistical criteria used to evaluate model perfor-
mance are outlined below. These metrics collectively provide a
comprehensive assessment of model accuracy and reliability.

The mean absolute error (MAE, Equation 1) and the root mean
squared error (RMSE, Equation 2) were used to evaluate the
accuracy of the models applied on both train and test sets. MAE
measures the average magnitude of errors in predictions, while
RMSE provides a quadratic scoring rule that gives higher
weight to larger errors. When these indexes are used simulta-
neously, they permit a complete and thorough validation of
prediction accuracy, regardless of the training and test endpoint
values’ distribution level. MAE and RMSE values closer to 0,
correspond to more reliable models.

1 ¥ .
MAE:NZD:‘ = (1)
i=1

RMSE = )

where N is the number of samples, and y; and y; are the actual

and predicted endpoint values of the i-th sample, respectively.

The quality-of-fit between the predicted and experimental
values of the training and test sets was expressed by the coeffi-
cient of determination (R2, Equation 3), which indicates the
proportion of variance in the dependent variable that is
predictable from the independent variables. R2 values closer to

1, correspond to models that fit the dataset better.
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where N is the number of samples, y; and j; are the actual and
predicted endpoint values of the i-th sample, respectively, and

V is the average value of the experimental endpoint values.

To quantify the credibility of predictions on new data (includ-
ing the test set), the external explained variance [22] is used
(QezXt or Q%l, Equation 4), which compares the predictions for
the test set samples with their actual endpoint values. ngt
values closer to 1, correspond to models with higher predictive

power.

Zilil()ﬁ —)A’l )2
Zlﬁl(%‘ ~u )2

03 =1- @)

where N is the number of test samples, y; and J; are the actual
and predicted endpoint values of the i-th test sample, respective-
ly, and Yy, is the averaged value of the experimental endpoints
of the training set.

Another variant of the external explained variance is Q]%Z
(Equation 5) which uses the averaged value of the experimental

endpoints of the test set (Vyegt)-

Z;il(yi _.);[ )2
= 5

Z,-zl(yi ~ Vtest )2

2
Opp =1-

The produced models were validated internally by employing
leave-one-out (LOO) cross-validation on the training set, to
ensure that the model is robust and no single data point is actu-
ally responsible for the enhanced quality of fit. The perfor-
mance in LOO cross-validation was assessed by calculating
QI%OO (leave-one-out Q2), a form of cross-validated R? of the
predictions (Equation 6) [56].

zi]\il(%’ -V )2
Zf;(yi - 37)2

Oloo =1- ©)

where N is the number of training samples, y; and y;, are the
actual and predicted from LOO cross-validation endpoint values
of the i-th sample, respectively, and y is the average value of

the experimental training endpoint values.
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Finally, the quality-of-fit and the predictive ability of the
models is assessed using the statistical metrics proposed by
Golbraikh and Tropsha [57,58] (Equations 7-11, including
QI%OO, Equation 6) on the test set. According to Golbraikh and
Tropsha [57,59,60] a regression model is considered predictive
if all of the conditions presented in Table 2 are satisfied.

2
N —\( ~ =
o A%]l.l(yi 2y)(]\yfz yz)_ : -
\/25:1(”_?) Zi=1(j’l_j’1)
Zi—l(j/l_j}lro 2 0
RS =1-—C2 ——-, where 0 = Ky (8)

zi]\il(%‘_ z'ro )2
Z,-jil(yi_)_/)z ’

R =1-

TSN 2 (10)

an

where N is the number of samples, y; and j; are the actual and
predicted endpoint values of the i-th sample, respectively, and
y and ;1 are the average endpoint values of the experimental
and predicted values, respectively.

Table 2: Model acceptability criteria as defined by Golbraikh and
Tropsha [57,59,60].

Statistic Rule
r2 >0.6
Qfoo >0.5
2 p2 2 pi2
r 2R0 or d 2R° <0.1
r r
kork €[0.85,1.15]
|Rg _R62| <0.3
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Applicability domain

To ensure the robustness and reliability of predictive models,
particularly adhering to the OECD guidelines, defining the ap-
plicability domain (AD) is crucial. The AD refers to the specif-
ic subset of the overall data space where a model can make reli-
able predictions through interpolation. When the model encoun-
ters data points beyond this designated domain, those predic-
tions should be flagged as unreliable because of their extrapola-
tion-based nature, which inherently carries more uncertainty

than interpolation [22].

In the present study, the leverage method [61] was employed to
assess the prediction reliability. This was done to empower
users to apply the models with greater confidence to external
datasets and real-world scenarios while having, at the same,
time a clear understanding of their optimal operating parame-
ters. The leverage method measures the similarity between the
query samples and the training set using the leverage values, 4,
which are essentially the diagonal elements of the Hat matrix
[61,62] (Equation 12). These values quantify the distance of
each query sample from the centroid of the training set [61],
taking into account the descriptor values employed in model de-
velopment. The AD boundaries are determined by a predeter-
mined threshold leverage value h* (Equation 13). A test predic-
tion is deemed reliable if its corresponding leverage value falls
below this threshold (7 < h*).

H= X(XTX)il xT (12)

h*=3><% (13)

where X is the table containing the descriptor matrix, p is the
number of descriptors used in the model [60,61], and N is the
number of samples in the training dataset.

Results and Discussion

In the next paragraphs the five developed individual models are
briefly described. To ensure fair comparison, all models were
trained and tested on identical subsets of the data. More infor-
mation can be found in the respective QMREF reports, provided

as Supporting Information Files 2—5 to this publication.

kNN/read-across model

Data preprocessing

Initially, the z-score normalisation method was employed to
standardise the descriptors in the training set (53 NMs), en-
suring their equal contribution to the model. Each descriptor

was adjusted to have a mean of zero and a standard deviation of

1543



one [24]. Next, the identical normalisation parameters were
applied to the descriptors in the test set (18 NMs). To identify
the most relevant parameters, eliminate noise, and avoid overfit-
ting, the BestFirst method with the CfsSubset evaluator were
employed [40]. Four descriptors were selected to use in the
model (see below Table 15), that is, the NMs’ coating, their
equivalent sphere diameter, their hydrodynamic diameter, and
the number of oxygen atoms present in the core’s chemical
formula. To enhance the model’s performance and inter-
pretability, the Hamaker constant of the NMs calculated in
water and the shape group were added to the subset of the
selected descriptors. All analysis steps were performed in Isalos
Analytics Platform [63].

Model development and validation

The kNN algorithm with a value of k = 7 was selected to
perform a read-across assessment of the dataset. Similarly to the
preprocessing steps, modelling was implemented in Isalos
Analytics Platform using the Enalos+ tools and especially the
EnaloskNN function [24]. This function identifies the neigh-
bouring training samples for each test NM alongside the pre-
dicted values, facilitating a deeper understanding of the results
in terms of NM grouping and providing insights into the overall
samples space. The model was validated following the OECD
principles [22] to ensure robust and reliable predictive model-
ling. The key statistical metrics of internal (training set) and
external (test set) validation are presented in Table 3. The
Y-randomization test [24] was also performed ten times, giving
RMSE values on the test set in the range of 23.1-43.4,
confirming that the predictions were not a coincidental
outcome. In Table 4 the results of the Golbraikh and Tropsha
[57,59,60] test for the kNN/read-cross model are presented.

Table 3: Internal (training set) and external (test set) validation statis-
tics of the kNN/read-across model.

Training set Test set
MAE 0.29 7.81
RMSE 0.54 9.71
R2 0.99 0.88
Q%0 0.62 —
Q3 — 0.88

Applicability domain

The area of reliable predictions for this model was defined
using the leverage method. The leverage threshold was calcu-
lated based on the training NMs subset and set to 0.226 (Equa-
tion 13). The test NM samples had values within the range of
0.031 to 0.191, indicating that their predictions were reliable
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Table 4: Golbraikh and Tropsha [57,59,60] test results for the KNN/
read-cross model.

Criterion Assessment Result
r2>06 pass 0.894
Q%0 >0.5 pass 0.622
2 2
%< 0.1 pass 0.001
r
2 o2
%< 0.1 pass 0.002
B
2 2
|R0 -Rg |< 0.3 pass 0.001
0.85<k<1.15 pass 0.883
0.85<k'<1.16 pass 1.012

except the one NM sample whose leverage value was equal to
0.859.

Random forest regression model

Data preprocessing

To facilitate data analysis, the unique string feature names of
the chemical formula descriptors were converted into a binary
variable. For this purpose, metal oxides (e.g., CeO, and CuO)
were represented as 0 and metals (e.g., Ag, Au, and Cu) were
represented as 1. For the shape group descriptor, the string
names “Spherical”, “Square Plates” and “Rod” were one-hot
encoded. Lastly, out of 22 unique coatings, five categories were
created (sodium citrate, L-arginine, PVP, uncoated, and “other”)
and were one-hot-encoded as well. This conversion ensured
consistency and uniformity in data representation, making
it easier to handle and analyse the data effectively. Next,
Pearson’s correlation value was computed for each pair of
descriptors. The two Hamaker constants (in water and in
vacuum) had a correlation value of 0.97, indicating that these
two features were linearly dependent. Thus, to avoid intro-
ducing redundancy and potential issues in the ML model, the

Hamaker constant in vacuum was removed.

Model development and validation

A random forest regressor was trained on the training set using
Jupyter notebook and the scikit-learn ML package. To optimize
the model’s performance, the grid search algorithm was imple-
mented to tune the model using the QI%OO metric for internal
validation. To further enhance the predictive power of the
model, recursive feature elimination (RFE) was employed to
identify and eliminate descriptors that contributed minimally to
the model’s prediction accuracy. After this extensive parameter
tuning, the optimal model was identified (128 estimators,

maximum depth of five and random state equal to 42) as well as
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the optimal features (DLS, coating, equivalent sphere diameter,
and MW) achieving QIZ,OO = 0.611 and R* = 0.957 on the
training set and R? = 0.941 on the test set. The key model statis-
tics are presented in Table 5, and the results of the Golbraikh
and Tropsha [57,59,60] tests for the random forest regression
model are presented in Table 6.

Table 5: Internal (training set) and external (test set) validation statis-
tics of the random forest regression model.

Training set Test set
MAE 4.43 5.43
RMSE 6.76 6.73
R2 0.96 0.94
Q%0 0.61 —
Q% — 0.94

Table 6: Golbraikh and Tropsha [57,59,60] test results for the random
forest regression model.

Criterion Assessment Result
r?>0.6 pass 0.941
Q%0 >0.5 pass 0.611
2 p2
! 2R° <0.1 pass 0.0003
r
2 2
%< 0.1 pass 0.0004
;
)
|R0 _RE | <03 pass 0.0002
0.85<k<1.15 pass 1.006
0.85<k' <1.16 pass 0.936

Applicability domain

For the applicability domain, leverage was used to see if the
NMs were within the area of reliable predictions. The leverage
threshold, calculated on the training set, was set to 2" = 0.509.
In the training set, one compound had 2 = 0.54, and in the test
set one NM had /2 = 0.94. Thus, predictions of those two NMs
are not considered reliable.

AdaBoost regression model

Data preprocessing

The initial phase of feature selection involved categorizing
descriptors into those with continuous numerical values (e.g.,
hydrodynamic diameter) and those with qualitative or “descrip-
tive” details (e.g., chemical formula, shape group, and coating).

The collection of descriptors characterised by continuous nu-
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merical values was subsequently delineated as the “continuous

set” for clarity purposes.

The transformation of the descriptive category of descriptors
into binary representations was carried out to facilitate the
inclusion of these qualitative descriptors in ML algorithms.
Binary encoding allows for the representation of categorical
variables as binary vectors, where each category variant is
encoded as O or 1, respectively. This transformation is essential
because many ML algorithms require input data to be in numer-
ical form. By converting descriptive features into binary format
using the OneHotEncoder from the scikit-learn library, we
ensure compatibility with these algorithms while retaining the
inherent information encoded within the descriptors. This ob-
tained set is denoted as the “binary set” including the “Chemi-
cal formula”, “Shape group”, and “Coating” descriptors. Con-
tinuous descriptors were standardized using z-score normaliza-
tion to ensure equal contribution to the model, using the Stan-
dardScaler module from the scikit-learn library. Next, the two
sets of data, that is, the standardised continuous set and the
binary set, were merged into a unified dataset that enabled us to
explore relationships between different types of descriptors and
their collective influence on the NMs ZP.

During the initial modelling phase, the AdaBoost algorithm,
integrated within the scikit-learn library, was utilized to analyse
the comprehensive dataset comprising all descriptors. The pri-
mary objective of this approach was to identify the descriptors
possessing the highest degree of influence for subsequent
modelling tasks. Additionally, pivotal parameters crucial for
refining the model’s performance, including “n_estimators”,
“random_state”, “learning_rate” were carefully selected during
this stage based on GridSearch algorithm for tuning hyperpara-
meters of the model [64]. Detailed insights into these parame-
ters can be accessed via the documentation provided on the offi-
cial scikit-learn website [65].

After the evaluation of the model’s feature importance, delin-
eated in the preceding stage, five descriptors emerged as the
most significant for the ZP prediction, namely, DLS, Dsph,
All, MW, and CT [encoded as O = coated and 1 = uncoated].
Each descriptor offers crucial insights into different aspects of
the NMs’ composition, structure, and behaviour, thereby
serving as vital predictors for the model’s predictive accuracy

and interpretability.

Model development and validation

The selected descriptors were employed in the training of the
final model, which adhered to the methodological framework
outlined above. This model was instantiated with specific pa-

rameter settings, as elucidated in the previous point, where
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AdaBoost was configured with parameters: n_estimators = 9,
random_state = 786, and learning_rate = 0.997. A number of
estimators (n_estimators) were found to enhance the model’s
predictive power, while the specific random_state ensures
reproducibility of results. Additionally, the learning rate was
carefully tuned to strike a balance between model complexity
and generalization ability, ultimately resulting in a well-per-

forming model for the given task.

