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Abstract
We study theoretically the local density of states (DOS) in a topological Josephson junction. We show that the well-known 4π

Josephson effect originates from the interference effect between two Majorana fermions (MFs) that are localized at the Josephson

junction. In addition, the DOS for electrons (holes) shows the 4π interference information along each parity conserved energy spec-

trum. The DOS displays a 2π period oscillation when two trivial states interfere with each other. This means that the DOS informa-

tion may be used to distinguish the MFs from trivial localized states. We suggest that the interference effect and the DOS can be

detected by using two STM leads or two normal leads. A single side lead can only detect the Andreev reflection tunneling process

in the junction, which cannot reveal information about the interference effect in general. However, using two side leads, we can

reveal information about the interference effect of the MFs as well as the DOS by combining Andreev reflection with the electron

transmission process.
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Introduction
After Kitaev reported that Majorana fermions (MFs) can appear

as quasi-particle states at the ends of a one-dimensional (1D)

p-wave superconductor [1], the generation of MFs became a

popular goal in condensed matter physics [2]. Several methods

were suggested to fabricate and detect MFs in effective 1D

p-wave superconductor systems [3-11]. The use of a semicon-

ductor wire with Rashba spin–orbit coupling and proximity-in-

duced superconductivity appear to be the most promising

method [4]. Indeed, a semiconductor–superconductor nanowire

was manufactured to confirm the prediction of the theory [12-

14]. The second topological superconducting system that was

realized experimentally is related to ferromagnetic atomic

chains, which are put on a trivial superconductor [15]. It is

believed that MFs can generate a zero-bias conductance peak

(ZBP) in the conductance spectrum [16-19], and indeed the

signature of ZBPs has been observed in both systems in tunnel-

ing experiments. These advances accelerate the development of

nanotechnology [20-27]. Recently, a breakthrough was
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achieved in research groups led by Kouwenhoven and Marcus.

Both groups observed the integer ZBPs in a nanowire system

[28]. These are the most persuading results so far. However, all

these achievements relied on the observation of ZBPs, which

means that many other unique properties of MFs still require

further verification and investigation.

Apart from the ZBP, another significant feature of MFs is the

4π Josephson current. When two topological superconducting

wires are combined to form a topological Josephson junction

(Top-JJ), the period of the supercurrent is 4π if MFs exist at the

ends of both wires. This is different from the trivial case with-

out MFs. In the trivial case in which only Cooper pairs can

tunnel, the period is 2π. Since MFs have only half a degree of

usual fermions, half a degree of Cooper pairs can tunnel in the

Top-JJ when the two MFs combine. In this situation, the period

is doubled. Because the 4π Josephson effect is a unique trans-

port property of MFs, many groups attempt to observe it.

Indeed, Kouwenhoven’s and Marcus’ groups fabricated such a

junction and obtained some preliminary results. However, the

expected 4π period was not observed [23-25]. The 4π Josephson

effect needs a stringent condition that is known as the parity

conservation [29]. The evolution of the states is expected to

follow one fixed branch of the energy spectrum. It is particular-

ly susceptible at the degenerate point when the even and the odd

parity states intersect at zero energy for  = (2n + 1)π. The state

then changes from one parity to another because of quasipar-

ticle poisoning, the background and the thermal effect [30-34].

In this case, the 4π period will return to the conventional 2π.

Thus, to reveal the 4π nature of the MFs, it may be necessary to

observe more than just a supercurrent. Interestingly, several

groups have studied superconductor-topological insula-

tor–superconductor junctions that also display a 4π Josephson

current. However, the behavior of the 4π Josephson current is

not consistent with the theoretical prediction [35-41]. To distin-

guish the 4π information of MFs, it is necessary to reveal addi-

tional characteristic properties of such a Josephson junction.

In this paper, we study a Top-JJ composed of two topological

superconductors as shown in Figure 1a. Unlike previous studies,

we focus on the density of states (DOS) for both the electron

part and the hole part. The essential property of the MFs is that

the wave function of the electron part must be conjugated with

the wave function of the hole part, which is known as the self-

Hermitian property of the MFs. More specifically, the self-

Hermitian property of the MFs can be demonstrated directly

from the DOS of the electron and of the hole part, which is a

basic assumption used in this paper. Since the DOS only shows

the steady information of the whole energy spectrum, it does

not relate to the parity-conserving problem, which is a problem

of dynamic evolution. Therefore, compared to the supercurrent,

Figure 1: (a) Schematic setup of an experiment in which two STM
leads or normal leads are connected to a Top-JJ that supports the
MFs. (b) Energy spectrum of the Top-JJ with chemical potential
μ = −2t, which lies in the topological region. The two MFs, which are
localized at the junction, interfere with each other and display a 4π
oscillation. (c) DOS for electron part of the coupled MFs in the Top-JJ.
Both even parity state and odd parity state show a parity-correlated 4π
oscillation. (d) Energy spectrum of the Top-JJ with chemical potential
μ = −2t + 5.7Δ, which lies in the trivial region, and the disorder strength
w = 0.13t. In this case, there does not exist any MF that is localized at
the junction. However, the trivial Andreev bound states occasionally
touch with each other in the presence of disorder. In such situation, the
trivial Andreev bound states behave like the Andreev bound states
formed by the two MFs in panel (b). (e) DOS of the trivial Andreev
bound states for the electron part. It is totally different from the DOS of
the nontrivial Andreev bound states in panel (c). The period of the
trivial state is 2π.

the DOS are easier to detect. We show that the two Andreev

bound states formed by the MFs exhibit a 4π period due to the

interference effect between the two MFs. Furthermore, the DOS

of both the electron and the hole part can also reveal the 4π

period. The electron (hole) DOS of the two Andreev bound

states are related: One is destructive, while the other is

constructive. However, the DOS of the trivial Andreev bound

states contains different information. In general, the interfer-

ence effects in the trivial Andreev bound states are unrelated,

and their period is 2π. Thus, it may be a way to distinguish them

using information contained in the DOS. We suggest that the

interference effect can be detected using two STM leads or two

normal leads. We show that a single side lead can only detect

the Andreev reflection tunneling process in the junction, which

cannot reveal information about the interference effect in
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general. However, using the two side leads, we can display

information about the interference effect of the MFs by combin-

ing Andreev reflection and the electron-transmission process.

Model Hamiltonian and formula
A typical Top-JJ is composed of two topological supercon-

ducting wires that have different superconducting phases. Ac-

cording to [9,18], the tight-binding model of a superconducting

wire is:

(1)

Here, Hs,q1D is the Hamiltonian of the left (right) wire with

s = L (R). The only difference between the two wires is the

phase of the superconducting order  (here we set  = 

and  = 0). Furthermore, i denotes the lattice site, and d

denotes the two unit vectors dx and dy, which connect the

nearest neighbor sites in the x and y directions, respectively.

Moreover, α, β are the spin indices, t is the hopping amplitude,

μ is the chemical potential, UR is the Rashba coupling strength,

and Vx is the Zeeman energy caused by magnetic field along the

wire direction. Δ is the superconducting pairing amplitude and

Vimp(i) is the Gaussian impurity. Hc describes the coupling be-

tween the left and the right topological superconducting wires.

To obtain the tunneling coefficient at the junction, we use the

recursive Green function method. We can then calculate the

scattering matrix of the system. The scattering matrix is related

to the Green functions via

(2)

Here,  is an element of the scattering matrix that denotes

the scattering amplitude of a β particle from the j-th lead to an α

particle in the i-th lead. Furthermore, i,j = 1 or 2, where 1 and 2

denote, respectively, the first and the second normal lead as

shown in Figure 1a.  denote the electron (e) or hole

(h) channels. In addition,

is the retarded Green function of the Josephson junction, and

 is the linewidth function of an α particle

in the i-th lead, where  is the retarded (advanced) self-

energy of the α particle for the i-th lead. In the following calcu-

lation we set  through wide-band approximation. The

physical meaning of the scattering matrix is:  means the

Andreev reflection coefficient TA in the i-th lead, and 

means the electron transmission coefficient Te from the i-th lead

to the j-th lead.

To match the experiment in [12], the parameters in the

tight-binding model were chosen as follows: Δ = 250 μeV,

t = 25Δ, UR = 2Δ, and the superconductor coherence length is

ξ = t/Δa = 500 nm with a being the lattice constant. In addition,

we set Vx = 2Δ such that the superconducting wire can support

the MF end states by tuning the chemical potential.

Results and Discussion
The following section is divided into three subsections. In the

first subsection, the 4π oscillation of the DOS is shown. In the

second subsection, the same oscillation information in a ring

structure is shown and in the third subsection, we discuss how

the information about the DOS is detected.

4π oscillation of the density of states
In this subsection, we consider the origin of the 4π Josephson

effect. Then, we show that the DOS for the electron (hole) part

can also exhibit the 4π interference effect. The well-known 4π

Josephson effect is directly related to the fractional nature of the

MFs. Because a single MF has only half a degree of a conven-

tional fermion, we can define a conventional fermion using

ψj = (γ2j−1 + iγ2j). For the Top-JJ in Figure 1a, there are two

pairs of the MFs, which are localized at the ends of the

superconductor. We assume that the length of the wire is suffi-

cient so that γ1 and γ2 (γ3 and γ4) are not coupled to each other.

In this case, only γ2 and γ3 can couple to each other at the junc-

tion, which is described in Equation 1. Because the phase of the

left wire is  and the phase of the right wire is 0, the Hamil-

tonian of the left wire can be transformed into the right one

using a unitary transformation . The

phase difference between γ2 and γ3 is /2. These two MFs will

interfere with each other and form two Andreev bound

states because of this phase difference. The effective Hamil-

tonian can be obtained by projecting the coupling of Equation 1

onto the subspace of the MFs using  and

[6]. Then, the low-energy effective Hamiltonian

is

(3)
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Here,  = ψ†ψ is the number operator and ψ = γ3 + iγ2. Then,

the occupation number has two values: Nv = 0,1, with Nv = 0

corresponding to the even parity state, and Nv = 1 correspond-

ing to the odd parity state. The Josephson current mediated by

the MFs can be given by ,

which displays the 4π oscillation. This is very different from the

case without the MFs. In such case, only Cooper pairs can

tunnel from one superconductor to another, and the period is 2π.

We show that the fractional Josephson effect can be attributed

to the interference effect between the two MFs. Next, we show

that the DOS of the electron and the hole part of the Andreev

bound states, which are formed by the MFs, also display the 4π

period. The MF is a particle that is its own antiparticle. For such

a particle, the wave function of the electron part must be conju-

gated with the wave function of the hole part, which is the self-

Hermitian property of the MF. Thus, the general wave function

of the MFs should be [42]:

Here,  is the wave function of the electron part, when the

phase of the superconducting order parameter is 0. In the Top-JJ

shown in Figure 1(a),

and

These two degenerate MFs will couple with each other to form

an Andreev bound state via ψ = (γ3 + iγ2), and the excited wave

function should be combined using the same rule:

(4)

From Equation 4 we can see that the DOS for the electron

part is , while the DOS for the hole is

. There are several unique properties of the

DOS for the Andreev bound states formed by the MFs: First,

the period along each energy spectrum is 4π. Second, it is parity

correlated. The DOS is  for the even parity state,

and the DOS is  for the odd parity state. Third, the

DOS of the hole part for the even parity state is the same as that

of the electron part for the odd parity state due to the self-

Hermitian property of the MFs. Because of these unique proper-

ties of the DOS, we may differentiate the 4π information using

the DOS of the electron (hole) part, which should provide

clearer distinctions than the trivial states.

Our numerical results provide direct evidence for this conclu-

sion. We use the tight-binding model in Equation 1. The length

of each wire is Nxa = 4μm and tc = 0.4t. Figure 1b shows the

energy spectrum as a function of the flux  with the chemical

potential μ = −2t, which lies in the topological region. The red

solid line is the energy spectrum for the odd parity state, while

the blue solid line is the energy spectrum for the even parity

state. We can see that both of them oscillate with a period of 4π.

Next, we study the information of the DOS more closely.

Figure 1(c) shows the information of the local DOS for the elec-

tron part  along the fixed even parity state (blue solid

line) and the odd parity state (red solid line). Here,  is the

electron part wave-function localized at the junction, which can

be extracted through diagonalization of the lattice Hamiltonian

in Equation 1. The DOS of the electron oscillates with a period

of 4π and the interference pattern is correlated with the parity.

Furthermore, this relation is still valid in the presence of moder-

ate disorder. Figure 1b and Figure 1c are calculated for the

Gaussian disorder of w = 0.06t. We can see that the relation still

holds.

Interestingly, when the two trivial fermion states interfere with

each other, the situation is very different. Though an analytic

result cannot be obtained, our numerical simulation suggest that

the general formula for the DOS for the electron (hole) part

should be , with a and b being real constants. This

can be understood as follows: For the trivial case, only Cooper

pairs can tunnel through the junction. Thus, the DOS must be a

function of cos( ) instead of cos( /2). From our numerical

results, we know there are several differences to the nontrivial

case. First, the period is 2π. Second, there is no corresponding

parity-correlated interference effect for the trivial case. Third,

the maximum (minimum) value of the DOS is at  = (2n + 1)π

for the trivial case and at 2nπ for the nontrivial case. In

Figure 1d, we show the energy spectrum as a function of the

flux under strong disorder, w = 0.13t with μ = −2t + 5.7Δ. It is

typical that the two trivial Andreev bound states are acciden-

tally in contact with each other for the strong disorder. From

Figure 1b and Figure 1d, we can see that the energy spectra are

very similar between the trivial case without the MFs and the

nontrivial case with the MFs. In this situation, it is difficult to

distinguish the trivial Andreev bound states from the Andreev

bound states formed by the MFs. Even though the period of the

Josephson current is still 2π, it may be changed into 4π via a

Landau–Zener transition [43]. Thus, the Josephson current

cannot distinguish the trivial Andreev bound states and the
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nontrivial Andreev bound states formed by the MFs. Figure 1e

displays the information of the DOS for the electron part for the

two trivial Andreev bound states. We can see that the DOS is

described by , which is distinct from the nontrivial

case shown in Figure 1(c). Therefore, the DOS are clearly

distinct.

Interference effect in a ring structure
Another typical Josephson junction is the ring structure shown

in Figure 2a. In such a ring structure, when a magnetic flux

threads the ring, the two MFs interfere with each other due to

the phase difference. In Figure 2b, we show the energy spec-

trum as a function of the flux. The Andreev bound states formed

by the two MFs show the same behavior as for the Top-JJ

shown in Figure 2b. Furthermore, the DOS of the electron part

in Figure 2c also contains the same interference information as

the one shown in Figure 2c. They are parity correlated with a 4π

period. Thus, we can see that the fractional Josephson effect

originates from the interference effect between the two MFs.

Figure 2: Interference effect in a typical Top-JJ of a ring structure.
(a) Schematic setup of the experiment. (b) Energy spectrum of the
Top-JJ with the chemical potential μ = −2t which lies at the topological
region. The two MFs which are localized at the junction interfere with
each other and display the 4π oscillation. (c) DOS for the electron part
of the coupled MFs in the Top-JJ. Both the even parity and the odd
parity states show parity correlated 4π oscillation.

Although the two different structures show the same informa-

tion for the interference effect, we can say that they are qualita-

tively different. The parity in the ring structure will not be de-

stroyed when the parity of the whole system is conserved. How-

ever, the parity in the junction, as shown in Figure 1a, will be

destroyed even if the total parity is conserved. This is attributed

to the fact that there are two pairs of MFs in the system of

Figure 1a, while there is only one pair of MFs in the ring struc-

ture shown in Figure 2a. If there are two pairs of MFs, the effect

from the other MFs must be considered. For example, in the

Josephson junction shown in Figure 1a, γ1 will couple with γ2,

Figure 3: (a) For the Top-JJ shown in Figure 1a, when we consider
the energy splitting induced by the finite length of the wire, the parity
will be destroyed. The dashed line shows the energy spectrum versus
the phase difference with L1 = L2 =100a. A small gap δEM can be ob-
served due to the finite-length effect. (b) Energy spectrum as a func-
tion of the flux in the ring structure with μ = −2t + 0.4Δ and Nx = 50a.
Here, EM = 0.05Δ and Γeff = 0.1Δ. We can see that the gap is not
opened and the 4π period persists. (c) Energy spectrum as a function
of the flux in the ring structure with μ = −2t + 0.8Δ and Nx = 50a. Here,
EM = −0.12Δ > Γeff. We can see that the two states of different parity
are separated in energy space. (d) An energy spectrum that is beyond
the superconducting gap in the ring structure and also oscillates with
the 4π period. (e) Flux-dependent DOS of the electron part (red solid
line) and the hole part (blue solid line) along the odd parity state
energy spectrum in panel (c). They are correlated with each other.
(f) Flux-dependent DOS of the electron part (red solid line) and the
hole part (blue solid line) along the energy spectrum in panel (d). They
are not correlated with each other.

and γ3 will couple with γ4. The effective coupling Hamiltonian

should be HM = EM1iγ1γ2 + EM2iγ3γ4, where EM1(2) represents

the energy splitting between the two MFs in the left (right)

superconducting wire. EM1(2) decreases exponentially with the

length L1(2) of the left (right) wire: 

with ξ being the coherence length of the superconducting wire

[42,44,45]. When effective coupling is considered in the Hamil-

tonian in Equation 3, the Andreev bound states would not inter-

sect at  = π. In Figure 3a the red (blue) solid line shows the

energy spectrum for the even (odd) parity state of the Andreev

bound states formed by the MFs. Here, the wire length is infi-

nite. Therefore, γ1 and γ4 will not destroy the parity of the

Andreev bound states. When the wire length is finite (e.g.,

L1 = L2 = 100a), we can see from the dashed line that a band

gap δEM exists at  = π. Thus, the parity is destroyed, and the

Josephson current has a 2π period. There is no 4π fractional

Josephson Effect in the junction shown in Figure 1a.



Beilstein J. Nanotechnol. 2018, 9, 520–529.

525

While there are only two MFs, the parity of states will not be

destroyed even if we consider the effective coupling induced by

the finite length of the wire. In this case, the total low-energy

effective Hamiltonian can be described as follows:

(5)

Here, Γeff is the effective coupling between the two MFs at the

junction and EM is the energy splitting between the two MFs

due to the finite length of the ring shown in Figure 2a. We can

see that EM only shifts the energy of the even (odd) parity state

but does not destroy the parity. In Figure 3b, we show the

energy spectrum for a varying flux with μ = −2t + 0.4Δ and

tc = 0.4t. Here, EM = 0.05Δ and Γeff = 0.1Δ. The two energy

spectra cross over without destroying the parity of the Andreev

bound states. When we consider the case of EM > Γeff, the two

states are separated. The energy spectra of the Andreev bound

states shown in Figure 3c are separated and show the 4π oscilla-

tion for the ground state. In this case, we can ignore the parity

conservation problem. Here, EM = −0.12Δ when the parameters

are L = 50a, tc = 0.4t and μ = −2t + 0.8Δ. The analysis above in-

dicates there are qualitative differences between one pair of

MFs and two pairs of MFs. If there are two pairs of MFs, the

parity of the Andreev bound states formed by the two MFs can

be affected by coupling with the other MFs. However, if there is

only one pair of MFs, coupling only affects the effective cou-

pling between the two MFs but it does not destroy the parity of

states. In fact, coupling induced by the finite-length effect can

cause the same interference effect as in the Top-JJ of the ring

structure. Both of them originate from the interference effect

between the MFs.