The model validation statistics and the results of the Golbraikh
and Tropsha [57,59,60] test are presented in Table 7 and
Table 8, respectively.

Table 7: Internal (training set) and external (test set) validation statis-
tics of the AdaBoost regression model.

Training set Test set
MAE 7.44 8.95
RMSE 9.98 9.91
R? 0.91 0.87
Qoo 0.54 -
Q2 - 0.88

Table 8: Golbraikh and Tropsha [57,59,60] test results for the
AdaBoost regression model.

Criterion Assessment Result
r2>0.6 pass 0.906
Q%0 >0.5 pass 0.539
2_p2
r 2R0 <0.1 pass 0.027
r
2 _p2
r 2R0 <0.1 pass 0.028
r
|Rg - R(')2| <0.3 pass 0
0.85<k<1.15 pass 0.906
0.85<k' <1.16 pass 0.974

Stacked PLS and MLP g-RASPR models
Data preprocessing

First- and second-generation periodic table descriptors were
calculated as described by Roy and Roy [66]. Some descriptors
were also calculated using elemental descriptors calculator soft-

ware (https://sites.google.com/jadavpuruniversity.in/dtc-lab-
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about the metals has been taken directly from the periodic table

to calculate descriptors for the reported metal oxide NMs.

Additional information on physicochemical features such as
coating, shape group, DLS (hydrodynamic diameter) [nm],
Hamaker (self/vacuum) A11 [x 10720 J], Hamaker (self/water)
A132 [x 10720 J] were also included for modelling purposes.
The selected QSPR descriptors (vide infra) were used to
compute the RASPR descriptors using the tool RASAR-Desc-
Calc-v3.0.2 (https://sites.google.com/jadavpuruniversity.in/dtc-
lab-software/home#h.x3k58bv4{rb9) after optimization of the
associated read-across-based hyperparameters [67,68].

Model development and validation

The model development was performed following the basic
steps for the generation of the MLR model using the best subset
selection (BSS) method. The data division was kept identical to
the data partitioning used in the rest of the models to have a
clear comparison of results. Further, Stepwise Selection (using
F-value as the fitness function) and Genetic Algorithm (GA)
(using MAE,,i, as the fitness function) were implemented for
feature selection followed by the BSS method to select the best
model based on the quality and prediction performance.

Initially selected QSAR descriptors (obtained by the grid
search algorithm). Ten descriptors (from a total of 72
descriptors) were obtained after Stepwise Selection, GA, and
BSS. These are Hamaker (self/water), amount of Ce, amount
of Zr, rod (shape), coating, the total number of atoms,
tot_metal_alpha, Metals_SumIP, X_ActivM, and Valence elec-
tron potential.

Additionally, we performed a correlation analysis of the
descriptor DLS (hydrodynamic diameter) and found that it had
a significant correlation with the training set response, except
for four data points. This was because, for these compounds, the
values of DLS were significantly higher than the rest of the
training data points, therefore hindering linear correlation. Thus,
we have converted the DLS descriptor to the corresponding log
unit, added this feature to the initially selected ten features, and
considered it for model development. Therefore, we have
proceeded toward further modelling analysis using eleven
QSAR descriptors.

RASPR descriptor computation. Using these selected fea-
tures, the read-across structure—property relationship (RASPR)
descriptors [67] for the training and test sets were computed
using the tool RASAR-Desc-Calc-v3.0.2, freely available from
the DTC Lab tools supplementary site (https://sites.google.com/

jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4{rb9).

software/other-dtc-lab-tools?authuser=0). Basic information

The corresponding hyperparameter (similarity based on

1546


https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools?authuser=0
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/other-dtc-lab-tools?authuser=0
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9
https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.x3k58bv4frb9

Euclidean distance with the number of close source compounds
equal to 5) settings were obtained from the optimized read-
across-based predictions for the validation set, using the calibra-
tion set as the source set (the calibration and validation sets
were obtained by the division of the training compounds). This
read-across hyperparameter optimization was done using the
tool Auto_RA_Optimizer-v1.0, freely available from the DTC
Lab tools supplementary site (https://sites.google.com/jadavpu-

runiversity.in/dtc-lab-software/home#h.ucbojxjckelc).

The 18 different RASPR descriptors computed were fused with
the initially selected QSPR descriptors to generate complete
descriptor pools for the training and test sets, a process termed

Table 9: Descriptor combination of the MLR g-RASPR models.
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Data Fusion [51]. This pool was subjected to feature selection

using a grid search algorithm.

From the results of the grid search, four different MLR
g-RASPR models were developed. The corresponding descrip-
tors associated with the four different MLR models have been
tabulated in Table 9, while the internal and external validation
metrics of these individual models have been reported in
Table 10. Their individual predictions were used to perform
stacking using a PLS algorithm (using the optimized number of
latent variables (LVs) based on LOO cross-validation) as the
final regressor (Figure 2), the results of which have been re-
ported in Table 11 and Table 12.

Models Desct Desc2 Desc3 Desc4 Desc5 Desc6
M1 Metals_SumlIP RA function CVsim Pos.Avg.Sim Neg.Avg.Sim Sm’
M2 LOG_DLS SE SD Similarity Pos.Avg.Sim Neg.Avg.Sim Sm?
M3 Tot num atoms  LOG_DLS SD Activity MaxPos Neg.Avg.Sim Sm’
M4 LOG_DLS SD Activity MaxPos SD Similarity Neg.Avg.Sim Sm’
Table 10: Internal (training set) and external (test set) validation statistics of the individual MLR g-RASPR models.
Models Training set Test set
Reain MAEirain ast Qi @k MAE test RMSEP
M1 0.629 14.837 0.972 0.974 0.972 3.671 4.605
M2 0.694 11.937 0.930 0.881 0.873 7.539 9.833
M3 0.661 14.082 0.959 0.955 0.952 4.969 6.068
M4 0.652 13.712 0.942 0.944 0.941 5.276 6.730
MLR ¢-RASPR Predictions
Model 1
(M1)
Stacked PLS q-

MLR ¢q-RASPR
Model 2

RASPR Model

012)

MLR ¢-RASPR
Model 3
(M3)

Validation

Predictions

MLR ¢q-RASPR

Stacked MLP q-
RASPR Model

Model 4
(M)

Validation

Figure 2: Schematic workflow for the development of the stacked PLS and MLP g-RASPR models.
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Table 11: Internal (training set) and external (test set) validation statistics of the stacked PLS gq-RASPR regression models.2

Stacked PLS R2. Q2
g-RASPR (training = "an 00
set statistics) 0.681 0.657
Stacked PLS 2 Q2
g-RASPR (testset 't ext
statistics) 0.960 0.951

MARrain MAE| 0o-cv RMSEC
13.255 13.766 18.417
Q% MAE et RMSEP
0.948 4.402 6.320

aThe optimized hyperparameter setting for the Stacked PLS g-RASPR model is LV = 1.

Table 12: Golbraikh and Tropsha [57,59,60] test results for the
stacked PLS g-RASPR model.

Criterion Assessment Result
r?>0.6 pass 0.960
Q%0 >0.5 pass 0.657
2 2
r 2R° <0.1 pass 0.001
’
2 o2
%wj pass 0.001
B
|R§ - R62| <0.3 pass 0
0.85<k<1.15 pass 0.902
0.85<k <1.16 pass 1.063

Apart from PLS, we have also used a MLP model as the final
regressor (Figure 2) after optimization of the hyperparameters
by the GridSearchCV approach. The validation statistics are
presented in Table 13 and Table 14.

Consensus models
The efficacy of the two proposed consensus approaches based

on averaging with equal weights or on weighted calculations

Table 14: Golbraikh and Tropsha [57,59,60] test results for the
stacked MLP g-RASPR model.

Criterion Assessment Result
r2>06 pass 0.961
Q%0 >0.5 pass 0.645
2 2
% <0.1 pass 0
r
2 2
%< 0.1 pass 0
,
|Rg - R62| <0.3 pass 0
0.85<k<1.15 pass 0.991
0.85<kK <1.16 pass 0.970

(Equation 14), was assessed through comparing prediction
results for the test set, where the same training and test sets
were used for the five individual models, but using different
sets of descriptors (Table 15). The consensus predictions using
the averaging scheme were derived using the test set predic-
tions of the five individual models with equal weights in the
calculation of the final predictions. In this manner, averaged

statistical parameters were calculated (Table 16).

Table 13: Internal (training set) and external (test set) validation statistics of the stacked MLP g-RASPR regression models.2

Stacked MLP g-RASPR (training set statistics) thrain
0.695

Stacked MLP g-RASPR (test set statistics) rést
0.961

Qoo MAE rain MAE oo-cv  RMSEC
0.645 12.952 13.957 18.015
Q24 (02X MAEqgst RMSEP
0.963 0.960 4.038 5.500

aThe optimized hyperparameter settings for the Stacked MLP g-RASPR model are activation = “logistic”, alpha = 1, learning_rate_init = 0.01, max_iter

= 1000, random_state = 0, and solver = “Ibfgs”.

1548



Table 15: Selected descriptors per model.

kNN/read-across

Random forest

Adaboost regression
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Stacked PLS —

Stacked MLP —

regression g-RASPR g-RASPR
Dsph Dsph Dsph
CT CT [unigue integers] CT [binary]
DLS DLS DLS
MW MW
A132
Al
Noxygen
Shape
Ypred(M1)2 Ypred(M1)
Ypred(M2)P Ypred(M2)
Ypred(M3)° Ypred(M3)
Ypred(M4)d Ypred(M4)

aPredicted values from the individual g-RASPR model M1. PPredicted values from the individual g-RASPR model M2. ®Predicted values from the indi-
vidual g-RASPR model M3. 9Predicted values from the individual g-RASPR model M4.

Table 16: Accuracy statistics on the test set for the five independent models and the two consensus models.

Statistic kNN/read-acro Random Adaboost
ss forest regression
regression
R? 0.88 0.94 0.87
Q3 0.88 0.94 0.88
MAE 7.81 5.43 8.95
RMSE 9.71 6.73 9.91

In the weighted average consensus scheme, the weights were
calculated based on the coefficient of determination R,~2 values
of the five models on the training set as follows:

2

0 (14)
1

R
)

.i\/:

The consensus predictions on the test set were validated for
their reliability using the same statistical metrics and the results
are presented in Table 16. The obtained results for both
consensus approaches are much better than those of the indi-
vidual models, that is, R? and QezXt are closer to 1, while RMSE
is closer to 0. This confirms the usefulness of integrating
diverse ML approaches for more reliable results. The results of
the RR exercise presented herein (Figure 3) show that the
diverse ML modelling techniques like read-across and QSPR

Stacked PLS  Stacked MLP  Consensus Consensus

—g-RASPR —g-RASPR average weighted
average

0.95 0.96 0.97 0.97

0.95 0.96 0.97 0.97

4.40 4.04 4.01 4.35

6.32 5.50 4.86 5.03

can be applied, and diverse sets of descriptors can be used, to
calculate key nanomaterials properties. Nevertheless, the best
results can be achieved through the combination of various
solutions via consensus modelling, which is recommended for
enhanced accuracy and reliability of the prediction of the most

important nanomaterials endpoints.

Conclusion

In this collaborative work we have implemented a round-robin
(RR) test focused on the creation of two consensus models for
the prediction of the zeta potential (ZP) of metal and metal
oxide NMs in aqueous environments. Four distinguished nano-
informatics groups participated in this exercise, each devel-
oping their own models based on a shared NMs dataset. The
models developed as part of the RR test included (i) a k-nearest
neighbours algorithm coupled with a read-across approach,
enabling a nuanced exploration of the similarity space among

the materials being studied, (ii) a random forest model, and (iii)
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kNN/read-across Random forest
0. © regression
@"o RMSE = 971 | | oo, Cznsensus
o‘.’o.“o Qzext - 088 Verage
BaiE AR AR AR rwse-ase
............................. Qzext = 097
. RMSE = 6.73
AdaBoost regression Qo = 0.94
R RMSE = 9.91
(fh) Qu=088
\:"_'_'_‘_li gﬁﬁ PLS & MLP g-RASPR
fg?g +g§% RMSE = 6,32 Consensus
P— Qe = 0.95 Weighted average
! \ RMSE = 5.03
' + gy + : _
3;%8% _____ EDE?E ¥ RMSE = 5.50 Q%,.=0.97
l + zext = 0.96

Figure 3: Schematic representation of the individual and consensus models for the RR exercise. The five models were developed independently by
four different groups and were later combined into a simple average and a weighted average scheme (consensus models). The consensus models

present improved predictive accuracy compared to the individual initial models.

an AdaBoost regression model, both of which stand out for their
speed and computational efficiency. Last, two quantitative read-
across structure-property relationship (q-RASPR) models were
included that combine the advantages of read-across and QSAR
approaches. Each of these individual models has been rigor-
ously tested and validated, adhering to the OECD principles to
ensure their reliability and predictive accuracy, as described
herein.

The key innovation lies in the next step, that is, in the combina-
tion of these individually potent models into a consensus frame-
work. We created two different ensemble models for this
purpose. The first ensemble model was straightforward; it aver-
aged the predictions coming from all four individual models.
This averaging method effectively pooled the strengths of
the individual models to produce a more robust predictive
output. The second ensemble model took a more nuanced ap-
proach, utilising a weighted average scheme. Both consensus
models demonstrated an improvement in predictive accuracy
compared to their individual components. Moreover, by pooling
multiple predictive approaches, these consensus models also
minimised any biases or limitations that could be inherent in
single-algorithm models. The exercise showed that consensus
modelling, especially when involving a diversified set of ML
algorithms, can serve as a powerful tool for enhancing the relia-
bility and accuracy of predictions in the complex field of nano-

technology.