We have shown that the 4π Josephson Effect can appear in the

mesoscopic ring structure without the need to consider the

parity-conserving problem. However, in this case, an unex-

pected coherent single electron tunneling process would occur

in the mesoscopic ring structure, which is similar to the persis-

tent current in the mesoscopic ring. It will occur in the conduc-

tion band, which lies above the superconducting gap. Figure 3d

shows the energy spectrum that lies above the superconducting

gap. It also oscillates with a 4π period. It is difficult to derive

these two cases from the period. Here, we show that the DOS

can distinguish the two different cases. The DOS caused by the

MFs is parity related and has a 4π period, whereas the DOS

caused by the coherent tunneling does not exhibit a parity-

related oscillation. Figure 3e shows the DOS of the electron part

(red solid line) and the hole part (blue solid line) of the odd

parity state, respectively. We can see that they show the parity

related interference pattern, where one is constructive and the

other is destructive. Although the total DOS is not conserved

due to the splitting of the MFs, it is qualitatively different from

the DOS of the energy spectrum above the superconducting gap

(Figure 3f). The DOS in Figure 3f is not parity related and

shows very different oscillation behavior between the DOS of

the electron part and the hole part. Thus, they can be well distin-

guished by considering the DOS.

Detecting the 4π oscillation through two STM
leads
In the last section, we have shown that the main features of the

DOS for the nontrivial Andreev bound states are parity-corre-

lated with a 4π period, which is very different from the trivial

case. Next, we describe how the parity-correlated 4π period of

the DOS can be detected. The intuitive approach would be to

put a STM lead (normal lead) to detect the local DOS. Howev-

er, this does not work. In our previous paper [46], we studied

the conductance at the junction with a single STM lead. A

butterfly-pattern conductance caused by nontrivial Andreev

bound states would be observed as we vary the flux, which is

distinct from the conductance of a single impurity state local-

ized at the junction. Hence, the butterfly pattern can be regarded

as a unique property of the nontrivial Andreev bound states.

Figure 4a shows the same butterfly-pattern conductance. How-

ever, the peak value of the butterfly for each parity-conserved

energy spectrum has a 2π period instead of a 4π period. The

reason for this is that a single STM lead can only read the infor-

mation of the local DOS via Andreev reflection. Although the

numerical results in Figure 4 and Figure 5 are calculated using

recursive Greens function methods, the relation between

Andreev reflection and DOS can be obtained using a simplified

effective model. These two methods are consistent with each

other. The calculation of the Andreev reflection coefficient

through the effective model can be found in the appendix or in

[47], and can be expressed simply as

Here, Γe,eff is the effective self-energy of the electron part of the

leads, Γh,eff is the effective self-energy of the hole part of the

leads, and EM is the coupling energy of the two MFs.

 =  is proportional to the DOS of the

electron part, and  =  is proportional

to the DOS of the hole part. Thus, the Andreev reflection

reveals the combined DOS of the electron and the hole parts,

which is a 2π period. It cannot reveal the DOS of the electron

(hole) part separately. In addition, we can see that if the two

MFs are decoupled from each other, |u±|2 = |υ±|2 and TA shows

the well-known resonant Andreev reflection caused by the MFs.
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Figure 4: Two STM leads (or weak coupled normal leads) localized at
the junction can read the putative 4π period through the differential
conductance. (a) Contour plot of the Andreev reflection coefficient TA
of a STM lead as a function of the flux  and the incident energy E.
(b) Contour plot of the electron tunneling coefficient Te from the STM
lead 1 to the STM lead 2 as function of the flux  and the incident
energy E. (c) The ratio between the peak value of Te and the peak
value of T, here T = (Te + TA)/2. They show similar information of the
DOS (see Figure 1c). The DOS of one energy spectrum exhibits a 4π
period. However, when both spectra are considered, the period returns
to 2π. In this situation, we can distinguish by the even–odd cross point
as indicated by dashed circle. The parameters are Nx = 200a, μ = −2t,
and Vx = 2Δ.

To detect the local DOS of the electron part or the hole part, we

need additional information beyond the Andreev reflection

process. Thus, it is necessary to add another STM lead to detect

the electron transmission or the crossed Andreev reflection be-

tween the two leads [47,48]. This can directly reveal the infor-

mation of the DOS. During this process, the electron tunneling

coefficient between the two leads is

Here,  =  is the effective elec-

tron part self-energy of the STM lead L(R), which is propor-

tional to the local DOS for the electron part. In Figure 4b, we

show the contour plot of Te as a function of the flux  and the

incident energy E. We can see that the peak value of the tunnel-

ing coefficient Te is proportional to , i.e., the

square of the DOS of the electron part. In addition, there is a

sharp peak located at  = (2n + 1)π. The peak appears due to

the overlap between the two energy spectra at the position

 = (2n + 1)π. This is a main feature of nontrivial Andreev

Figure 5: The case for two accidentally touching Andreev bound
states. (a) Contour plot of the Andreev Reflection coefficient TA as a
function of flux  and the incident energy E. (b) Contour plot of the
electron tunneling coefficient Te from the STM lead 1 to the STM lead
2 as a funciton of the flux  and the incident energy E. For both cases,
the period is 2π. (c) The ratio between the peak value of Te and the
peak value of T, here T = (Te + TA)/2. They yield similar information as
the DOS for the trivial states. The obvious characteristic is that they
will intersect an even number of times or not at all in a 2π period as in-
dicated by dashed circles. The parameters are Nx = 200a,
μ = −2t + 5.7Δ, and Vx = 2Δ.

bound states: The two energy spectra intersect with each other.

A better way to distinguish the information of DOS is to com-

bine both the Andreev reflection and the electron transmission.

In Figure 4c, we plot the ratio between the peak value of Te and

the peak value of T. Here T = (Te + TA)/2 is the average tunnel-

ing coefficient of the Andreev reflection and electron transmis-

sion. We can see that this ratio is very similar to the DOS. One

spectrum is proportional to , while the other one is

proportional to . Thus, combining the electron

transmission and the Andreev reflection process can reveal the

parity-correlated 4π oscillation of the DOS.

The tunneling coefficients show a very different behavior when

we use two normal leads to detect the trivial Andreev bound

states. Figure 5a shows the Andreev reflection coefficient as a

function of the flux , while Figure 5b displays the evolution of

the electron transmission coefficient with varying . The

obvious 2π period can be easily distinguished using the tunnel-

ing coefficient of electron transmission. However, the trivial

Andreev bound states are susceptible to the external circum-

stance. When the two leads are attached to the junction, the two

accidently touched trivial states will not overlap. In addition,

the DOS will also be affected by the lead contact. The DOS will

show a small variance when the coupling strength of the leads
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changes. As shown in Figure 5c, the ratio Te/T changes a little

compared to the DOS of trivial Andreev bound states. However,

two properties are preserved: First, the period is still 2π and can

be described as a + bcos( ); second, both electron DOS and

hole DOS are generally unrelated, which strongly indicates that

the two Andreev bound states are not clearly correlated with

each other. Thus, the nontrivial Andreev bound states can be

distinguished from the trivial Andreev bound states by combin-

ing both the electron transmission process and the Andreev

reflection process.

Finally, we want to point out that the actual period in Figure 4c

returns to 2π when both parity states are considered. However,

we can still distinguish the trivial Andreev bound states and the

nontrivial Andreev bound states by the DOS. As shown in

Figure 4c, the DOS of nontrivial Andreev bound states is

 for an even parity state and  for an

odd parity state. The plots of the DOS for different parity states

would overlap once (see the dashed circle in Figure 4c). While

the DOS of the trivial Andreev bound states is a + bcos( ), the

plot of the DOS for trivial states would overlap with zero or

even times in a 2π period as indicated by dashed circle in

Figure 5(c). This is decided by the functional properties of

cos( ) and cos( /2). This kind of even–odd crossing would not

be affected by a small variance of the DOS. Thus, in general,

we can still distinguish the trivial states and nontrivial states

through the even–odd crossing of the DOS in a 2π period.

Conclusion
We have studied the interference effect of two MFs in a topo-

logical Josephson junction and a ring structure system. We

show that the 4π Josephson effect originates from the interfer-

ence between the two MFs, and so does the DOS of the

nontrivial Andreev bound states. Thus, detecting the behavior of

the DOS can directly reveal the nature of the fractional

Josephson effect. The trivial states, which behave like the

nontrivial Andreev bound states, are considered in the paper.

Although it is difficult to distinguish the two cases through the

supercurrent and the energy spectrum, it can be well separated

through the DOS. We suggest that the DOS can be detected

using two normal leads, i.e., STM leads. With the two leads, we

can obtain the electron transmission process beyond the

Andreev tunneling process. Then, the information of the DOS

can be derived by combining the two processes.

Appendix
Effective Hamiltonian and effective current
formula
In the main text we calculate the tunneling coefficients using

the recursive Green function method. To better understanding

the numerical results, we obtain the analytical results using the

effective Hamiltonian and scattering matrices. The effective

Hamiltonian Heff = HN + HM + HT can be formulated as

follows:

(6)

Here, HN is the Hamiltonian of the left and right normal leads;

ψL(R) denotes a fermion operator of the left (right) normal lead,

and vf is the corresponding Fermi velocity of the leads. HM de-

scribes the two coupled MFs, where EM is the coupling strength

between the two MF end states γ1 and γ2. The coupling be-

tween the leads and the MFs is described by HT, where the cou-

pling strengths are represented by  and , respectively.

To calculate the scattering matrix of the system, we perform a

transformation first. Considering that a single MF is just half of

an ordinary fermion state, we can change the MF representa-

tion into the fermion representation γ1 = d + d†, γ2 = i(d − d†).

Then, HM and HT are changed to:

(7)

Next, we can formulate the scattering matrix in a model-inde-

pendent form,

(8)

with W the matrix that describes the coupling between the scat-

tering region and the leads:
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In general, we can write the approximation as:

Here, Γl,α is the self-energy of the α part of the lead l, which is

renormalized by the local DOS of the two coupled MFs.

Furthermore, it is proportional to the local DOS of the α part of

the two coupled MFs. Thus, using the scattering matrix we can

find the information of the local DOS. However, only a single

tunneling process cannot provide all information. We need

more tunneling processes, and the two leads are necessary here.

There are three tunneling processes in such a two-lead setup:

the Andreev reflection, the crossed Andreev reflection, and the

electron transmission. We consider a symmetric connection

case and simplify the result. For this condition, the coefficient

of the Andreev reflection is the same as the coefficient of the

crossed Andreev reflection. Then, the current for lead 1 is

I1 = (2TA × V1 + (TA + Te)(V1 − V2))e/h and the current for lead

2 is I2 = (−2TA × V2 + (Te − TA)(V1 − V2))e/h. Thus, Te and TA

can be obtained using the current relation.
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Abstract
We present an implementation of spin–orbit coupling (SOC) for density functional theory band structure calculations that makes

use of Gaussian basis sets. It is based on the explicit evaluation of SOC matrix elements, both the radial and angular parts. For all-

electron basis sets, where the full nodal structure is present in the basis elements, the results are in good agreement with well-estab-

lished implementations such as VASP. For more practical pseudopotential basis sets, which lack nodal structure, an ad-hoc increase

of the effective nuclear potential helps to capture all relevant band structure variations induced by SOC. In this work, the non-rela-

tivistic or scalar-relativistic Kohn–Sham Hamiltonian is obtained from the CRYSTAL code and the SOC term is added a posteriori.

As an example, we apply this method to the Bi(111) monolayer, a paradigmatic 2D topological insulator, and to mono- and multi-

layer Sb(111) (also known as antimonene), the former being a trivial semiconductor and the latter a topological semimetal featuring

topologically protected surface states.

1015

Introduction
The topological character of topological materials (mostly insu-

lators but also non-insulators) in most relevant cases originates

from relativistic corrections that cannot be neglected in the

Hamiltonian of heavy elements, more specifically from

spin–orbit coupling (SOC). Such materials are usually charac-

terized by non-zero topological invariants that can be either

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:pourfath@ut.ac.ir
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computed simply from the parity of the Bloch wave functions in

centrosymmetric crystals or from other more involved imple-

mentations in non-centrosymmetric systems [1-6]. Topological

materials typically feature a band inversion. In a gedanken ex-

periment, one can imagine tuning the SOC at will. As the SOC

is increased from zero towards its nominal value, it pushes up

the valence band while bringing down the conduction band of

the imaginary SOC-free material. In this process, the gap closes

and reopens again, giving rise to the non-zero topological

invariant.

The essential features of the band structure of topological mate-

rials (at least the elemental ones) can be obtained from the tight-

binding (TB) model where the Hamiltonian is built through a

Slater–Koster [7] atomic parametrization. These models, how-

ever, are usually restricted to the description of valence elec-

trons, implicitly by assuming a minimal basis set of spd orbitals.

The SOC is included by adding the matrix elements of the

 operator where λ is taken as an atomic parameter [8]. Al-

though the simplicity of TB modeling is appealing, this method

is obviously restricted to a limited set of problems. TB parame-

ters are available for most elemental materials [9], but not in

general for all compound materials (which is the case of most

topological insulators). The versatility of this model is also

limited by the sensitivity of the TB parameters to the specific

structural variations which also needs to be parametrized [10].

On the opposite side of sophistication, the electronic structure

of topological materials can be evaluated through density func-

tional theory (DFT). According to the type of basis sets, DFT

codes fall into two broad categories: those making use of plane-

waves and those using localized orbitals. Arguably, the most

reliable implementations of SOC can be found in the code

FLEUR [11] and also in codes such as Vienna Ab initio Simula-

tion Package [12] (VASP) or QuantumEspresso [13,14] (QE),

all of them employing plane-waves for the interstitial or valence

electrons, while approaching the core electrons differently.

Since localized orbitals are convenient for a number of reasons,

for instance for quantum transport calculations [15,16], a

Kohn–Sham Hamiltonian obtained from plane-wave DFT codes

may be transformed into a TB-like Hamiltonian by changing to

a basis of Wannier functions [17,18]. While the results of this

transformation can be accurate, they are not straightforward to

carry out. On the other hand, self-consistent implementations of

SOC for codes using localized orbitals for valence electrons are,

however, much less common [19,20].

In most currently available implementations, including those

using localized orbitals basis sets, the SOC is effectively intro-

duced through pseudopotentials [19,20]. Here, we propose a

different route, employing the actual shape of the basis func-

tions. In particular we present an implementation of SOC for

DFT calculations based on Gaussian-type localized basis sets,

attempting to bridge the gap between the simplicity of TB

Hamiltonians with their one-parameter implementation of SOC

and the accuracy and transferability of a DFT-level description

of the band structure. We make use of the non-relativistic (or

scalar relativistic) Kohn–Sham Hamiltonian, here obtained

using the CRYSTAL code [21-23], to which we add the SOC a

posteriori. The matrix elements are explicitly evaluated for both

radial and angular parts of the basis elements, by using the

screened nuclear potential. For the radial part, we rely on the

actual analytical expressions of the Gaussian-type basis ele-

ments, as employed in codes such as CRYSTAL, Gaussian [24],

Nwchem [25], etc. Among the available basis sets, all-electron

(AE) basis sets [26], featuring the full nodal structure of the

orbitals and able to properly capture SOC effects, might not be

well designed for band structure calculation of solids in general

or appear inefficient due to their computational cost. Here we

show that when AE basis sets work properly at the band struc-

ture level in calculations without SOC, accurate results can be

obtained from our proposed implementation. Alternatively,

basis sets using effective core potentials or pseudopotentials,

which reproduce better band structures and are computationally

less demanding, lack nodal structure near the nucleus. This has

prompted us to modify the nuclear potential through a fitting

multiplicative factor to effectively model the SOC effect. Im-

portantly, despite the fact that we are dealing with different

types of orbitals of different shells, only a single parameter is

needed since the relative values of the matrix elements are prop-

erly captured.

As possibly relevant examples, we have chosen to apply our

implementation to Sb and Bi, which are prototypical topolog-

ical materials where SOC plays a crucial role. Despite being

elemental, they present a broad range of behaviors. While bulk

Bi is a trivial semimetal, a Bi(111) monolayer is a 2D topolog-

ical insulator (TI) [27]. Sb few-layers in the (111) direction,

typically for more than ≈7 layers, behave as a 3D topological

semimetal, while the Sb(111) monolayer is a trivial indirect-gap

semiconductor. In order for our SOC implementation to be of

practical use, it should capture these trivial/non-trivial topolog-

ical transitions and give the most faithful representation of the

electronic band structure for any number of layers. This

includes the presence of helical and topologically protected

edge or surface states. For comparison, and as a reliable refer-

ence, we make use of the band structures obtained from the

well-established plane-wave code VASP. In general, we find a

very satisfactory agreement between the band structures calcu-

lated by our approach for both AE (without parameters),

pseudopotential (single parameter) basis sets, and the VASP

results, proving ours to be a practical a posteriori implementa-
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tion of SOC once a standard non-relativistic or scalar rela-

tivistic DFT calculation based on localized orbitals has been

performed.

Methodology
Gaussian basis sets
The accuracy of electronic structure calculations is limited, not

only by functional, but also by the basis set used to expand the

wave functions. When working with localized basis sets, it is

crucial to choose a large enough number of elements or a set of

properly chosen ones. Typically, the basis functions are

centered on atoms, and are so called ”atomic orbitals”. Two

types of atomic orbital functions are typically employed in mo-

lecular orbital calculations, namely, Slater type orbitals (STOs)

and Gaussian type orbitals (GTOs). Slater [7] introduced STOs

as basis functions due to their similarity with the eigenfunc-

tions of the hydrogen atom. They possess an exponential decay

at long range and Kato’s cusp [28] condition at short range.

Their general definition is

(1)

where N is the normalization constant. The radial part is charac-

terized by the principal quantum number n and the exponent ζ

while the angular part is given by the spherical harmonics

which are orthogonal to the radial part and characterized by l

and m, the azimuthal and magnetic quantum numbers, respec-

tively. The ζ parameter, is variationally optimized with respect

to the total energy of each atom. STOs have the advantage of a

direct physical interpretation and are thus naturally good basis

for molecular orbitals. However, from a computational point of

view, STOs are not competitive. In practice, the radial part of

STOs is approximated by a linear combination of GTOs (or

primitives). Spherical GTOs were proposed by Boys [29] with a

radial part defined as

(2)

where the exponent α determines the extension of the function.