Supporting Information

Supporting Information File 1

The dataset used to develop the five individual models. The
NMs used in training and test sets are also indicated.
[https://www .beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-121-S1.csv]

Supporting Information File 2

Details of the kNN/read-across model presented following
the QMRF format.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-121-S2.pdf]

Supporting Information File 3

Details of the random forest model presented following the
QMREF format.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-121-S3.pdf]

Supporting Information File 4

Details of the AdaBoost regression model presented
following the QMRF format.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-15-121-S4.pdf]
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Nanosafety assessment, which seeks to evaluate the risks from exposure to nanoscale materials, spans materials synthesis and

characterisation, exposure science, toxicology, and computational approaches, resulting in complex experimental workflows and
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diverse data types. Managing the data flows, with a focus on provenance (who generated the data and for what purpose) and quality
(how was the data generated, using which protocol with which controls), as part of good research output management, is necessary
to maximise the reuse potential and value of the data. Instance maps have been developed and evolved to visualise experimental
nanosafety workflows and to bridge the gap between the theoretical principles of FAIR (Findable, Accessible, Interoperable and
Re-usable) data and the everyday practice of experimental researchers. Instance maps are most effective when applied at the study
design stage to associate the workflow with the nanomaterials, environmental conditions, method descriptions, protocols, biologi-
cal and computational models to be used, and the data flows arising from study execution. Application of the InstanceMaps tool
(described herein) to research workflows of increasing complexity is presented to demonstrate its utility, starting from (i) documen-
tation of a nanomaterial’s synthesis, functionalisation, and characterisation, over (ii) assessment of a nanomaterial’s transformat-
ions in complex media, (iii) description of the culturing of ecotoxicity model organisms Daphnia magna and their use in standard-
ised tests for nanomaterials ecotoxicity assessment, and (iv) visualisation of complex workflows in human immunotoxicity assess-
ment using cell lines and primary cellular models, to (v) the use of the instance map approach for the coordination of materials and
data flows in complex multipartner collaborative projects and for the demonstration of case studies. Finally, areas for future devel-
opment of the instance map approach and the tool are highlighted.

Introduction

The manipulation of matter at the nanoscale and the emergence
of nanoscale materials, whose properties can be tailored by
changing their size, shape, surface chemistry, and functionality,
have led to the designation of nanomaterials as a key enabling
technology and to their subsequent inclusion in the broader
categorisation of advanced materials [1,2]. Applications of
nanomaterials derive in many cases from their high surface re-
activity, which results from their small size and large surface
area. They include applications in catalysis [3,4] (e.g., as cata-
lytic converters in engines and for energy capture and storage)
and as sensors [5,6] (e.g., for bioremediation and environ-
mental monitoring). In medicine [7,8] and agriculture [9,10],
loading of nanomaterials with active ingredients and targeting
the materials to key sites for action are enabled through surface
functionalisation and the small size of nanomaterials, which
allows them to access all areas. An important consequence of
the reactive surface area of nanomaterials is the instantaneous
interaction with their surroundings through formation of an
acquired environmental or biomolecule corona [11,12] and/or
via physical or chemical transformations that can occur at any

of the nanomaterials’ life cycle stages [13,14].

The ability of engineered nanomaterials to change characteris-
tics based on the properties of their environment presents a
unique challenge for evaluating their potential environmental
and human risks [15,16]. This “context dependence” of many
nanomaterials’ properties requires distinction between extrinsic
nanomaterial properties, which can change as the surroundings
change (such as zeta potential, which depends on the pH value
and ionic strength of the surrounding medium [17]), and
intrinsic nanomaterial properties, which are not affected by the
surroundings (such as bandgap and structural arrangement)
[18]. This tendency of nanomaterials to change with their

surroundings, or even with time during storage [19], suggests

that the time between synthesis and initial characterisation and/
or toxicity analysis, as well as changes in conditions of the sur-
rounding medium, are important to document, although they are
not routinely reported in the literature [20]. Baer et al. sug-
gested that the essential history of a set of particles can be iden-
tified as provenance information that tells the origin of a batch
of nanoobjects along with information related to handling and
any changes that may have taken place since it was originated
[21]. This would be useful in decreasing the extent of particle
variability and the lack of reproducibility observed by many

researchers.

Efforts to capture and document batch-to-batch variability of
nanomaterials’ synthesis routes were made in the QualityNano
project [22]. Also, a uniform description system for nanomateri-
als is to be established to describe nanomaterials (batches)
uniquely and to determine when two (batches of) nanomaterials
are equivalent to whatever degree specified [23]. Given the fact
that nanomaterials’ similarity can only be verified through ex-
tensive physicochemical characterisation, which is often done in
parallel to toxicity testing, a work-around solution was pro-
posed, whereby projects could assign a unique identifier to their
batches of nanomaterials via the European Registry of Nanoma-
terials [24] and add the characterisation data later, thus enabling
batch similarity to be assessed by users wishing to integrate
datasets. However, it is not clear whether characterisation data
is added in practice, or whether any of the approaches sug-
gested to date have been applied in a practical sense by the
nanosafety research community. This could in part be due to the
breadth of the nanosafety research domain; often, the
researchers who produced or characterised the nanomaterials
are different from those undertaking the different steps of expo-
sure or hazard assessment. Indeed, this effect of specialisation

was observed in studies of nanomaterials’ protein coronas,
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where the documentation of the nanomaterials’ dispersion and
corona formation steps was very complete, but the description
of the protein isolation and informatics steps was much less
complete. This gap in documentation was attributed to the fact
that the omics analyses are often performed by core facilities,
and nanomaterials researchers do not know exactly what needs
to be documented about these steps to enable the study to be
reproduced [25].

Another frequently encountered challenge is the misconception
that a statement regarding the use of a standard test guideline or
guidance document is sufficient as metadata about a nanomate-
rial’s toxicity study to enable reuse of the resulting data.
Notably these standard tests, as developed by the Organisation
for Economic Cooperation and Development (OECD) are
usually quite broad, as they are globally agreed upon. Thus,
they allow users some flexibility in terms of medium, soil,
dispersion approach and so forth, meaning that detailed docu-
mentation of each step is still required to allow others to reuse
the data with confidence. This is especially important for nano-
materials, given that the test guidelines originally developed for
soluble chemicals are currently being revised for the use with
nanomaterials [26].

Development of the instance map concept

The complexity and transformability of nanomaterials also has
consequences for the databases used to organise and store nano-
material characterisation and (eco)toxicity data. Databases
needed to adapt to the nature of the data they were required to
store. One innovative approach, taken by the NanoInformatics
Knowledge Commons (NIKC) database [27], was to introduce
the concept of the “nanomaterial instance” to capture the trans-
formations that nanoscaled materials undergo in environmental
and biological compartments as a visual representation to guide
the data curation process [28], that is, to highlight where
changes to the nanomaterial may have occurred and, thus,
where additional characterisation information would be needed.
Instances were designed to capture the necessary metadata
needed to describe a material and its surrounding medium in
mesocosm experiments while keeping the sequence of transfor-
mations intact (e.g., a material deposited in soil resulting in the
material’s uptake by surrounding plants, which are then eaten
by insects). Material transformations are tracked through
connected instances. As originally conceived, the nanomaterial
instances were used to systematically retrofit experimental data
from published literature describing nanomaterials mesocosm
studies in order to capture the nanomaterial transformations in a
manner that sufficiently includes surrounding medium charac-
teristics, thus representing both intrinsic and extrinsic proper-
ties of the studied material [20]. Mesocosm studies are general-

ly complexly layered with multiple assays and characterisation

Beilstein J. Nanotechnol. 2025, 16, 57—77.

methods occurring sequentially or concurrently, often within a
larger encompassing study in order to gain a more complete
understanding of nanomaterial behaviour. The NIKC curation
team was tasked with translating these experimental studies into
nanomaterial instances and identifying important metadata asso-
ciated with each instance. This was done by categorising experi-
mental data into one of five categories, namely, instance, mate-
rial, medium, property, and supplementary; a property can
describe either a medium (e.g., environmental, biological, or ex-
perimental) or material, a supplementary provides a way to
include visual information about a property (e.g., image or
diagram), and the instance itself is the point in time when mate-
rial, medium, and properties are being described together. A
study could have as many instances as needed to describe each
of the potential material transformations. For quality assurance
and quality control (QA/QC) purposes, the curation team
needed a way to compare defined instances and transformat-
ions. After many trials, the most efficient method for curation
was a visualisation or map that the curators would follow during
the curation process; thus, instance mapping was created. More

information on the approach is available in [28].

The benefits of such a visual representation for study design to
guide researchers regarding which characterisation and system
metadata were needed for complete reporting of nanosafety
studies emerged quickly, with researchers using instance maps
independently of the NIKC for purposes beyond data curation.
As a project planning extensive mesocosm studies, NanoFASE
adopted the concept for their mesocosm study reporting. In
collaboration with their NanoCommons data shepherd [29], the
NanoFASE project adopted the instance map approach for proj-
ect-wide data management to structure the data reporting of the
complex mesocosm experiments; the researchers used a modi-
fied version of the NIKC file format and uploaded the data onto
the NanoCommons Knowledge Base [30]. These early instance
maps were drawn by hand, without tools specifically designed
to create these maps. Their use as an integral part of the overall
data management infrastructure emerged holistically and
bottom-up and evolved based on real applications by the

nanosafety research community.

Instance maps for on-the-fly data
FAIRification

Much of the potential benefit provided by instance maps arises
from removing the current separation of data production from
data curation, harmonisation, reporting, and FAIRification
(making data Findable, Accessible, Interoperable and Reuse-
able). Instance maps represent an integral part of data produc-
tion following an on-the-fly data management approach [31],
supporting all stages of the data management life cycle [29] by

allowing the easy creation of a visual draft of the experimental
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workflow at the study design phase and then associating this
workflow with the materials, environmental conditions, method
descriptions, protocols, biological and computational models
used, and the data produced during the study. Indeed, this use of
instance maps to inform the earliest parts of the data life cycle
was a primary goal of the NIKC team in developing the ap-
proach in order to generate “premeditated interoperability” of
resulting datasets and, therefore, enable broad integration of
datasets across multiple groups; however, the realisation of that
goal could only emerge upon adoption of the approach by other
research groups. The NanoCommons project pioneered the use
of instance maps for documenting study design and data capture
needs as part of the data shepherding approach and developed a
software tool for the creation of instance maps. The approach
has now been taken up and continued in MACRAME and other
recently funded advanced materials projects. As demonstrated
here, the use of instance maps to visualise material transformat-
ions has evolved into a powerful tool that extends beyond cura-
tion and beyond engineered nanoscale materials. Indeed,
researchers have started using instance maps to aid the design
and planning of experiments, as communication and instruc-
tional tools at individual and collaborative levels, and in educa-
tional settings.

This paper presents examples of such new applications of
instance maps for planning, documenting, and sharing study
designs and associated data and metadata. The InstanceMaps
tool allows users to design workflows in a fully customised
manner and to connect the nodes (instances, properties, proto-
cols, and data) with protocols and data management tools such
as electronic laboratory notebooks (ELNs), which aids inter-
operability! While the focus of the cases presented here is
nanosafety and sustainability, the general utility and applicabili-
ty of the instance map concept to describe complex experimen-
tal and computational studies in other research areas and poten-
tially in regulatory settings and industrial development and
innovation processes is also evident.

Methodological Approach

Definition of the instance map concept

The original instance maps, used as organisational structure in
the data curation efforts for the NIKC database [27], enabled
users to visually document nanomaterial transformations while
capturing the necessary metadata [28]. The experimental data is
sorted into five categories, namely, instance, material, medium,
property, and supplementary, to catalogue the metadata
describing the nanomaterial and the exposure medium. An
instance is defined as the nanomaterial in a medium at a specif-
ic moment in time. The material and medium categories are
used to describe the instance. A physical or chemical change to

the nanomaterial that (potentially) alters the physicochemical or
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biological properties of the material results in a new instance.
An instance map then represents a flow chart of the nanomateri-
al fate, represented as a directed, often tree-like graph of nodes
connected by edges, that is, arrows to show the directionality
[28]. The main branch(es) is (are) formed by consecutive
instances, and other branches connected to the main branch
describe the material and medium at this specific point in the

experiment and their properties (Figure 1).

In its original conception, the chosen categories (also called
nodes) and the strict set of rules on how to place and connect
the nodes was optimised for the needs of the NIKC data cura-
tors, and later for describing the mesocosm experiments of the
NanoFASE project and the corresponding data curation tem-
plate. The NanoCommons data shepherding services facilitated
other research groups to reuse instance maps to describe their
research [32,33]. These reuses also showed that a few exten-
sions and the provision of a specialised software tool to create
the maps would further facilitate and encourage the adoption for
other types of experiments and new use cases, and the applica-
tion of instance maps as a tool to optimise and document study

design.

The NanoCommons instance map tool

The first extension proposed to support study design was to
differentiate between different types of properties (see Figure 1
and Figure 2). In the NIKC curation efforts, all data were
extracted from scientific publications; thus, there was no
obvious separation in the eyes of the curator between data pro-
duced specifically within a paper (primary data) or data taken
from literature or public databases (secondary data). This
distinction becomes important, however, when using instance
maps for complex study design workflows, where primary data
can be further categorised into wet-lab and computationally pro-
duced data. To capture the complete experimental metadata, it
was also seen as beneficial to be able to explicitly refer to proto-
cols (exposure, characterisation, or toxicity) since going from
one instance to the next can be a multistep process involving the
application of numerous protocols and/or standard operating
procedures (SOPs) of different origin. While this could be
achieved by adding an instance for the resulting material state
after each sub-step, these intermediate instances are not typical-
ly characterised experimentally; thus, the instances would make
the maps more complex without adding much information.
Explicit protocol nodes, in contrast, can be linked to the corre-
sponding resources documenting the steps in the form of text
documents, protocol repository entries, or ELN pages. For data
produced in the study, a strong linkage between protocols and
data using a workflow with stages for sample preparation, mea-
surement, raw data (collection), data processing, and processed

data was utilised. Putting all this together, the InstanceMaps
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Figure 1: Comparison between (a) the original concept of an instance map using the original definition from NIKC, modified from Amos et al. [27] and
(b) an instance map generated using the InstanceMaps tool with its extended node library. The full instance map in (b) is available at https:/
figshare.com/articles/software/25416040?file=51103502 for interactive inspection. (c) Comparison of the categories of instance map nodes between
the original version and the InstanceMaps tool and illustration of the new features available via the InstanceMaps tool.
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tool supports twelve nodes, grouped into four categories, as

shown in Figure 2. The node taxonomy is presented in Table 1.

Instances Protocols

Instance TransformationProtocol

“ SamplepreparationPrOtOCOI

“ MeausurementPrOtOCOI
DataProcessingProtocol

Properties

CuratedProperty

Data

Experimentalpropeny

Figure 2: The nodes available in the InstanceMaps tool to represent a
study, grouped into four categories. An instance consists of the materi-
al and its medium (surroundings). Properties can be curated (from liter-
ature) or calculated (computed) or experimentally determined. Proto-
cols cover all steps of the workflow, including any transformations,
sample dispersion and exposure, measurement steps (e.g., physico-
chemical characterisation, (eco)toxicity evaluation, and functional
testing), and data processing such as gap-filling, data cleaning, and
statistical analyses. Data is then classified as raw (coming directly from
the measurement) or processed (following steps such as subtraction of
medium blanks or calculation of half maximal effect concentrations).

The refined instance map concept
implemented as a web application

A first prototype of an instance map service has been de-
veloped, which speeds up the creation of the maps and allows
for the linking of nodes to protocols and data sources. The tool
is located at https://instance-maps.stage.sevenpastnine.com and

can be accessed with a username and password (the maps of
this publication can be accessed under username: Supporting-
Info and password: maps-for-paper). The following functionali-
ties are available: (i) creation and modification of instance maps
and provision of basic metadata, (ii) linking of data and other
research outputs to individual nodes, and (iii) sharing of
instance maps with other users in the same user group, who can
view the map and all associated data and (meta)data by

accessing the InstanceMaps tool but cannot modify the maps.

The InstanceMaps tool was developed using a set of open-
source frameworks and libraries. At the heart of the tool is
ReactFlow for building node-based editors and interactive
diagrams. ReactFlow is incorporated into the tool using the
F#/Fable toolkit Feliz. For the backend, the Django framework
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is used alongside a relational PostgreSQL database to handle
data storage and user management. During the NanoCommons
project, a group of test users were engaged in assessing the
tool’s usefulness and interface usability. Regular feedback
during all phases of the development was crucial in guiding the
development process with regards to defining and prioritising
the requirements in terms of nodes and edges.

An instance map can be created by simply dragging and drop-
ping items (nodes). Users can choose between the twelve differ-
ent types of nodes described above, which are grouped and
colour-coded for easier interpretation of map overviews. Indi-
vidual nodes can be connected with edges to represent com-
plete workflows. Data support is still limited in the current
version of the tool but will be improved in the future to support
the harmonised and interoperable on-the-fly data management
concept envisioned in the introduction and described in [3].
Users can provide further information such as descriptions,
keywords, version numbers, creation dates, licences, contribu-
tors, and references for the complete map as well as for indi-
vidual nodes, as well as links (URLSs or relative paths) to data
files. This approach was chosen in the test phase to allow users
greater flexibility with respect to the format in which their data
is stored. Currently used formats for protocols and data include
data serialisation formats such as JSON and YAML, notebook
pages (e.g., electronic lab notebooks like SciNote, Jupyter, and
Colab computation notebooks), text documents (Microsoft
Word or Google Docs), spreadsheets (Microsoft Excel), and
provider-specific data files. Other possibilities include images,
videos, or links to public repositories. A demonstration
of the tool is available at https://figshare.com/articles/
software/25416040?file=51103502 along with a tutorial to

support users.

Results and Discussion

The utility of the instance map service is demonstrated on a
range of experimental workflows applied in nanosafety and
sustainability assessment, representing the assessment of nano-
materials or advanced materials via different endpoints and
workflows. Typically, the overall experimental workflow in
nanosafety assessment consists of (but is not limited to) some or
all of the following steps: (i) material synthesis or procurement,
(i) further modifications (e.g., surface functionalisation), (iii) a
plethora of characterisation steps by physicochemical methods,
potentially also including the application of computational
modelling and prediction tools, (iv) determination of diverse bi-
ological endpoints in vitro and/or in vivo, which can also
consist of both experimental and computational approaches, and
(v) processing of the raw data and enrichment of the processed
data and its integration to support risk assessment and/or safe-

by-design applications.
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Table 1: Taxonomy of nodes available in the InstanceMaps tool, the subjects that each node captures, and a non-exhaustive list of supporting evi-
dence and metadata to be covered in the metadata and data files, and/or protocol descriptions associated with each node. Note that, depending on
the data reporting format, some of the nodes can point to the same data file (e.g., represented as different tabs); alternatively, a full study as repre-
sented by an instance map could be stored in a single file if it supports the instance map concept.

Node Captures

Instance nanomaterial (or other test compound or
object of interest) in its chemical, biological,
and/or product environment

Material compositional and structural information

about test object

Medium (e.g. solvent,
biological model, or product
matrix)

TransformationProtocol

nanomaterial (or object of interest)

description of the surroundings of the

experimental details of changes to the

Information to be covered in the associated data file

listing of all components (materials and media)
defining the current life cycle stage of the
material/sample + bibliographic and provenance data
defining the setup

full characterisation of material including, e.g.,
chemical composition, size, shape/structure, and/or
NanoInChl

recipe of medium and/or identifier of medium and its
constituents

protocol document/video, SOP, and/or ELN workflow

nanomaterial’s/object’s surroundings that

drive a change in the nanomaterials
physicochemical properties

SamplePreparationProtocol

experimental details of sample preparation,

protocol document/video, SOP, and/or ELN workflow

e.g., dispersion, mixing, or presentation to

test organisms/environment

MeasurementProtocol
performed

DataProcessingProtocol step-by-step description of the data

processing
CuratedProperty description of a nanomaterial/object property
extracted from a publication
ComputedProperty description of a nanomaterial/object property

calculated/predicted using a model or

algorithm

ExperimentalProperty
measured experimentally

RawData data retrieved directly from
observation/measurement/computation
ProcessedData data that has been produced following

processes such as , e.g., background
subtraction, normalisation, or calculation

Example 1: Documenting nanomaterials
synthesis and provision of unique identifiers

for nanomaterials

Instance maps were used as a tool to visualise the synthesis of
different types of surface-modified nanomaterials. These maps
were used to highlight how slight changes in the synthesis
process can alter defining characteristics of the particle, which
may drastically change particle behaviour in environmental and
biological media and nanomaterial (eco)toxicity. Although
multiple instance maps were created for different types of sur-
face-modified nanomaterials, only one is presented here
(Figure 3). The synthesis method illustrated was published by

Levard et al. [34] and was chosen because of its thoroughly de-

experimental details of the measurement

description of a nanomaterial property

instrument metadata, software metadata, instrument
settings/input parameters, protocol document/video,
SOP, and/or ELN workflow

data processing pipeline, software details, statistical
test details, equations utilised, and blanks/controls

bibliographic information and/or link to numeric
value/data

model/algorithm name and software used to compute
the property, and/or link to numeric value/data

assay name, instrument metadata (if relevant),
organism metadata (if relevant), metadata, and/or
link to numeric value/data

first set of data produced by a specific experiment;
what is considered “raw data” often depends on
assay, context, and/or community

second and any other downstream set of data
generated from raw data; as for raw data, what is
considered and reported here depends on assay,
context, and/or community

scribed synthesis protocol and characterisation methods. It was
also chosen because the nanomaterials were later used in an ex-
tensive exposure study examining toxicity responses of organ-
isms based on differences in the particles’ sulfidation levels
[35]. We note that the same reasons underpinned its selection

for the discussion of instance maps in [28].

The instance map in Figure 3 delineates all steps of the synthe-
sis of sulfidised silver nanoparticles (AgNPs). AgNPs are syn-
thesised with a polyvinylpyrrolidone (PVP) surface by reduc-
tion of silver nitrate in ethylene glycol with 10k PVP. The PVP-
AgNPs are characterised regarding some of their physical attri-

butes such as the particles’ shape, size, and crystalline phase.

63



Beilstein J. Nanotechnol. 2025, 16, 57—77.

Ethylene glycol

4 Synthesis of PVP.AQNP: A

Step 1 Step 2
. .
m . s

Ethylene glycol

4 Separation PVP.AQNP: L

4 Final Wash PVP.AgNP: A

Step 3
.
Mtw"ur"ntn!p’oeuol .. 1

Figure 3: This part of an instance map shows the first steps of the synthesis protocol for the sulfidation of AgNPs originally published in [34]. The full
instance map is shown as a miniature on the top right and is available at https:/figshare.com/articles/software/25416040?file=51103502 for interac-

tive inspection. The map can be divided in two phases. The first phase is the synthesis of silver nanoparticles (AgNPs) functionalised with polyvinyl-
pyrrolidone (PVP), which occurs in the first three instances (shown as light blue nodes). Once the NPs have been synthesised, physical and chemical
characterisation of the particles is performed. These characterisation endpoints can be seen in orange linked to the material in the third instance. The
second phase is the sulfidation process, which can be seen in the light purple boxes (only accessible in the interactive tool). Although there are three
“transformation protocols” listed, the protocol is the same except for the concentration of PVP-AgNPs used.

The particles are then sulfidised using different specified con-
centrations of the PVP-AgNPs resulting in increasing levels of
sulfidation measured by the S/Ag ratio. Thus, four different NPs
need to be distinguished and tracked in the subsequent toxicity
experiments, leading to a need for unique identifiers for the
nanomaterials.

Instance mapping is, thus, being extended to support and imple-
ment emerging standards to FAIRify nanomaterials data by
creating a common naming convention. An international and
interdisciplinary group is currently working on refining a stan-
dard nomenclature for nanomaterials, the “InChl for nano” or
NInChl [36], based on the International Chemical Identifier
(InChl). The objective is to create a notation that is readable to
both humans and machines and that encompasses chemical and
physical attributes of the material. As shown in the example in
Figure 3, nanomaterials are often layered, often with a core and
a functionalised surface, which can be engineered for specific
purposes and can modulate toxicity endpoints. Ideally, a
nomenclature would include details on chemical identities of
the nanoparticle’s core and surface, its transformation, where it
is the transformed form of the nanomaterial that is evaluated,
any impurities, and physical descriptors of the material’s mor-
phology, as well as the nature of the bonds between the surface
and core. This level of detail can only be gained by under-
standing how the nanomaterial is synthesised, which is where

instance maps will be a critical tool.

Example 2: Monitoring nanomaterial
transformation in complex environmental

media

Ecotoxicity exposures conducted in soil and mesocosm experi-
ments are often complex with multiple parameters and
endpoints (e.g., [37-40]). The diversity of data types required to
monitor soil, porewater, nanomaterials, and organisms requires
many sample collections and analyses; also pre-experiment data
and metadata need to be collected. The complexity of the exper-
iments is simplified by the use of instance maps, which allow
for an overview of biological and chemical sampling during the
mesocosm experiment. By detailing all relevant metadata and
post-exposure analyses, instance maps visualise the flow of data
collection and methodologies, including the biological culture
information and chemical pre- and post-exposure data
(Figure 4A).

The instances in the example in Figure 4 follow the timeline of
exposure; at each instance, the nodes depict the data pertaining
to that particular instance. Instances at the top of the map (see
Figure 4, “Set up — nanomaterial dispersion and soil spiking”)
occur before the exposure of organisms and include the nano-
material dispersion and their addition to soil, followed by
instances detailing the addition of organisms and then the time-
points of sample collection. Data was organised left to right to
visualise the distinction between curated data and/or any pre-ex-

periment information and data generated by the experiment
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Collection of raw
data for endpoints
and the
subsequent
processed data

Origin of data

l

Figure 4: Instance map of a nanomaterial’'s mesocosm experiment. (A) Representation of an instance map for a mesocosm exposure experiment. (B)
An expanded map region to visualise the experiment organisation and the flow of data collection. Instances (blue boxes outlined with a blue border)
are organised in time from the top of the map (blue arrow represents direction of time). Data is split on either side of the instances to distinguish its
origin. To the left are the green and yellow boxes that show curated data and pre-experiment information. Curated data and pre-experiment informa-
tion is further split across instances to show when it is applicable to pre- (green) or post- (yellow) exposure of organisms. To the right side of the
instances is an orange box that shows all data generated from a given instance. This data is also further split into two categories. First, raw data and
processed data (pink border) and, second, the methodologies and processing approaches used to derive that data (purple border). (C) Extension of a
sample node to include further analysis and data points. The full instance map is available at https:/figshare.com/articles/software/

254160407file=51103502 for interactive inspection.

itself (Figure 4B). The data and processes are visualised as
nodes attached to each instance. On the left side of this exam-
ple are nodes relating to the components prior to their addition
to the experiment, that is, information on the pristine nanomate-
rial, medium and soil, suppliers, batch numbers, CAS numbers,
pH, and any other pre-processing steps before the addition into
the experiment (mesocosm). For the first exposure instance,
also species information such as cultivars, suppliers, culture
maintenance information, and QC of organisms entering the ex-

periment are included.

On the right side of the close-up (Figure 4B), an organised
display of any data generated by the experiment itself is shown.
This is split into raw and processed data, as well as the pro-

cesses of their collection. The pink section nodes represent the

raw data sets collected, such as the pH value of soil after the ad-
dition of the nanomaterial, organism biomass data, metal con-
centrations in organism tissues, and any processed data derived
from this raw data, such as EC50s or metal bioaccumulation
rates into organisms. Information regarding the protocols and
methods used for data collection and how samples were
processed is also attached to the data. For example, soil pore-
water separation protocols, needed to help generate porewater
metal concentration data, and all tissue sample collection pro-
cesses are available.