Huzinaga [30] has illustrated that it is adequate to consider

n = l + 1 and hence optimized GTO basis sets use 1s functions

to represent all s-type orbitals, 2p functions for p-type, etc.

Despite the computational benefits, GTOs have two major

disadvantages, namely, they do not have a cusp at the nucleus

and they fall off to zero too rapidly for large radius. However,

these shortcomings can be overcome by considering linear com-

binations of GTOs to form contracted Gaussian-type orbitals

(CGTOs):

(3)

Here each primitive, as defined in Equation 2, is normalized on

its own (Ni) and the whole contracted function has an overall

normalization constant (N0). The coefficients di and exponents

αi determine the radial shape of the CGTO. A large enough

number of primitives with coefficients di of different signs can

reproduce the expected atomic nodal behavior of wave func-

tions near the nucleus. Introducing the nodal structure in the

basis sets turns out to be irrelevant for most band structure

calculations and increases the computational effort, significant-

ly. However, as we will show in the next section, for the calcu-

lation of SOC, the exact behavior of the wave functions near the

core is required.

Evaluation of SOC matrix elements
The output Hamiltonian and overlap matrices of the CRYSTAL

code, ignoring broken spin-symmetry solutions, are the same

for up and down spin electrons. SOC is considered to be a

purely intra-atomic interaction. Rigorous approximations to the

full relativistic Dirac–Kohn–Sham Hamiltonian, which

decouple the electronic part from the positronic part, yield to

lowest order a SOC correction of the form  (see, e.g.,

[31] for a nice overview of a fairly extensive topic) which

mixes orbital angular momentum (m) and spin (σ) quantum

numbers. Since the angular and radial parts of the wave func-

tions are orthogonal, SOC matrix elements between different

CGTOs can be straightforwardly evaluated as

(4)

where  acts on the spin degree of freedom and the spheri-

cal harmonics, while the radial contribution can be obtained

from

(5)

Here Ri(r) is the radial part of the i-th atomic CGTO (built as

described in the previous section) and Veff(r) is the effective

screened nuclear potential that electrons actually feel. Here we

are not concerned with the rigorous discussion concerning the

approximations that lead to Equation 5 and the origin of Veff

(for details see [31]). It suffices to say that, intuitively, the

potential must be of the form Z/r very close to the core and be-

have as 1/r far apart. For the case of an isolated atom, it has
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been shown that making use of the unscreened nuclear poten-

tial will result in an over estimation of SOC splittings. A simple

model has also been suggested for screened nuclear potential,

which includes the screening by adding an orbital dependent

charge term (placed at the origin) to the bare nuclear potential

[32]. The effective potential can also be extracted from an

atomic DFT calculation. Here, we explored both possibilities

and found no significant differences.

A correct electronic band structure in solids requires an accu-

rate description of chemical bondings and hence, enough varia-

tional flexibility in the valence region. On the other hand, since

the main contribution to the SOC matrix elements stems from

the vicinity of the nucleus, a correct description of orbitals is

also essential near the core. AE basis sets specifically designed

for the latter purpose are common in atomic physics and molec-

ular chemistry. While they can capture the full nodal structure

of the orbitals, it is, however, unclear how well they perform

when it comes to the band structure of solids, which is our main

concern here. Our results indicate that, when AE basis sets band

structures are in good agreement with those of plane-wave

calculations before including SOC (which might not be always

the case), fairly accurate results can be obtained after including

SOC. We have also found out that a proper renormalization of

the effective potential makes even pseudopotential basis sets

(without nodal structure) suitable for band structure calcula-

tions where SOC plays an important role.

Results and Discussion:
Elemental topological Materials, Sb and
Bi 2D Crystals
Antimonene
Antimonene, a term generically used for Sb(111) in 2D form,

has been recently added to the growing library of 2D crystals.

Its recent isolation and characterization [33], is bringing this

material into the focus of the research community. Several DFT

studies on this material have predicted a number of exciting

physico-chemical properties, including a tunable band gap with

potential applications in optoelectronics [34-37], low thermal

conductance with low electrical resistivity for energy genera-

tion through thermoelectricity [38], and exotic topological fea-

tures under strain [39-41]. However, it was not until last year

that few experimental works brought all those expectations

closer to reality [33]. It was demonstrated that it is possible to

isolate few or even single stable layers of antimonene, in

ambient conditions. Moreover, new procedures such as liquid

exfoliation and epitaxial growth methods were reported.

Theoretical works on antimonene can be divided into two cate-

gories. The most recent publications refer to monolayer anti-

monene (or occasionally bilayer antimonene) and can be found

in the context of new 2D crystals. Other works, which go a few

years back in time, refer to few-layered (FL) antimonene (or

Sb(111) thin films), and can be found in the context of 3D TIs

[1]. The physical properties of antimonene evolve quite drasti-

cally from mono- to few-layer cases, and each deserves a sepa-

rate discussion.

Monolayer antimonene
Figure 1 presents the DFT band structure of a single layer

of antimonene without SOC, in the framework of the

Perdew–Burke–Ernzerhof local density approximation [42] to

the functional for different basis sets. Panel (a) shows the

results using the VASP [12] package. Calculations are per-

formed with a plane-wave cutoff of 400 eV on a 15 × 15 × 1

Monkhorst–Pack k-point mesh. For structural relaxation, all

atoms are allowed to relax until atomic forces are smaller than

0.01 eV/Å.

In agreement with previous studies for free standing anti-

monene [43], we obtain an in plane lattice constant of the

relaxed structure a = 4.12 Å and a buckling height h = 1.64 Å.

Panels (b) and (c) show the band structure obtained with

CRYSTAL using two standard AE basis sets properly

converged in the number of elements. The former is based on

relativistically contracted atomic natural orbitals [44,45] (ANO)

and the latter belongs to the family of well-tempered basis sets

[46] (WTBS). Examples of (the radial part of) basis elements

from these two basis sets are shown in Figure 2a. For the sake

of simplicity in the discussions and since no significant differ-

ences have been found, the same lattice structure (relaxed with

VASP in presence of SOC) and same functional has been used

in all band structure calculations. When compared to the VASP

results, ANO bands turn out not too satisfactory at the high

symmetry Γ point where the ordering of degenerate and non-

degenerate bands is not reproduced. For other k-points across

the Brillouin zone the results are comparatively better. The

WTBS results shown in (c) manifest a significant improvement,

particularly for the conduction bands, although the ordering of

the valence bands is still not the correct one at the Γ point. Inter-

estingly, we have found out that a combination of both ANO

and WTBS basis sets [panel (d)] improves the band structure to

the point of making it essentially similar to the VASP result.

Here we have complemented the WTBS basis with additional

valence orbitals from the ANO basis set. Adding this flexibility

to the basis, even the flat valence band falls below the degen-

erate ones at the Γ point. This band structure corresponds to that

of a semiconductor with an indirect gap, as previously reported

[34]. The use of a hybrid functional such as HSE06 [37] will

certainly increase the value of the gap, but we are not concerned

with this issue here.
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Figure 1: Comparison between different calculations of the band structure of monolayer antimonene as obtained from (a) VASP and CRYSTAL with
different basis sets: (b) ANO, (c) WTBS, and (d) WTBS+ANO (see text for details). The lattice structure relaxed with VASP has been considered for all
cases and SOC has not been included in the calculations.

Figure 2: Radial probability density of two selected elements of the AE
and small-core basis sets used in the calculations. (a) Solid blue curve
corresponds to the 5p shell of the WTBS while the dashed black repre-
sents the 6p (virtual) shell in the ANO basis set (see text). (b) Same as
in (a), the last partially occupied and the first empty (virtual) shell of the
small-core pseudopontential basis set (see text), showing the lack of
nodal structure required, in principle, for an appropriate SOC calcula-
tion.

Figure 3 shows the band structure obtained with CRYSTAL

using three different pseudopotential basis sets. From (a) to (c)

the quality of the basis set is improved. Starting from the bands

obtained with a large effective core (46 electrons) and a

minimal 4 element basis set [sp3] [47,48] [shown in panel (a)],

we first increase the number of valence basis elements to 8

[2s2p3] [49] [see panel (b)], and then decrease the number of

effective core electrons down to 28, while keeping a large 23

element basis set for the valence electrons [4s3p32d5] [50]

Figure 3: Comparison between different calculations of the band struc-
ture of monolayer antimonene as obtained from CRYSTAL with differ-
ent pseudopotential basis sets: (a) large-core (46 electrons) and
minimal basis set, (b) large- core as in (a) but a larger basis set, and
(c) small-core and large basis set (see text for details). The lattice
structure relaxed with VASP has been used for all cases and SOC was
not included in the calculations.

[panel (c)]. Figure 2b shows the radial part of the last two

p-orbitals (or p-type CGTOs) in this third basis set. As can be

observed, the nodal structure near the origin is absent. The

shorter radial extension when compared to the corresponding

orbital-like AE CGTOs (in particular for the one labeled 6p) is

due to the fact that one cannot naively make a one-to-one corre-

spondence between atomic orbitals and these basis elements.