The level of overview provided by instance maps greatly bene-
fits the complex, multi-endpoint experiments common to
ecotoxicology, ensuring metadata collection and optimal experi-

mental design, and informing sample processing schedules and

65


https://figshare.com/articles/software/25416040?file=51103502
https://figshare.com/articles/software/25416040?file=51103502

data management plans. The flexibility of the instance map
system means that maps can be extended to include any further
branching to processes, such as adding any later analysis of
collected samples by extending a branch for that sample, for ex-
ample, transcriptomic analysis on exposed organisms by real-
time polymerase chain reaction (Figure 4C).

Example 3: Linking assay QA/QC with SOPs
for running cultures of biological organisms

and standardised ecotoxicity testing

Keeping records of the normal organism behaviour in indi-
vidual labs is vital for regulatory testing, but it is not something
that is formalised in most academic laboratories. Thus, instance
maps can also be used to build awareness of the pre-experiment
steps and the importance of documenting these as they form
part of the provenance and QA/QC metadata that underpin
regulatory testing. This data supports demonstration of the trust-
worthiness of (hazard) data to others who may wish to reuse the
data (e.g., in modelling or as part of a risk assessment).

Beilstein J. Nanotechnol. 2025, 16, 57—77.

The model organism Daphnia magna is cultured in a high
hardness medium, which is aerated for a minimum of 8 h
prior to use in culturing; the dissolved oxygen content is
measured every 2-3 days to ensure it stays within the accept-
able range. The pH value of the medium is also measured and
moderated to within the defined parameters for the specific me-
dium before use for the ongoing culturing of daphnia. The
running cultures are typically in large (1 L) beakers with
900 mL medium and can contain 10-15 adults, with the medi-
um being refreshed three times per week. All cultures are fed
the same daily algal ration of Chlorella vulgaris (7.5 mg C days
0-7, 11.25 mg C days 7 onwards, with double rations on
Fridays to cover the weekend) and are kept in a 20 °C laborato-
ry under a 16:8 hours light/dark cycle. The steps involved in
maintaining the daphnia and the algae on which they feed are
shown in the instance map of Figure 5. Third-brood daphniids
are used for all ecotoxicity experiments (i.e., acute and chronic
toxicity testing) to ensure optimum genetic health of future
cultures.

— =
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. pH . ! Dilute to feed stock ——
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Figure 5: Instance map visualising the steps in maintaining continuous D. magna cultures. Daphnia typically produce brood from about ten days of
age and roughly every three days thereafter, with the third to seventh broods being the most genetically stable and, thus, suitable for ecotoxicity ex-
periments. Tracking of the number of offspring per brood is one of the essential QC measures to record, using the template shown in Table 2. Details
such as organism species, strain, and culturing conditions (temperature, pH, dissolved oxygen, light/dark cycle) can be captured here as well as the
specifics of, for example, the medium and the culturing vessels. The full instance map is available at https:/figshare.com/articles/software/

254160407file=51103502 for interactive inspection.
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Table 2: A simple data capture template for monitoring the health and performance of running daphnia cultures, wherein the amount of food and
dates of medium changes are reported along with the numbers of offspring measured per culture jar. Long term tracking of culture performance allows
for confidence in data generated in regulatory testing using standardised assays, as any deviations from normal behaviour can be confirmed as being
from the exposure rather than from any anomalies in how the test was performed.

Date Day of culture Culture (number in jar) Offspring Food (mL) Medium change Comments
1 2 3 4 5 6 1234586

02/01/24 1 12 12 12 12 12 12 0.75 v

03/01/24 2 12 12 12 12 12 12 0.5

04/01/24 3 12 12 12 12 12 12 0.75

05/01/24 4 12 11 12 12 12 12 1

06/01/24 5 12 11 12 12 12 12 1 v

07/01/24 6 12 11 12 12 12 12 2

08/01/24 7 12 11 12 12 12 12 0

09/01/24 8 12 11 12 12 12 12 1.5 v

10/01/24 9 12 11 12 12 12 12 1.5

11/01/24 10 12 11 12 12 12 12 1.5 eggs in brood pouch

12/01/24 11 12 11 12 12 11 12 ¥ ¥ ¥ v ¥ 15 v first brood

13/01/24 12 12 11 12 12 11 12 v 3

14/01/24 13 12 11 12 12 11 12 0

15/01/24 14 12 11 12 12 11 12 ¥ ¥ ¥ v ¥ 15 v

16/01/24 15 12 11 12 12 11 12 v 1.5

17/01/24 16 12 11 12 12 11 12 1.5

The steps in the acute daphnia toxicity test performed accord-
ing to the OECD standard test guideline (OECD 202 “Daphnia
sp. acute immobilisation test” [41]) have been visualised using
an instance map (Figure 6). An intentional feature of the OECD
test guidelines is that they leave some flexibility for the users in
that they recommend a specific medium, but this is not essen-
tial (and indeed many labs use tap water or bore hole water).
Thus, each lab needs to prepare its own detailed SOP that
underpins the experiment. In the example shown, we have not
linked to other aspects of an overall study that would be re-
quired, such as characterisation of the stock solution and assess-
ment of the nanomaterials’ stability in the test medium. Howev-
er, the beauty of the instance map approach is that this linking
of experiments/experimental steps is easy. A related data
capture template has been developed and is linked to the raw
data node. The OECD 211 “Daphnia magna reproduction test*
(a reproductive assay) has also been mapped, as shown in
Figure 7, noting that the concentration used in the chronic test is
usually derived from the acute test (e.g., the EC30 or EC10 con-
centration). Thus, these instance maps can also be linked and
are indeed linked to the running culture instance map of
Figure 5.

In line with the QA/QC efforts presented here, initiatives are
ongoing at the European level, and to a certain extent even

global level, aiming, for example, at the harmonisation of nano-

materials characterisation reporting, its terminology, classifica-
tion, and metadata. A standard structure containing this type of
information relating to (i) materials characterisation (meta)data,
termed CHADA (CHAracterisation DAta and description of a
characterisation experiment), has recently been proposed [42].
Standardised or harmonised reporting formats had previously
been called for, such as a listing of minimal reporting standards
for biological assays studying the interactions of nanomaterials
with biological materials, termed MIRIBEL [43]. The prime
intention here is to improve future exchange of datasets among
materials characterisation experts, to facilitate collaboration
with industry end users, and to optimise the interoperability of
data and, thus, enable better data reuse by modelling experts.
Likewise, efforts are ongoing to harmonise the (ii) materials
MOdelling DAta terminology, resulting in templates for
physics-based model description, termed MODA [44], driven
by the activities of the European Materials Modelling Council
(EMMCO), resulting in a workshop agreement of the European
Committee for Standardization (CEN). Instance maps can
support this effort by graphically resolving reporting docu-
ments as they enable a structural representation of the experi-
mental (or even computational) data workflow. In the context of
biological experimentation, we can link the instance maps to
(iii) biological data reporting that fulfils criteria such as advo-
cated by MIRIBEL. Analogous to the two aforementioned

reporting formats, such a biological documentation could be
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Figure 6: Representation of the OECD 202 “Daphnia sp. acute immobilisation test” guideline for acute toxicity to daphnia as an instance map. For

nanomaterials, there would be an additional link from the stock solution to the range of characterisation studies needed, such as size distribution, sur-
face charge, and stability over time. The full instance map is available at https:/figshare.com/articles/software/25416040?file=51103502 for interac-
tive inspection.
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Figure 7: Representation of the OECD 211 “Daphnia magna reproduction test” guideline for reproductive (chronic) toxicity to daphnia as an instance
map (b). The exposure concentration is determined from the acute dose—response curve (a), generated according to the instance map shown in
Figure 6, which will be fully integrated in a next iteration of the InstanceMaps tool. The instance map is available at https:/figshare.com/articles/soft-
ware/254160407file=51103502 for interactive inspection.
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termed BIODA, a reporting structure for BIOlogical assay
DAta. Such concepts will prove useful when highly complex
workflows are built and data has to be aggregated from the dif-
ferent criteria. For example, regarding the regulatory readiness
of testing pipelines based on new approach methodologies,
batteries of more than 20 assays with over 50 individual
endpoints are compared and data (from different laboratories)
needs to be aggregated [45]. The offspring tracking presented in
Figure 5 may represent the first step towards implementation of
a BIODA to allow for benchmarking and interoperability of
data from different labs, similar to the CHADA and MODA
concepts.

Example 4: Showcasing complex workflows
in human immunotoxicity assessment using

cell lines and primary cellular models
In the context of studying bio-nano interactions of silica-based
nanomaterials with potential use as adjuvants in immunotherapy

Beilstein J. Nanotechnol. 2025, 16, 57—77.

and of allergens as active pharmaceutical ingredients (APIs), we
used the InstanceMaps tool to summarise and highlight differ-
ent workflows for investigating immunotoxicity and pharmaco-
logic efficacy endpoints. Regarding materials, the studies
focused on silica (Si0;) nanomaterials in the size range of
50-100 nm (depending on the method used, i.e., transmission
electron microscopy, nanoparticle tracking analysis, or dynamic
light scattering (intensity or number distribution)) with differ-
ent surface modifications, which are reported to be immunolog-
ically active in different ways but are overall considered to be
safe [46]. In some studies, the impact of material surface
(nanotopography) and functional modifications on API binding
(molecular initiating event according to the “adverse outcome
pathway” concept [47]) were investigated. In other studies, the
different steps involved in specific immune reaction mecha-
nisms (key events for beneficial vs adverse outcomes) were
analysed. Figure 8 illustrates the comprehensive experimental
workflow overarching several immunotoxicity studies, high-
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Figure 8: Instance map of the immunotoxicity workflow to study the bio-nano interactions of differently functionalised SiOo nanomaterials with immune
cells. The instance map is divided into sections A-E, based on the studies of Hasenkopf et al. [48], Mills-Goodlet et al. [49], Johnson et al. [50], and
Punz et al. [51], highlighting the different approaches and routes that were taken. Section A, which serves as a baseline for all studies, mainly focuses
on the nanomaterial synthesis and surface modification. The pathway towards more in-depth immunological investigations was chosen for section B,
while sections C and E cover alterations in the protein binding activity, depending on the physicochemical properties provided by chemical surface
functionalisation and also the observed structural alterations that occurred upon nanomaterial conjugation because of the nanotopography of the ma-
terials (mesoporous SiO» nanomaterials). Section D depicts the integration of in silico predictive modelling approaches with quantitative and qualita-
tive in vitro determination of the protein corona (epitope rearrangement). The full instance map is available at https://figshare.com/articles/software/

254160407file=51103502 for interactive inspection.
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lighting the different routes chosen for these studies, including
synthesis, surface functionalisation, and physicochemical char-
acterisation of the nanomaterials, the bio-nano interaction
studies, and the determination of different biological/immuno-
logical endpoints.

When studying bio-nano interactions the starting point is
typically the synthesis (or procurement) of the particles, which
for SiO; nanomaterials is either the Stober method or the emul-
sion method, followed by chemical modification. Here, nano-
material functionalisation was realised by addition of amino or
carboxyl groups with shorter or longer aliphatic linkers. Altera-
tion in the particles’ nanotopography was realised through pore
formation during synthesis using cetyltrimethylammonium bro-
mide. The non-covalent conjugations between nanomaterials
and proteins were quantitatively characterised, directly by gel
electrophoresis and indirectly by quantifying the amount of
unbound protein in the supernatant upon several washing steps.
“In Vitro Sedimentation, Diffusion and Dosimetry” studies
were undertaken to determine the cell-delivered dose for all cul-
ture conditions based on the specific density and size parame-
ters of the bio-nano conjugates [52]. Finally, comprehensive
physicochemical characterisation was performed by applying a
set of analyses according to the reporting standards for bio-nano
interactions [43], and (meta)data were uploaded to the
NanoCommons Knowledge Base [30], following the principles
for data FAIRness and metadata stewardship [29]. These were
the necessary baseline requirements to proceed with experi-
ments, which are defined as section A in Figure 8.

The sections concerning the biological and immunological read-
outs, as well pharmacological efficacy, independently expand
upon section A. The focus in Figure 8B is on mechanistic
studies following uptake and presentation by professional
antigen-presenting cell (APC) models using unmodified SiO;
nanomaterials [50] compared with differently surface-function-
alised particles [51]. As a model for APCs, monocyte-derived
dendritic cells were generated from human whole blood sam-
ples as a preliminary step, again building a BIODA-type of
reporting structure following SOPs. Afterwards, these APCs
were incubated with the materials generated in section A, and
their immunologic activation profile was investigated utilising
flow cytometry and enzyme-linked immunosorbent assay.
Sections C and E in Figure 8 are quite similar in concept [49]
and investigate the influence of nanotopography on the protein
binding capacity and its impact on epitope integrity. Johnson et
al. [53] reported that structural alterations of proteins bound to
nanomaterials impact the antigen-processing machinery in
APCs and could, thus, impact the outcome in terms of
immunomodulation. Here, it should be emphasised that during

immunotherapy against type-2 immune diseases, such as aller-
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gies, a shift towards regulatory T cell activation is envisioned.
Finally, as depicted in section D, Hasenkopf et al. [48] tested
the proteins’ individual binding efficiencies on differently func-
tionalised SiO; nanomaterials under varying conditions. They
also compared artificial and real allergen mixtures by applying
genuine detection assays suitable for allergenic molecules in
vitro and assessed two recently developed in silico protein
corona prediction tools regarding the results from experimental

studies.

The aforementioned studies are complex and individually
targeted to different endpoints. The InstanceMaps tool allows
users to generate large and intertwined workflows referring to
multiple research objectives. While a single experiment can
already be depicted by an instance map, we herewith displayed
their use for visualising integrated batteries of assays and
depicted their applicability as a structural representation of
larger collaborative research and development endeavours.
Instance maps have thus proven instrumental as a tool for
creating and illustrating workflows that combine several sophis-
ticated backgrounds, allowing even less experienced users to
capture the bigger picture and still perceive more detailed corre-
lations within a larger context.