Except for the results using the minimal basis set, where the

ordering of the bands is not the correct one (keeping in mind

that the lattice parameters are the same for all calculations), the
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results of the other two calculations are fairly satisfactory. In

particular, the small-core basis set bands in Figure 3c match

nicely those obtained with VASP in Figure 1a. The slight

discrepancies between the bands in Figure 1a and Figure 3c on

one hand and the bands in Figure 1d on the other can be due to

the use of pseudopotentials in the former two or to an inaccu-

rate closure relation of the AE basis set in the latter. We will not

address this issue any further here. Finally, we stress that our

proposed implementation is not restricted to any specific

Gaussian-type basis set. As an advantage when compared to,

e.g., TB calculations, it can capture the SOC effect for more

flexible and larger basis sets when a minimal basis does not

give satisfactory results in a band structure calculation, as is the

case shown in Figure 3a.

Now that we have verified that we can obtain essentially the

same band structure with two different DFT codes and three dif-

ferent basis sets (plane waves, AE, and pseudopotential ones),

we add SOC. Figure 4 shows the band structure obtained with

VASP [panel (a)] and with our proposed implementation,

applied to the WTBS+ANO basis set [panel (b)] and to the

small core pseudopotential basis set [panel (c)]. The AE basis

set bands share all the features of the VASP bands, except a

slightly larger gap which originates from the calculations with-

out SOC. For the pseudopotential basis set, as discussed above,

we have increased the effective nuclear potential by a factor of

65 (for this specific basis set) that makes the bands look as

similar as possible to those in panel (a). As can be seen, these

last bands, tuned by a single parameter, are essentially indistin-

guishable from the VASP bands. As can be observed, the

sizable SOC of Sb changes the previous band structure calcu-

lated without SOC considerably, removing degeneracies, but

not in a qualitative manner. The changes are, however, not so

trivial for few-layered antimonene as shown in the next section.

Figure 4: Comparison between different calculations of the band struc-
ture of monolayer antimonene including SOC: (a) VASP code, (b) AE
basis set (WTBS+ANO), and (c) small-core pseudopotential basis set.
As a reference, thin gray curves indicate the bands before adding
SOC. The same lattice structure relaxed with VASP has been used for
all cases.

Multilayer antimonene
As an elemental bulk material, Sb appears to be a topological

semi-metal due to an inversion of the ”natural” bulk band order

[1]. Despite the absence of a bulk gap, its non-zero topological

invariant guarantees that antimony features protected topolog-

ical surface states (TSS), although coexisting with bulk bands at

the Fermi energy [51-54]. Sb(111) in thin film form could

become, in principle, a 3D (TI) if quantum confinement opened

a gap in the bulk bands. However, for sufficiently thin films, the

TSS situated on opposite surfaces can get coupled which

degrades or even destroys the TSS exotic properties such as

their expected protection against backscattering. Ultimately, a

single Sb(111) layer or monolayer antimonene even becomes a

trivial semiconductor, as discussed in the previous section.

Previous calculations have shown that the decoupling of the

TSS requires a minimum of 7 layers [54,55]. In between the

semiconductor monolayer and the 7-layered antimonene a

crossover occurs, where claims of the existence of a 2D topo-

logical insulator have also been reported, but we do not pursue

the investigation of this issue here [55]. When TSS are decou-

pled and the gap at the Dirac point closes down, the Fermi

energy crosses the Dirac cone above the Dirac point, but also

crosses 6 surface state pockets and 3 bulk pockets (see, e.g.,

[51]).

It has been shown that multilayer antimonene with hexagonal

structure, prefers ABC stacking and is more stable than other

allotropes for thicknesses larger than 3 layers [43]. In the

relaxed structure of 9 layer antimonene, the lattice constant is

a = 4.27 Å and the intra- and interlayer distances are h = 1.52 Å

and d = 3.68 Å, respectively. In Figure 5 we show the band

structure of 9 layers of antimonene including SOC, as obtained

with the small-core pseudopotential basis set and the same en-

hancement factor as in the previous section. The results

compare rather well down to any practical detail with those re-

ported in the literature. In the inset of Figure 5 we show that the

spin texture of the surface Dirac cone states around the Γ point

and of the states in the nearby pockets, comes out as expected

[51,56]. This provides further evidence that not only the band

structure is reproduced at first glance, but also the wave func-

tions are properly evaluated. This non-trivial example illus-

trates the practicality of our proposed single-parameter imple-

mentation, when AE basis sets are computationally demanding.

Bi(111) monolayers
A monolayer of Bi(111) was one of the first 2D crystals pre-

dicted to be a 2D TI [27] and with actual chances to be experi-

mentally isolated and characterized. However, only a few

reports have confirmed the non-trivial topological character of

this material [57-60]. Having seen the trivial bands of anti-

monene monolayer changing to nontrivial in multilayers, the
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Figure 5: Band structure of 9 layers, ABC stacking Sb(111) films as
obtained from small core pseudopotential basis. The spin texture
around the Γ point is presented in the inset.

band inversion of Bi(111) is addressed in this section. Using

different DFT packages, a wide range of structural parameters

have been reported for Bi(111). Being aware of the sensitivity

of the band structure to the exact atomic structure and for the

sake of comparison we use a lattice constant a = 4.33 Å and a

buckling height h = 1.74 Å as reported in a similar VASP calcu-

lation [61]. Figure 6 shows the band structure of Bi(111) mono-

layer, as obtained from VASP (dashed black), and that calcu-

lated with a small-core pseudopotential basis set (solid blue), as

obtained with our implementation. Starting from very similar

band structures without SOC (a), the proposed implementation

of SOC gives a band structure in close resemblance with the

one obtained from VASP (b) (the multiplicative factor needed

to increase the nuclear potential is 120 in case of this specific

basis set). Increasing the multiplicative factor of our implemen-

tation from zero to two intermediate values (for example 70 and

100), as shown in the inset of Figure 6a, one can follow the

evolution of the band structure from trivial to nontrivial bands

and the ”Mexican hat” shaped valence band in Figure 6b. The

band inversion at the Γ point is evident. However, this visual

evidence is not sufficient to prove that this system is a topolog-

ical insulator and a calculation of the Z2 number demonstrates

that this is case.

Regardless of the shortcomings of tight binding method which

led us towards this implementation of SOC, here, we want to

compare the order of magnitude of tight binding SOC parame-

ters with our SOC correction. In TB implementation, only one

multiplicative parameter serves as the radial correction of SOC

and this factor is much smaller than our multiplicative factors.

The TB parameter entirely replaces the actual evaluation of the

radial integral in Equation 5. However, our multiplicative factor

Figure 6: Band structure of a Bi(111) monolayer, obtained from VASP
(dashed black) and small core pseudopotential basis set (solid blue)
(a) without and (b) with SOC. Inset of panel (a) shows closing (blue)
and reopening (black) of the gap with two parameter values of 70 and
100, respectively. Inset of panel (b), using the final parameter value of
120, is the same bands zoomed in near the Γ point showing the simi-
larity of the inverted bands compared to the VASP result.

is used to correct the radial integral which we actually perform

for all matrix elements. The large numbers that we report come

about because the radial matrix elements can be very small due

to the lack of nodal structure of the basis elements, but, in the

end, the correction parameter that accompanies the angular part

for the valence orbitals will be in the same order of magnitude

as what is reported for similar tight binding models.

Conclusion
We have presented an implementation of SOC suitable for DFT

band structure calculations based on CGTOs basis sets. We

evaluate both angular and radial part of the SOC relativistic

correction to the Hamiltonian, considering the spherical

harmonics and CGTOs as the angular and radial part of the

basis functions, respectively. The evaluated SOC term is then

added after a standard non-relativistic (or scalar relativistic)

self-consistent calculation. We have shown that if the AE band

structure is in good agreement with plane-wave bands without

SOC, when our implementation is applied, it can reproduce the

band structure obtained from the VASP code (used as a refer-

ence) to our satisfaction. Although we have only tested it in the

cases of antimonene and Bi(111), we see no reason why it

should not work for other elemental and compound materials,

since it is essentially first-principles and SOC is an intra-atomic

correction. We have also shown that a simple modification (by

a multiplicative factor) of the effective nuclear potential makes

this implementation applicable for pseudopotential basis sets

which lack nodal structure. Remarkably, the results obtained in

this last manner fit even better those obtained with plane-waves

and the VASP code. In contrast to standard TB implementa-

tions where the SOC parameter acts on the valence orbitals of a

minimal basis set, our method does not consider any pre-
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assumptions for the basis elements. Note that using GTOs as

basis elements, the so-called valence orbital might be split into

two or more basis elements to improve the quality of the band

structure. Our proposed approach is a practical way of includ-

ing SOC to standard DFT non-relativistic band structure calcu-

lations based on localized basis sets.
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Abstract
Terahertz photoconductivity in heterostructures based on n-type Hg1−xCdxTe epitaxial films both in the topological phase (x < 0.16,

inverted band structure, zero band gap) and the trivial state (x > 0.16, normal band structure) has been studied. We show that both

the positive photoresponse in films with x < 0.16 and the negative photoconductivity in samples with x > 0.16 have no low-energy

threshold. The observed non-threshold positive photoconductivity is discussed in terms of a qualitative model that takes into

account a 3D potential well and 2D topological Dirac states coexisting in a smooth topological heterojunction.

1035

Findings
Discovery of theoretically predicted quantum spin Hall effect

states in HgTe quantum wells [1,2] has initiated extensive

studies of topological insulator materials [3,4]. Noteworthy, the

ARPES technique, being a well-developed method to probe

topological surface states, is a challenge in the case of HgTe-

based topological insulators due to its zero-gap energy spec-

trum in the bulk. Nevertheless, formation of topological surface

states in 3D HgTe has been convincingly proved by ARPES ex-

periments in several detailed studies [5-7].

Hg1−xCdxTe solid solutions demonstrate a composition-driven

transition from the topological phase with inverted band struc-

ture to the trivial phase with normal band structure ordering at

x ≈ 0.16 [8]. In contrast to most of the 3D topological insula-

tors, Hg1−xCdxTe solid solutions are characterized by relatively

low free carrier concentration values in the bulk, and may be

therefore considered as good candidates for a case study

focused on determination of the topological state contribution to

the charge carrier transport. Laser terahertz probing is known to

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:khokhlov@mig.phys.msu.ru
https://doi.org/10.3762%2Fbjnano.9.96
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Figure 1: Photoconductivity kinetics Δσ/σ0 in Hg1−xCdxTe films with x = 0.13 (the upper panel) and x = 0.17 (the lower panel) at the wavelengths λ =
90; 148; 496 µm for various radiation peak power levels. The laser pulse time profiles are shown by grey lines. The energy band structure for both
solid solutions is shown schematically to the left of the plots. The heterostructure layers are outlined in the right upper corner. The cap and relaxed
Hg1−yCdyTe, buffer CdTe and ZnTe layers are indicated by the numbers from 1 to 4, respectively.

be a powerful tool that may provide an insight into the electron

dynamics in semiconductors, particularly, in topological insula-

tors [9-11]. Study of non-equilibrium processes in Hg1−xCdxTe

in the terahertz spectral range is additionally motivated by the

application aspects related to the terahertz photodetector devel-

opment [12].

In our recent paper [13], we have shown that photoconductivity

in Hg1−xCdxTe solid solutions at 280 µm wavelength changes

its sign across the topological transition from the inverted to the

normal band structure. It was assumed that the negative

photoresponse in the samples with the normal band structure is

most likely related to the electron gas heating, while the posi-

tive photoconductivity in the zero band gap mercury cadmium

telluride was reasonable to associate with interband transitions.

In this work, we focus on the study of terahertz photoconduc-

tivity in the spectral range of 90–496 µm of Hg1−xCdxTe solid

solutions in close vicinity of the band inversion point. This is

done to determine possible effects of the topological states on

the non-equilibrium transport.

The Hg1−xCdxTe heterostructures were synthesized by MBE.

ZnTe and CdTe buffer layers, a CdTe-rich mercury cadmium

telluride relaxed layer, a 3D Hg1−xCdxTe layer, and a CdTe-rich

cap layer were successively grown on a GaAs (013) semi-insu-

lating substrate (see the inset in upper right corner of the

Figure 1). The active 3D Hg1−xCdxTe layer thickness was about

4 µm. Composition of the films was controlled by ellipsometry.

The synthesis is described in detail in [14].

We have chosen samples with x = 0.13; 0.15; 0.17 for our study.

The latter corresponds to the trivial phase with the normal band

structure. The two others are characterized by the inverted band

structure (topological phase). Hall effect measurements have

shown that all the samples are of the n-type. Free electron con-

centration values determined in magnetic field of 0.05 T

at T = 4.2 K are in the range from 3.7 × 1014 cm−3 to

5.2 × 1014 cm−3. Within the two-band Kane model, the given

concentrations correspond to the Fermi level position not lower

than at 3 meV, 5 meV, and 7 meV above the conduction band

edge for the samples with x = 0.13, 0.15, 0.17, respectively. The

energy distance between the conduction band and the light-hole
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valence subband used in the Kane model calculations was esti-

mated using the empirical relations [15-20].

Photoconductivity kinetics has been studied under 90, 148, 280,

and 496 µm wavelength pulse laser radiation at the temperature

4.2 K. The measurements have been done in the Hall bar geom-

etry using the 4-probe method. The incident radiation was

normal to the sample surface. Duration of the pulse was

≈100 ns. The radiation power was up to 7 kW and could be

varied by calibrated attenuators. The use of the incident radia-

tion power as a variable parameter can help to figure out mech-

anisms of the photoelectric phenomena in some cases [21,22].

The experimental details can be found elsewhere [23-27].

The photoconductivity kinetics Δσ/σ0 for the samples with

x = 0.13 (the upper panel) and x = 0.17 (the lower panel) is

shown in the Figure 1. Here Δσ is the change in conductivity

under pulse irradiation, σ0 is the conductivity value before the

laser pulse. The data for the structures with x = 0.13 and

x = 0.15 (inverted band structure) are quite similar, therefore

only data for the sample with x = 0.13 are presented in the

Figure 1. The observed kinetics are rather complicated and can

be described by several superimposed processes characterized

by different relaxation time parameters. We will address here

only to relatively fast processes with the characteristic times of

100–200 ns. The long-term photoconductivity observed at

longer times after the laser pulse end may be due to photoin-

duced transitions to or from the local electron states in the

barriers. This long-term photoconductivity is not discussed in

this paper. It is important that the signs of the fast photore-

sponse for the normal and inverted band structure samples are

opposite. For the latter, the photoconductivity is positive.

Beside that, it demonstrates certain time delay with respect to

the excitation laser pulse. The negative photoconductivity in the

normal band structure case is much smaller in amplitude, and its

kinetics repeats the laser pulse time profile.

Photoconductivity kinetics keeps the features mentioned above

at lower radiation power levels (Figure 1). The absolute value

of photoresponse amplitude │Δσ/σ0│peak versus the number of

the incident quanta N per unit time is shown in the Figure 2 for

all wavelengths used and all samples studied. The photoconduc-

tivity amplitude dependence on the photon flux N for the sam-

ples with x = 0.13 and x = 0.15 is nonlinear and may be well

fitted by the power dependence │Δσ/σ0│ ~ Nα, where α is close

to 1/4. It is important that the experimental data corresponding

to the samples with x = 0.13 and x = 0.15 are close for all wave-

lengths used. It means that the photoconductivity value is

defined only by the incident photon flux N irrespectively of the

wavelength. It is reasonable to assume therefore that the posi-

tive photoconductivity in these samples results from an increase

in the free carrier concentration due to the photogeneration

process with the constant quantum efficiency independently on

the wavelength. It should be stressed that the positive photocon-

ductivity is still observed even for the sample with x = 0.15 for

which the Fermi energy (>5 meV) well exceeds the quantum

energy of the 496 µm wavelength laser radiation (2.5 meV).

Figure 2: Dependence of the absolute value of the peak photore-
sponse amplitude |Δσ/σ0|peak (σ0 is the conductivity before a laser
pulse, Δσ is the conductivity change under illumination) on the photon
flux density N for Hg1−xCdxTe films with x = 0.13 (black symbols),
x = 0.15 (red symbols), and x = 0.17 (blue symbols) at various wave-
lengths. The photoconductivity kinetics at 496 µm for the samples with
x = 0.15 and x = 0.17 are shown in the inset. A typical pulse time
profile is shown by the grey line.

In contrast to that, the negative photoconductivity (sample with

x = 0.17) depends strongly on the radiation wavelength. The

electron gas heating by the incident radiation followed by an

electron mobility drop is most likely responsible for this effect.

This mobility drop is due to a scattering time drop with increas-

ing energy, as well as to a substantial increase in the electron

effective mass of hot electrons. This process obviously has no

energy threshold. In such a case, the photoconductivity is nega-

tive and depends on the power absorbed. Therefore, the data

calculated as a function of the incident quantum flux (see

Figure 2) differ for different wavelengths. An additional

discrepancy may come out as a result of carrier trapping by

acceptor resonant states [28,29].

Let us discuss now in more detail the experimental results ob-

tained for the Hg1−xCdxTe topological phase (x < 0.16). The

most unusual result is the absence of a threshold energy in the

strong generation-related positive photoconductivity. The

photoresponse is observed even if the Fermi energy exceeds the

energy of the incident radiation quantum. Existence of the topo-

logical heterojunction may be a key factor that determines the

non-threshold photoexcitation in the structures studied.
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Indeed, the buffer and cap layers of the heterostructure are

formed of Hg1−xCdxTe solid solutions with a relatively high

CdTe content providing normal band structure ordering. The

film under study is in the topological phase with the inverted

relative positions of the conduction and light hole bands. The

CdTe content x varies quite smoothly on the characteristic

length of about 1 µm along the heterojunctions between the

buffer and the film, as well as between the film and the cap

layer. Previously, it was theoretically demonstrated that in such

a situation, there should appear a 3D potential well in the

heterojunction area [30-32]. Beside that, 2D topological Dirac

states are formed at the position z0 corresponding to the gap

absence between the conduction and light hole bands (Figure 3).

To the right of z0, the bulk semiconductor energy spectrum is

gapless. The Fermi level position in such a structure varies with

respect to the potential well bottom along the heterostructure

profile. Therefore, for any given energy of a terahertz quantum,

there should exist a position in the heterojunction area for which

photogeneration from the heavy hole band to the conduction

band becomes possible. It is important that this generation

process has no threshold in energy, and its intensity is defined

by the number of incident radiation quanta. Therefore, it may

give rise to the positive photoconductivity observed experimen-

tally.

There is one more possible mechanism providing appearance of

the positive photoconductivity in heterostructures under study.

As it was mentioned earlier, 2D Dirac states are formed at the

position z0 corresponding to the bottom of the 3D heterojunc-

tion potential well. Heating of electrons by the incident tera-

hertz radiation in the 3D well leads to two competing effects.