Example 5: Using instance maps for
planning and refining data and material

workflows in large collaborative projects

As the last example of application and utilisation of instance
maps, their use for reporting of studies with complex work-
flows and as a tool for study design and planning and tracking
tool for materials, samples and data flows is presented. The
MACRAME project aims to extent the coverage and widen the
applicability domains of harmonised OECD test guidelines,
OECD guidance documents, and international standards (CEN,
ISO) by refining existing and developing new advanced physi-
cochemical, human, and ecotoxicity characterisation methodol-
ogies for market-relevant nanomaterials and the wider group of
advanced materials [54] in their complex product matrices. Ap-
plicability, relevance, and reliability are tested in five industrial
use cases. To demonstrate the instance-map-based data manage-
ment approach of MACRAME, the use case of antibiotics-
loaded polymeric nanomaterials is showcased. These nanomate-
rials are used for a proof-of-concept of the treatment of antibiot-
ic-resistant bacterial lung infections. In addition, controls are
prepared for imaging purposes to verify the suitability of the
MACRAME approach to quantify and characterise the aerosols
upon exposure of in vitro lung models. Relevant exposure
points were identified and used to define the samples that need
to be taken from the industrial processes and sent to the charac-
terisation and testing partners. The combinations of advanced

materials and complex matrices to be studied include all
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life-cycle-relevant occurrences of (i) complex product matrices,
(ii) degraded complex product matrices at the product’s end of
life, (iii) regulatory relevant biological matrices for human tox-
icity testing, (iv) environmental matrices for ecotoxicity testing,
and (v) relevant forms of the different complex matrices, such
as soot and char, and aerosols generated from compounding,
machining, use, weathering, degradation, or incineration of
products.

To achieve such a full characterisation of the materials along
their complete life cycle and, at the same time, move the
methods forward on their road to standardisation — all in the
short time of the project — intensive collaboration and unhin-
dered knowledge exchange between all partners is essential.
Flows of material and data/information, from production to
sample preparation (simulating different end-of-life scenarios)
to collection of the characterisation data, need to be organised
effectively in order to satisfy the information requirements of
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downstream experiments; also, all data needs to be integrated to
perform a safety and sustainability evaluation.

The InstanceMaps tool was used to visually map all exposure
points, the characterisation methods applied to these points, and
the workflows needed to create the materials and the life cycle
samples and to execute the experiments. This ensures that all
information required to perform the safety and life cycle assess-
ment is collected, with all steps documented as part of the plan-
ning status (see Figure 9).

Besides nodes representing the materials/samples (instances),
characteristics and endpoints to be collected (experimentally
and via text/database mining), and nodes describing modifica-
tion steps applied to materials and samples (transformation
protocols) and testing SOPs (sample preparation, measurement,
and data processing), as described in the previous examples,
instance maps also focus on and clearly define the chemical and
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Figure 9: Part of the instance map depicting the planning status of the human and ecotoxicology testing for the MACRAME use case of antibiotics-
loaded polymeric nanomaterials. After the production of the loaded nanomaterials, they are sent to many experimental partners performing the differ-
ent assays. The instance map is crucial to describe the complexity of the workflow, which includes strong cross-partner dependencies such as sam-
ple preparation by one partner and measurement by another, which must be completed within a specific timeframe. The full instance map is available
at https:/figshare.com/articles/software/254160407file=51103502 for inspection.
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physical treatment and processing steps performed as part of the
manufacturing process, as well as shipping of samples from one

partner to another (Figure 10).

By adding manufacturing and project management nodes, the
instance maps now offer options to collect and document all
digitalised information and results produced in upstream tasks
of the case studies at one central place for direct (re)use in
downstream tasks. In combination with the other components of
the MACRAME data management infrastructure and data
harmonisation activities, the partners are able to adopt an
on-the-fly FAIRification approach [31], in which all research
output, including, but not limited to, sampling plans, study
designs, in vitro and in silico method specifications, protocols,
SOPs, and the data created, as well as guidelines, reports,
training materials, and publications are directly shared — even in
draft versions — by attaching them to instance maps nodes. The
maps are only available to the consortium (until/unless they are
made public by agreement of all involved parties). Hence, they
can be used, for example, to report very detailed partly confi-
dential information on the production processes needed for the
life cycle assessment to evaluate energy and water consump-
tion or as a basis to discuss the amounts of material needed to
be shipped to the partners and then the status of the shipment.
At the same time, the instance maps are continuously updated to
increasingly represent the real workflows performed in the use
cases with different versions, documenting the need and the
reasons for deviating from the original planning and when this
need became evident. We note here that instance maps could
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potentially also be utilised to pinpoint where a particular experi-
ment has gone awry or deviated from prior results, including the
case of negative data. This demonstrates that the FAIR concept
is not only relevant for a secondary reuse of data. Instead, it
also supports data collection and sharing in large projects from
day 1, and the work invested in FAIRification at the planning
stages will immensely reduce the effort for FAIR storage and

sharing of data via agreed licences.

Finally, Figure 10 also demonstrates that misusing the colour
coding established for clear identification of the node’s purpose
can be beneficial during planning. Red colours, which are
normally used to represent data, were here applied to indicate
areas where further discussions were needed on how to perform
the experiments or if they are even possible in the time frame
and budget of the project. Extending the application of instance
maps to all the uses described in this paper, and potentially
many more, was only possible by not enforcing strict rules on
how different node types can be connected. However, some
more guidance might be needed to make the instance maps and
the linked data more comparable and interoperable. Now that
the applications are better defined and the use cases of the tool
have matured, this will be pursued through extending the design
guide published in the original instance map paper [28] and by
preparing standardised workflows as arrangements of nodes
and/or limiting the way nodes can be connected. To retain some
flexibility, the node library could then be extended, for exam-
ple, by adding specific planning nodes and/or by having
customisable nodes.
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Figure 10: Part of the instance map for the MACRAME use case of antibiotic-loaded nanoparticles representing the shipping of the pristine material to
partners performing the human and ecotoxicity testing. The full instance map is available at https://figshare.com/articles/software/

254160407file=51103502 for interactive inspection.
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Key lessons from the implementation cases
and future directions

Through the collaboration across the different implementation
cases (presented here as examples 1-5) a number of additional
features arose, which could extend the functionality of the
InstanceMaps tool. To provide a concise, yet comprehensive,
overview of the lessons learned, Table S1 in Supporting Infor-
mation File 1 lists all data management features that were
captured in each of the examples 1-5 above across the data
management life cycle phases (collaboration planning, study
design, study execution, data analysis and enrichment, and data
validation and reuse, as defined in [29]), using an “X”. Some
features that had to be applied manually and retrospectively are
indicated as “(X)”. Requested features to be included in future
updates of the currently available version are given in purple

Tows.

The modifications introduced during the development of the
InstanceMaps tool, especially the extension of the available
node types, opened up many new uses of instance maps for all
of the applications presented above, and potentially new ones in
the future. However, they also made defining rules on how to
connect different nodes less straightforward than in the original
approach, where the focus was completely on the fate of nano-
materials. Newer instance maps look into more detail of the bio-
logical testing system (see Figure 5). Transformation protocol
nodes helped to understand which object (e.g., nanomaterial, bi-
ological test system, or solvent/medium) underwent a modifica-
tion, but they made the separation between material and medi-
um less obvious. These circumstances also raised the question
as to whether materials and medium always have to be associat-
ed to an instance or if they can be independent entities when
they are used for the first time in a synthesis, functionalisation,

or exposure protocol (see Figure 4 and Figure 10).

Another example where different groupings of nodes have been
used in different applications was the use of properties in com-
bination with sample preparation, measurement, and processing
protocols, as well as the resulting data. For example, the combi-
nation of sample preparation — measurement — raw data —
processing — processed data, could be placed before or after
the node defining the measured property, or could even replace
this node completely. It was interesting to see how instance
maps describing the same study but created by different users
showed significant variations in how nodes were used and
connected. This was first recognised when the study from
Martinez et al. [32] was used in instance map training and then
compared to the original map presented in the publication. Such
deviations in instance map design do not cause a problem per
se. In most cases, it was easy for others to understand the design

and flow of the study and to easily identify important results
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based on common sense. Only in a few early cases, the maps
needed to be corrected to avoid inconsistencies. The corre-
sponding data, protocols/SOPs, and other research outputs
could be linked to the maps independently of differences in

representation.

To demonstrate that such variations in how instance maps are
constructed and nodes are linked can be used to put the focus on
different parts of the instance maps, we decided to present all of
the examples in the way that the person(s) who performed the
experiments had created the maps; we did not force users to
comply with any specific set of rules. However, some more
standardisation and a limited set of rules for linking nodes could
speed up comparison (and interoperability) of workflows, one
of the main benefits stated during the NIKC curation process.
Standardisation would also facilitate the generation of
harmonised, comparable data packages combining all informa-
tion associated with one map, enabling upload of all data to
target databases.

There are a number of other areas where the instance maps and
the tool could be further extended. The highlighting of specific
areas in the maps shown in Figure 3 and Figure 8 was created
manually; but this clearly shows that integrating functionalities
to create such annotations directly in the tool would be very
beneficial. Additionally, better support to link different instance
maps or to show more detail when hovering over specific parts
could reduce the complexity of the maps, especially for com-
plex studies as visualised in Figure 9 and Figure 10, without the
need to remove important details. Finally, the data management
and sharing functionality need to be improved to show which
information is available and from where, to give access to
multiple information sources from one node, and to provide in-
tegration with important data management tools such as ELNs
and protocol repositories. Ways to implement these extensions
and improvements are currently under investigation.

It is worth stressing, however, that even if instance maps could
drastically change the way data is collected, they are not meant
to replace existing data management solutions. Instead, tools
implementing the instance map concept should be integrable
into existing data ecosystems. Instance maps address two very
specific purposes: (i) They provide a visual and structured
overview of a study, and (ii) they are an addition to the original
concept, linking to resources with additional information for a
specific part or component of the study. In this way, they can
become the link between different types of personal, institu-
tional, and public information resources (databases and data
warehouses, protocol and SOP repositories, software, and
source code repositories) and data input and curation services

including ELNs. Some ELNs already offer a somewhat similar
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functionality by allowing user to organise the different steps of
the experiments in a workflow. However, as shown in this
paper, the instance maps are one level above these workflows
since they can represent different levels of detail to show com-
plete, very complex studies, and then zoom into the details of
these studies to highlight the metadata and data required at each
step. Additionally, different solutions can be used for different
types of information customised to the needs of the user and/or
community recommendations and are not limited to what a spe-

cific ELN solution is offering.

Conclusion

From its initial conception as a way to track nanomaterials’
transformations as reported in literature studies, the instance
map approach has undergone very rapid development into a
multipurpose experimental visualisation tool with multiple ap-
plications. At its simplest, an instance map can be considered as
a graphical abstract summarising the steps in an experimental,
computational, or combined workflow, demonstrating the mate-
rials, their surroundings (medium, environment, and organism),
the endpoints being measured, and the data flows arising from
each step of the experiment (synthesis, dispersion, characterisa-
tion, exposure, and hazard assessment) and/or each stage of the
nanomaterials life cycle (production, formulation, application,
end of life, and disposal or recycling). When applied to stan-
dardised regulatory tests or production scenarios, instance maps
can be used to provide completeness checks for studies or pro-
duction batches, ensuring that all necessary parameters to be re-
corded are captured in the visual model. In this context, instance
maps can also be utilised as training tools to emphasise to
researchers and operators why specific parameters or checks are
essential and to ensure that the complete workflow is under-
stood, even when individuals are only responsible for small seg-
ments of a workflow. Application of instance mapping at the
study design stage can also provide critical insight into bottle-
necks and support management aspects, such as flows of sam-
ples between partners in collaborative research projects and
efforts to support FAIRification of metadata and data prior to

data collection, to save time and resources later.

Creation of the instance mapping software tool described here
has greatly enhanced the utility of instance maps, makes extend-
ed applications of instance mapping more accessible, and
mapping of highly complex and/or multipartner collaborative
workflows feasible and practical. The examples presented here
highlight the flexibility of the instance mapping software tool,
including the capacity for linking of instance maps, and for
inclusion of additional category nodes covering quality assur-
ance and quality control, industrial production, and manage-
ment of (planned and actual) materials flows. This flexibility

has allowed instance mapping to be used for designing experi-
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ments, developing SOPs, and creating and sharing workflows
within projects, and as an additional data management tool.
However, as the user base expands, the risk of emerging diver-
gent approaches also increases, which will reduce its effective-
ness for comparing and integrating datasets. Thus, a balance be-
tween flexibility and standardisation will be implemented,
through guiding principles for the design of instance maps and
the optimal connection of nodes, to maximise its potential for
harmonisation and standardisation purposes. This would facili-
tate the generation of harmonised, comparable data packages
combining all information associated with one map and
enabling the upload of all data to target databases such as the
NanoCommons Knowledge Base. Integration of the instance
map tool with other data management solutions, such as elec-
tronic laboratory notebooks, protocols registries, and databases,
will further enhance its utility and position it as a key FAIR-
enabling resource for safety and sustainability assessment of
nanoscale and advanced materials, and beyond.

Supporting Information

All instance maps created in the new instance map tool are
available from
https://figshare.com/articles/software/254160407file=51103
502.

Supporting Information File 1

Overview of lessons learned by applying the InstanceMaps
tool.

[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-16-7-S1.pdf]
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Abstract

Nanotechnology is revolutionizing different sectors such as medicine, energy, defence, and environmental science by enabling the
development of materials and technologies with exceptional precision and efficiency. From advanced drug delivery systems to
clean energy solutions, the applications of nanotechnology are diverse and transformative. However, these innovations are accom-
panied by complex challenges regarding safety and sustainability for both the nanoscale materials themselves and for the products
containing them. The growing complexity of engineered nanomaterials calls for proactive strategies to mitigate potential risks while
maintaining their functional benefits. The "Safe and Sustainable by Design" (SSbD) concept addresses these challenges by embed-
ding safety measures and sustainability considerations into the earliest stages of material development. Advances in machine
learning (ML) and artificial intelligence (AI) have further enhanced the effectiveness of SSbD by providing predictive modelling,
risk assessment, decision-making tools, and the ability to computationally screen candidate materials before producing them. This
perspective article highlights how ML and Al are driving the evolution of SSbD in nanotechnology, focussing on predictive toxi-
cology, materials informatics, lifecycle analysis, and the pivotal role of digital twins. It also explores current challenges, emerging
opportunities, and the path forward for integrating ML/AI-driven SSbD frameworks into regulatory and industrial practices.

Introduction

Nanotechnology has fundamentally changed the landscape of diation, and defence. For instance, nanoparticle-based drug
materials science, offering unprecedented opportunities to  delivery systems have enabled targeted therapies for cancer,
design and develop nanomaterials with unique, tailored proper- minimizing side effects while enhancing therapeutic efficacy
ties. These advances have significantly impacted diverse indus-  [1,2]. In the energy sector, nanostructured materials have en-

trial sectors, including healthcare, energy, environmental reme- hanced the performance and energy density of batteries and
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solar cells, providing more sustainable and efficient solutions
[3]. Additionally, engineered nanomaterials (ENMs) have been
employed for environmental applications, such as water purifi-
cation and pollutant removal, addressing some of the most
pressing ecological challenges [4,5]. Nanotechnology has sig-
nificant applications in defence [6], particularly in the develop-
ment of lightweight, high-strength materials for advanced
armour systems and protective gear. For example, nanostruc-
tured ceramics and nanocomposites enhance ballistic protection
while reducing weight, improving mobility for soldiers [7]. Ad-
ditionally, nanosensors can detect chemical and biological
threats in real time, providing critical situational awareness on
the battlefield [8]. These innovations improve operational capa-

bilities and safety in defence environments.

However, the rapid development of ENMs and their wide-scale
application across sectors has introduced significant concerns
regarding their environmental, health, and safety (EHS) risks.
The unique physicochemical properties of ENMs, including
their high surface-to-volume ratio and reactivity, often result in
unpredictable interactions with, and transformations by, biologi-
cal and ecological systems [9,10]. Traditional risk assessment
approaches, while valuable, are resource intensive and inade-
quate to fully address the dynamic risks associated with ENMs
and their myriad nanoscale forms (i.e., different sizes, geome-
tries, coatings) [11]. The need for more proactive and efficient
methodologies has led to the emergence of the Safe and Sus-
tainable by Design (SSbD) framework, which integrates safety
considerations throughout the nanomaterial lifecycle, from
design to disposal [12-14].

The SSbD concept is closely aligned with the EC Joint
Research Centre SSbD framework , the European Chemical
Industry Council (Cefic) “Safe and Sustainable by Design”
initiative [15-18], the broader agenda of the European Commis-
sion on safe and sustainable design for chemicals and advanced
materials as part of the EU Green Deal [19] and the EU Chemi-
cals Strategy for Sustainability [20], as well as the work of the
OECD Working Party on Manufactured Nanomaterials
(WPMN) Steering Group [21].

These frameworks strive to ensure that ENMs and chemicals
undergo rigorous evaluation and transparent reporting of
hazards, exposures, and life cycle impacts from the earliest
stages of product conception. Recent advances in machine
learning (ML) and artificial intelligence (AI) have significantly
expanded the capabilities of SSbD by enabling high-throughput
and automated approaches that can quickly evaluate the safety
profile of candidate materials [22] as well as multi-criteria deci-
sion analysis in which several parameters (e.g., functionality,

safety, sustainability, and cost) are optimised in parallel,

Beilstein J. Nanotechnol. 2026, 17, 176—185.

thereby accelerating the design of both safe and sustainable
nanomaterials [23]. Good data management approaches are of
paramount importance to maximise and verify the applicability

of novel approaches involving Al and ML.

On a practical level, ML/AI offers several complementary bene-
fits within SSbD. First, predictive modelling tools, such as
quantitative structure—activity relationship (QSAR) models, can
forecast toxicological and physicochemical properties of
emerging substances, reducing the reliance on time-consuming
and costly experimental assays [24,25]. The effectiveness of
ML/AI models for nanomaterials is often hindered by inconsis-
tent and non-harmonized physicochemical data. Thus, improv-
ing data quality through standardization, metadata annotation,
and curated databases is crucial to enhance the reliability and
regulatory acceptance of predictions. Second, Al-driven plat-
forms utilizing deep learning techniques enable real-time pro-
cessing of dynamic sensor data within Internet-of-Things (IoT)
environments, facilitating enhanced monitoring and analysis
across various applications, including industrial processes [26].
These insights help identify and mitigate potential EHS risks as
they evolve, ensuring proactive rather than reactive risk
management. Third, dynamic simulations — including digital
twin technologies — provide a virtual environment for
researchers to run “what if” scenarios, allowing them to explore
the impact of variable parameters (e.g., pH, temperature, sur-
face coating) on nanomaterial behaviour in complex biological
or ecological systems [27]. Examples of Al implications within
the NM life cycle are depicted in Figure 1.

Crucially, these Al-driven methods harmonize with the SSbD
frameworks by embedding safety and sustainability considera-
tions within computational workflows, ensuring that industries
are better positioned to meet evolving regulatory requirements,
fulfil societal expectations for sustainable innovation, and
streamline product development cycles [28]. Such integration
also paves the way for collaborative, transparent data-sharing
networks, where standardized information on nanomaterial
properties and toxicity profiles can be used to train increasingly
robust ML models. Overall, the synergy between the SSbD
concept, advanced ML/AI algorithms, and comprehensive regu-
latory directives fosters a future-oriented model of nanotechnol-
ogy development — one that secures both innovation and safety.

Perspective

Safe and sustainable by design

Safe and sustainable by design can be defined as “a pre-market
approach to chemicals and materials design that focuses on pro-
viding a function (or service), while avoiding volumes and
chemical and material properties that may be harmful to human

health or the environment in particular groups of chemicals
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End of life: Digital Twins
could help with designing for
recycling, identification of
metal content of the waste

NM synthesis: ML and
Digital Twins determining
which reaction pathways

are feasible or not

04.

Nanoproduct Use: Digital
Twins could assess / predict
transformations under use
conditions - especially for high
temperature / pressure
applications

Figure 1: Nanomaterial life cycle underpinned by Al.

likely to be (eco)toxic, persistent, bio-accumulative, or mobile.
Overall sustainability should be ensured by minimizing the
environmental footprint of chemicals and materials in particu-
lar in relation to climate change, resource use, and protecting
ecosystems and biodiversity, adopting a lifecycle perspective”
(adapted from [12]). Emphasis on early-stage risk assessment
contrasts with more reactive approaches [29], which often iden-
tify and attempt to address safety issues only after a material or
product has already been designed and introduced to the market.
By integrating toxicological, ecological, and exposure consider-
ations upfront, SSbD endeavours to minimize hazards while
preserving — or even enhancing — functional performance.

In addition to aligning with global regulatory frameworks such
as the European Union’s chemical safety regulations and inter-
national guidelines for nanomaterials, efforts to operationalize
the SSbD framework continue to evolve across research,
industry, and regulatory domains. Several key areas require
further attention to ensure the effective integration of safety and

sustainability considerations into nanomaterial development.

Need for harmonized testing protocols

Establishing standardized and reproducible methodologies for
characterizing nanomaterial properties — such as size distribu-
tion, surface chemistry, and toxicity profiles — is essential. A
unified approach to testing under controlled laboratory condi-

tions would enable more reliable cross-comparison of data and

Nanoproduct
manufacturing:
ML can help with QC
and optimising process
conditions

enhance confidence among researchers, industry stakeholders,
and regulatory bodies [21,30,31].

Development of standardized data-sharing
frameworks

A major challenge in SSbD implementation is the ability to
integrate and share vast amounts of experimental and computa-
tional data for diverse ENMs. There is a growing need for inter-
operable databases and digital platforms that adhere to the
FAIR (findable, accessible, interoperable, and reusable) princi-
ples, ensuring seamless access to information for researchers
and policymakers and ensuring transparency and thereby trust
in the assessment outcomes [32-34].

Strengthening interdisciplinary collaboration

Greater coordination between academia, industry, and regula-
tory agencies is needed to comprehensively address environ-
mental, health, and safety concerns. Bringing together toxicolo-
gists, materials scientists, engineers, and policymakers would
support the alignment of SSbD strategies with evolving legisla-
tive requirements, including classification and labelling regula-
tions for chemical substances, including facilitating the devel-
opment of a common understanding of SSbD with clear defini-
tions, terminology, and criteria [35].

Advancing these areas would contribute to the safe and sustain-

able development of nanomaterials, ensuring that innovation
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progresses in a way that meets regulatory expectations and
public health priorities.

Role of ML/AI for scalability and complexity
The increasing complexity of ENMs calls for advanced, data-
driven computational tools to enhance analysis and decision-
making. ML and Al play a crucial role in this effort, offering
powerful capabilities for: (1) Predictive toxicology: Al-driven
quantitative structure—activity relationship (QSAR) models can
identify potentially hazardous properties of new ENMs before
they are synthesized, reducing the need for extensive animal
testing and accelerating the design cycle [36,37]. Similarly, Al
can support the development of sustainable ENMs through inte-
gration of environmental and climate data with information on
the production, release, exposure, and toxicity of materials with
many complex descriptors [38]. (2) Big data analytics: Ad-
vanced algorithms can carefully analyse high-dimensional
datasets, identifying patterns between physicochemical charac-
teristics of ENMs, their interactions with biomolecules and tox-
icity endpoints that may be overlooked by traditional methods
[39-41]. (3) Lifecycle modelling: Al-assisted simulations and
probabilistic methods support comprehensive lifecycle analyses
including prospective approaches, evaluating environmental
fate and transport of ENMs, as well as potential occupational
and consumer exposures across production, use, and disposal
stages [42-44].

Predictive toxicology

Predictive toxicology is pivotal to SSbD strategies because it
enables early-stage assessments of potential nanomaterial
hazards, thereby minimizing reliance on time-consuming and
ethically challenging animal studies. ML and Al methods form
the backbone of these predictive capabilities, allowing
researchers to exploit large datasets encompassing everything
from physicochemical descriptors to biomolecule interactions to
transcriptomic and proteomic information.

QSAR models, for instance, rely on known correlations be-
tween specific nanomaterial properties — such as size, shape,
and surface chemistry — and various toxicity endpoints. By
identifying hazardous materials well before synthesis, QSAR-
based screening saves resources, decreases late-stage failures,
and aligns with the 3Rs principle (Replacement, Reduction and
Refinement), favouring in silico and in vitro approaches over
animal testing. The emergence of deep learning techniques, in-
cluding convolutional neural networks (CNNs) and recurrent
neural networks (RNNSs), has further heightened the power of
predictive toxicology. These advanced algorithms excel in
handling high-dimensional data, often integrating transcrip-
tomic and proteomic information to pinpoint molecular path-

ways responsible for adverse biological outcomes, and linking
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these molecular changes as a sequence of key events into an
adverse outcome pathway [45]. This mechanistic insight, in
turn, guides the design of safer nanomaterials by helping
researchers engineer specific surface modifications or tailor
release profiles to mitigate toxicity. A particularly notable
impact of ML/AI models in this arena is their capacity to reduce
the extent of in vivo testing while enhancing both the speed and
reliability of risk assessments. This capability not only acceler-
ates the innovation cycle but also aligns with regulatory and
ethical pressures to identify alternatives to animal experimenta-
tion. These tools seamlessly integrate into the SSbD framework,
offering proactive detection of potentially hazardous materials
or formulations at the earliest stages of research and develop-
ment. By providing rapid, data-driven feedback on the probable
safety profile of a material, predictive toxicology ensures that
corrective measures — such as surface functionalization, doping
strategies, or substituting alternative compounds — are imple-
mented prior to commercialization. Overall, the synergy be-
tween predictive toxicology and SSbD underscores a forward-
looking commitment to responsible, sustainable nanotechnolo-
gy, as these computational methods help deliver materials that
meet performance demands without compromising human

health or the environment.

Materials informatics

To date, materials informatics has been predominantly focussed
on optimizing functionality, largely through materials accelera-
tion platforms (MAPs) that combine automation, high-through-
put experimentation, and ML to accelerate materials discovery
[46]. In addition, materials informatics applies advanced data-
driven techniques to systematically search the vast chemical and
structural design space of engineered nanomaterials, allowing
researchers to pinpoint formulations that offer both optimal per-
formance and a reduced risk profile [47,48]. By combining
high-throughput computational screening with experimental
data, this approach enables rapid candidate selection for diverse
applications, from catalysis to targeted drug delivery [49,50].
One of the most powerful aspects of materials informatics lies
in its ability to integrate machine learning with multiscale simu-
lation tools — ranging from molecular dynamics to density func-
tional theory — which helps researchers correlate nanoscale fea-
tures such as particle size, shape, and surface functionalization
with macroscopic properties such as catalytic efficiency, bio-
compatibility, or environmental persistence. This synergy not
only speeds up the discovery process but also allows for contin-
uous refinement of computational models as new data emerge
from iterative experimental validation. Moreover, inverse
design techniques push this paradigm further by autonomously
generating candidate compositions that meet predefined targets
for both functionality and safety, thereby reducing the trial-and-

error components of materials development [51]. In practice,
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these Al-driven methods can flag potentially hazardous attri-
butes early in the design cycle, enabling prompt adjustments to
chemical composition or synthesis protocols that mitigate toxic-
ity without compromising performance. Through such feed-
back loops, materials informatics cultivates a forward-looking
approach to nanomaterial innovation, where safety considera-
tions are integrated at the outset, streamlining the path from

virtual screening to commercial deployment.

Lifecycle analysis

Lifecycle analysis (LCA) offers a holistic framework for
assessing environmental, health, and safety implications of
engineered nanomaterials at every stage of their existence,
beginning with raw material synthesis and continuing through
usage, recycling, and eventual disposal. ENMs may undergo
transformations such as agglomeration, chemical reactions, or
changes in surface properties. These transformations may
happen in different environmental and biological contexts, in-
cluding in air and water under high temperature and pressures
and following release and uptake by biota [9]. Therefore, LCA
must account for the entire lifecycle of these materials, from
production and usage for which industrial materials can often be
under extreme conditions (high temperatures, pressures and/or
cycling of these) to disposal or recycling, while also capturing
the associated uncertainties.

The use of ex-ante and prospective LCA represents a signifi-
cant advance in sustainability analysis, particularly for
emerging technologies such as engineered nanomaterials.
Unlike conventional retrospective LCAs, these forward-looking
approaches allow researchers and policymakers to anticipate
environmental and health impacts before full-scale production
or commercialization, enabling more informed design and
investment decisions. They are especially relevant in the
context of SSbD, where early-stage assessments help minimize
environmental burdens and align innovation with long-term
sustainability goals. Integrating scenario development, uncer-
tainty analysis, and dynamic system modelling, prospective
LCAs support strategic planning and risk mitigation throughout
the innovation lifecycle [52].

In parallel, Bayesian models and probabilistic methods have
become essential for handling incomplete or fluctuating
datasets, allowing analysts to quantify the uncertainty around
key factors such as release rates, exposure scenarios, and degra-
dation kinetics [53]. These advanced statistical techniques yield
more reliable and transparent LCA outcomes, which in turn
enable regulators, industries, and other stakeholders to make
informed decisions about the safety and sustainability of nano-
material applications. Complementing the probabilistic ap-

proaches, dynamic modelling tools enable researchers and poli-
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cymakers to simulate how ENMs behave over time, guiding
strategies for safe disposal and recycling [54]. Such tools
consider factors such as nanomaterial persistence, potential
bioaccumulation in ecosystems, and the efficacy of waste treat-
ment processes, helping to pinpoint when and where SSbD
interventions may be most critical. By integrating real-time data
on ENM fate and transport, these models provide the flexibility
to adapt to new evidence or change regulatory thresholds.
Taken together, LCA methodologies — particularly those en-
hanced by Bayesian and dynamic modelling — support a preven-
tative, SSbD mindset. By illuminating the hidden risks that can
arise across the lifespan of a material, they help ensure that
nanotechnological innovations do not inadvertently compro-

mise human health or ecological balance.

Digital twins in safe by design

Digital twins represent a significant leap in SSbD methodolo-
gies because they function as high-fidelity, dynamic replicas of
physical systems, allowing researchers to explore the behaviour
of nanomaterials across a spectrum of virtual scenarios [55]. By
pairing experimental inputs (e.g., physicochemical data, toxici-
ty endpoints) with computational models (ranging from
physics-based to data-driven models), these digital counterparts
evolve in real time as new data and conditions are introduced.
This continuous feedback loop not only reduces the need for ex-
tensive lab testing, but also accelerates design iterations by
highlighting, early on, the potential interactions and risks asso-
ciated with specific ENMs [56]. One illustrative application
involves modelling nanoparticle—protein interactions, a critical
factor in drug delivery systems, where digital twins can accu-
rately predict protein adsorption patterns on nanoparticle sur-
faces through read-across and interpolation from limited experi-
mental datasets [57]. Given that protein corona formation [58]
can drastically alter the biodistribution and immunological
profile of a nanoparticle, digital twins help pinpoint safer design
parameters — such as surface coatings or particle size modifica-
tions — which improve biocompatibility. Similarly, in the field
of environmental risk assessment, digital twins simulate how
ENMs disperse under varying climatic and ecological condi-
tions and advanced environmental fate models can be utilised to
explore the impact of changing conditions or application of
mitigation or environmental remediation measures on the parti-
cle concentrations in specific environmental compartments
(e.g., [59] and made accessible via a web application at https://

sb4n.cloud.nanosolveit.eu/). These models integrate geospatial

data, fluid dynamics, and chemical reactivity, offering a
geographically and temporally detailed picture of how ENMs
move through — and possibly accumulate in — soil, water, and
air. By enabling stakeholders to test “what-if” scenarios, such as
accidental spills or long-term usage in consumer products,

digital twins enhance predictive accuracy and decision-making
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regarding waste management, recycling, and potential remedia-
tion strategies. Collectively, digital twin technologies embody
the core principles of SSbD: prevention, iteration, and informa-
tion. They provide a living laboratory in silico, where scientists,
industry representatives, and policymakers can validate and
refine nanomaterial safety profiles long before real-world
deployment, fostering a more responsible and sustainable inno-
vation landscape. A number of web applications for construc-
tion of digital nanomaterials have also been made available
recently to support the implementation of digital twins and
enable users with limited programming or informatics skills to
apply these technologies, including NanoConstruct [36],
ASCOT [60], and NanoTubeConstruct [61]. Beyond material
design, digital twins can also be applied to simulate and predict
occupational exposure scenarios, helping ensure that manufac-
turing processes are not only efficient but also protective of
worker health and safety. This makes them a valuable asset
across the full SSbD framework, addressing both environ-
mental and human health dimensions [62].

Challenges and opportunities

The integration of ML/AI and digital twin technologies within
SSbD paradigms presents both significant challenges and op-
portunities, particularly as the field moves from conceptual
demonstrations to large-scale industrial implementation and
regulatory adoption. One of the most pressing issues is the
availability and quality of data, as many current nanomaterial
datasets are fragmented, inconsistently formatted, and insuffi-
ciently annotated for robust ML/AI model training [63,64].
Moreover, these datasets often arise from disparate sources —
academic research labs, industrial R&D facilities, and public
databases — each with its own protocols and measurement stan-
dards. Such heterogeneity complicates efforts to systematically
integrate and compare results, thereby limiting the accuracy and
generalizability of predictive models. Addressing this challenge
necessitates concerted efforts to create FAIR-compliant nanoin-
formatics databases [63]. By adopting standardized metadata
schemas, controlled vocabularies, and transparent data-sharing
agreements, stakeholders can facilitate more seamless collabo-
ration and unlock the full potential of Al-driven risk assess-
ment. Progress is being made in this direction through applica-
tion of big data curation and development of modelling friendly
nanostructure annotations [65] and modelling-ready nanomate-
rials EHS and SSbD relevant databases including VINAS [66]
and NanoPharos [67].

Another major hurdle is model interpretability, particularly for
deep learning approaches that often function as “black boxes”.
Despite their high predictive power, complex architectures such
as convolutional neural networks or recurrent neural networks

can obscure how a model reaches specific toxicity or exposure
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predictions. This lack of transparency can undermine regula-
tory trust and slow adoption in safety-critical domains, as stake-
holders — including policymakers, industry representatives, and
the broader public — require a clear understanding of the origin
and quality of (in silico) results and how decisions are made.
The emerging field of explainable Al (XAI) offers promising
solutions by developing methods (e.g., SHAP values, LIME,
and gradient-based techniques) that highlight which input vari-
ables most strongly influence the output of a model. Adopting
XAI frameworks also presents an opportunity to refine model
architectures by ensuring they align more closely with known
mechanistic or toxicological pathways, thereby bridging the gap
between computational insights and domain expertise. Despite
these obstacles, the future holds considerable opportunities. As
the volume of high-quality, standardized data grows, ML algo-
rithms will become more capable of identifying complex struc-
ture—property—toxicity relationships, potentially accelerating the
safe commercialization of next-generation nanomaterials [68].
Similarly, advances in XAl approaches will strengthen regula-
tory acceptance by providing transparent, well-justified predic-
tions that can be validated against experimental data or well-
established mechanistic models. It has been suggested that the
current regulatory approach, relying on animal tests that
measure outcomes such as mortality without explaining the
underlying mechanisms, is effectively a “black box.” In
contrast, using Al and XAI can provide mechanistic insights,
leading to greater transparency for regulators and improved
protection for the public [69]. Increasing the standardisation of
approaches for documenting models is essential for regulatory
acceptance. Towards this goal, the Easy-MODA tool [70] used
to describe ML/AI models, serves a similar purpose to the
QSAR Model Reporting Forms used for QSAR models. At the
same time, ongoing progress in digital twin technologies — par-
ticularly those incorporating real-time sensor data — enables
adaptive feedback mechanisms that support proactive decision
making. This comprehensive integration of data standards,
explainable Al, and digital twins has the potential to not only
optimize product development cycles but also to enhance public
confidence, fostering an innovation ecosystem where safety and
sustainability are fundamental to technological progress. While
ML models are often referred to as being a black box, a recent
paper up-ended this conception, suggesting that the current
gold-standard of in vivo apical end-point tests are the black box
(see Figure 2). They provide no mechanistic insights to explain
the observed impacts. However, extending traditional animal
tests with approaches such as toxicogenomics analyses in-
creases the transparency of the box (system). Incorporating al-
ternative test methods (also called new-approach methodolo-
gies or NAMs), and which include in silico (computational)
assessment, can fully “open the box”, revealing mechanistic

drivers and enabling establishment of dose-response relation-
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Figure 2: A schematic representing how adding new endpoints or using alternative (non-animal) test methods, including in silico approaches, can help
reveal the underlying mode of action. These additional methods make it possible to “open the black box” of traditional apical endpoints, which only
show the effects but not their causes. Figure 2 reproduced from [69] (© 2021 S. I. L. Gomes et al., published by Elsevier Ltd., distributed under the
terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, https://creativecommons.org/licenses/by-

nc-nd/4.0/). This content is not subject to CC BY 4.0.".

ships, read-across, and other insights that allows regulators to
gain a deeper understanding in comparison to what is possible

with the standard approach alone.

The future of SSbD in nanotechnology will likely be driven by
hybrid modelling frameworks that unite ML/AI techniques with
physics-based simulations, creating a more precise and scalable
approach to nanomaterial risk assessment [71]. By coupling
data-driven algorithms — capable of rapidly processing high-
dimensional, heterogeneous datasets — with the fundamental
insights provided by mechanistic and thermodynamic models,
these hybrid systems will enable researchers to predict both per-
formance and toxicity under a broader range of conditions. This
exchange of knowledge between computational paradigms not
only improves predictive accuracy but also enhances generaliz-
ability, as models can be continuously updated with new empir-
ical data. In parallel, the development of interconnected digital
twin ecosystems has the potential to significantly streamline
SSbD workflows, from initial design concepts all the way to
industrial-scale manufacturing [1]. Rather than working in iso-
lated environments, researchers, engineers, and quality-control
teams will be able to share real-time, sensor-driven data within
dynamic virtual platforms, allowing for rapid adjustments to
nanomaterial formulations or processing parameters in response
to emerging safety or efficacy concerns. By simulating how
nanomaterials behave across varying operational scenarios — in-
corporating factors like temperature, pH, or mechanical stress —
digital twins will facilitate safer and more efficient scaling of
novel ENMs. Achieving these goals — namely, safer nanomate-
rial design, more efficient SSbD workflows, and scalable imple-
mentation — requires well-defined policy frameworks that incor-

porate Al-derived insights to ensure transparency, foster regula-

tory trust, and align technological innovation with public health

and environmental protection.

Policymakers must work closely with industry and academic
partners to implement adaptive regulations. Collaborative initia-
tives — in which stakeholders openly share data, best practices,
and methodologies — will be essential to fostering a transparent,
socially responsible nanotechnology landscape. Through the
convergence of hybrid modelling, digital twins, and informed
policy, SSbD can continue to evolve into a powerful catalyst for
safer, more sustainable innovation in the nanoscale area.

Conclusion

ML and Al in concert with digital twin technologies, are funda-
mentally reshaping the SSbD paradigm by elevating the speed,
depth, and precision of nanomaterial risk assessment. Through
predictive toxicology, these computational tools can rapidly
forecast hazardous characteristics of newly conceived materials,
reducing both resource expenditures and ethical concerns asso-
ciated with animal testing. Materials informatics extends this
impact by applying ML to analyse large chemical and struc-
tural datasets, enabling the efficient discovery of nanomaterials
that achieve an optimal balance between high performance,
green synthesis routes, and minimized toxicity. Moreover,
digital twins contribute a real-time, iterative layer of validation
and optimization, enabling researchers to virtually explore a
variety of scenarios — from nanoparticle—protein interactions to
environmental dispersion without ever having to synthesize the
candidate materials until the final optimised one — while contin-
uously refining design parameters in response to new data.
However, this technologically advanced ecosystem still faces

some critical hurdles to implementation. One major challenge is
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the complex and interdisciplinary nature of nanotechnology,
which demands not only advanced computational models but
also a deep mechanistic understanding of nano-bio interactions,
environmental fate, and lifecycle behaviour — areas where cur-
rent models often fall short. Additionally, implementation of the
SSbD framework requires a holistic integration and optimiza-
tion of functionality, safety, and sustainability across the entire
life cycle of a material, from design and production to use and
disposal. Realizing this vision requires more than FAIR data
principles alone; it necessitates harmonized data sheets for key
toxicological and ecotoxicological endpoints, standardized test
methods, and physicochemical characterization protocols, and
the development of nano-specific life cycle inventory data suit-
able for reliable LCAs. Without these foundational elements,
even the most sophisticated ML models may yield biased or
non-transferable results. Efforts to develop FAIR-compliant
data infrastructures and interpretable ML models will thus be
critical to accelerating the adoption of the SSbD principles at
industrial and policy levels. Interdisciplinary collaboration
among academia, government agencies, and private industry
can turn computational advances into real-world solutions that
protect both people and the environment. The future of safer,
sustainable nanotechnology depends on this collaboration —
using predictive tools, digital twins, and smart regulations to
create high-performing materials that are produced in ethical

and responsible ways.
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