The first one is the mobility drop that should result in the nega-

tive photoconductivity. The second effect corresponds to the

spatial diffusion of excited electrons to the 2D area. Indeed, it is

located at the bottom of the well. Beside that, the density of the

2D Dirac states depends linearly on energy E, whereas it is

proportional to E1/2 for the bulk conduction band states. It

means that for the heated electrons, there is an increased proba-

bility to diffuse to the z0 position. Mobility of 2D Dirac elec-

trons is much higher than it is for the bulk electrons, therefore

this diffusion process results in the positive photoconductivity.

The amplitude of this effect is much higher than the mobility

drop due to the electron gas heating, so the positive photocon-

ductivity prevails. Moreover, the diffusion process is delayed

with respect to the photoexcitation which is observed experi-

mentally. This is due to the fact that the spin direction of 2D

Dirac electrons is locked to their momentum vector direction,

whereas the 3D electrons in the well do not possess this feature.

The suggested mechanism for the positive photoconductivity is

non-threshold in energy. As a final argument, the 3D potential

wells, as well as 2D Dirac states should not be formed for the

Figure 3: Sketch of the smooth heteroboundary between the
Hg1−xCdxTe active layer (with the inverted band structure) and the
Hg1−yCdyTe barrier layer (with the normal band structure) in the sam-
ples with x < 0.16. Variable position edges of the conduction (Ec) band,
the heavy hole valence (Ev) subband, and the light hole subband in the
heterojunction are schematically shown by black solid lines. The Fermi
level is shown by the dash-dot line. The topological layer located in the
close vicinity to the z0 position is sketched up by green dashed lines.
The red and the blank circles shown above and below the Fermi level,
respectively, correspond to the suggested mechanisms of the positive
photoconductivity effect. The CdTe content along the heterostrocture
profile is presented in the inset. The red rectangles correspond to the
heterojunction areas, the left one of which is zoomed in the main part
of the figure.

Hg1−xCdxTe films with the composition corresponding to the

trivial phase, and the positive delayed photoconductivity is not

observed for these structures.

The two mechanisms for the positive photoconductivity sug-

gested above may coexist in the same structure.

In summary, we have observed a non-threshold positive photo-

conductivity in heterostructures based on Hg1−xCdxTe thick

films being in the topological phase. We suggest possible mech-

anisms responsible for the effect that takes into account diffu-

sion of photoexcited electrons in the heterojunction area to the

2D Dirac state.
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Abstract
In this paper we consider charge current generated by maintaining a temperature difference over a nanowire at zero voltage bias.

For topological insulator nanowires in a perpendicular magnetic field the current can change sign as the temperature of one end is

increased. Here we study how this thermoelectric current sign reversal depends on the magnetic field and how impurities affect the

size of the thermoelectric current. We consider both scalar and magnetic impurities and show that their influence on the current are

quite similar, although the magnetic impurities seem to be more effective in reducing the effect. For moderate impurity concentra-

tion the sign reversal persists.

1156

Introduction
It has been known for quite some time now that the efficiency

of thermoelectric devices can be increased by reducing the

system size. The size reduction can improve electronic trans-

port properties and also reduce the phonon scattering which

then leads to increased efficiency [1]. Interestingly, often the

materials that show the best thermoelectric properties on the

nanoscale can also exhibit topological insulator properties [2],

although the connection between the two properties is not

always straightforward [3]. Even though few experimental

studies exist on thermoelectric properties in topological insu-

lator nanowires (TIN), many studies have reported magnetore-

sistance oscillations, both in longitudinal and transversal fields

for TINs [4-10].

In its simplest form, thermoelectric current is generated when a

temperature gradient is maintained across a conducting materi-

al. In the hotter end (reservoir) the particles have higher kinetic

energy and thus velocity compared to the colder reservoir. This

leads to a flow of energy from the hot to cold end of the system.

Under normal circumstances this will lead to particles flowing

in the same direction as the energy flow. The charge current can

of course be positive or negative depending on the charge of the

carriers, i.e., whether they are electrons or holes. Recently, it

was shown that in systems showing non-monotonic transmis-

sion properties the particle current can change sign as a func-

tion of the temperature difference [11]. Sign changes of the

thermoelectric current are well-known in quantum dots [12-15]

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
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Figure 1: Energy spectra for a) B = 0 and b) B = 4.0 T. Note that the system is gapped at B = 0 but not at B = 4.0 T. We used vF = 105 m/s and R =
50 nm for the current calculations, which gives E0 =  ≈ 1.3 meV.

when the chemical potential crosses a resonant state. A sign

change of the thermoelectric current can be obtained when the

temperature gradient is increased, which affects the population

of the resonant level in the quantum dot [16-19].

For topological insulator nanowires one can expect reversed, or

anomalous, currents measured in tens of nanoamperes [11], well

within experimental reach. Also, since the transport is over long

systems, it is much simpler to maintain a large temperature

difference of tens of kelvins, compared to the case of quantum

dots. In this paper we extend our previous work on thermo-

electric currents in TIN [11], by including the effects of impuri-

ties, both scalar and magnetic ones. The impurities deteriorate

the ballistic quantum transport properties, but as long there are

still remnants of the quantized levels, the predicted sign reversal

of the thermoelectric current remains visible.

Results and Discussion
Clean nanowires
When a topological insulator material, such as BiSe, is formed

into a nanowire, topological states can appear on its surface.

Recently, such wires in a magnetic field have been studied

extensively both theoretically [20-24] and experimentally

[5-10,25]. When the nanowires are of circular cross section the

electrons move on a cylindrical surface with radius R. The sur-

face states of the topological insulator are Dirac fermions, de-

scribed by the Hamiltonian [20,21,26]

(1)

where vF is the Fermi velocity, and the spinors satisfy antiperi-

odic boundary conditions  because of a

Berry phase [20,21]. We chose the coordinate system such that

the magnetic field is along the x-axis, B = (B,0,0), the vector

potential being A = (0,0,By) = (0,0,BRsinφ). For B = 0 the

angular part of the Hamiltonian has eigenfunctions 

where n are half-integers to fulfill the boundary condition. It is

convenient to diagonalize Equation 1 in the angular basis,

which are exact eigenstates when B = 0.

An example of the energy spectrum is shown in Figure 1 for

B = 0 (Figure 1a) and for B = 4.0 T (Figure 1b). The model pa-

rameters are comparable to experimental values [10]. For zero

magnetic field the energy spectrum has a gap at k = 0 resulting

from the antiperiodic boundary conditions [20,21]. For the case

of non-zero magnetic fields, precursors of Landau levels around

k = 0 are seen, both at negative and positive energy. The local

minima away from k = 0 are precursors of snaking states. Such

sates have been studies for quadratic dispersion (Schrödinger)

where the Lorentz force always bends the electron trajectory

towards the line of vanishing radial component of the magnetic

field [27-30]. In fact, this is a classical effect known in the two-

dimensional electron gas in inhomogeneous magnetic fields

with sign change [31-34]. For Dirac electrons it has

been reported in graphene p–n junctions in a homogeneous

magnetic field, since in this case the charge carriers change sign

[35].

In order to calculate the current in multi-channel one-dimen-

sional systems one needs to calculate the product of the velocity

vn(E) and density of states ρn(E) of a given mode n at energy E

[36]. This product is a constant vn(E)ρn(E) = 1/h, irrespective of

the form of εn(k), which leads to the well-known conductance

quantum e2/h. For infinitely long, ballistic systems all channels

are perfectly transmitted Tn = 1, so one can simply count the

number of propagating modes to obtain the conductance.

If the curvature of the dispersion is negative (here we consider

positive energy states) at k = 0, then the mode can contribute

twice to the conductance since there are two values of k that

fulfill εn(k) = E and have the same sign of vn(E) (see Figure 1b).



Beilstein J. Nanotechnol. 2018, 9, 1156–1161.

1158

Figure 2: a) Transmission function and b) thermoelectric current for two different magnetic fields. In a), the transmission function T(E) for B = 2.8 T is
offset by 6 for clarity. We used vF = 105 m/s and R = 50 nm for the current calculations, which gives E0 =  ≈ 1.3 meV.

The transmission, which in this case is simply the number of

propagating modes, can jump up by two unit values and then

again fall by one unit value as a function of the energy. As was

pointed out recently, the presence of such non-monotonic be-

havior in the transmission function T(E) can give rise to anom-

alous thermoelectric currents [11].

In order clarify the origin of the sign reversal of the thermo-

electric current, and how its affected by magnetic field, we will

briefly outline how the current is calculated using the Landauer

formula. The charge current Ic is given by

(2)

Here fL/R(E) are the Fermi functions for the left/right reservoir

with chemical potentials μL/R and temperatures TL/R. We will

consider μL = μR = μ. If the transmission function T(E) in-

creases with energy over the integration interval (and the chem-

ical potential is situated somewhere in the interval) the thermo-

electric current is positive. This is the normal situation. An

anomalous negative current can instead occur if the transmis-

sion function decreases with energy. The curve for B = 2.0 T in

Figure 2a shows the normal situation where the chemical poten-

tial is positioned at an upward step at μ = 6.8 meV. The vertical

line indicates the position of μ. The resulting charge current is

shown in Figure 2b) where the normal situation is evident for

B = 2.0 T. If the magnetic field is increased to B = 2.8 T, the

energy spectrum changes (not shown) and so will the transmis-

sion function T(E). Now a downward step occurs at μ, which

leads to an anomalous current, as can be seen in Figure 2b. Note

that the current sign an be changes by either varying the temper-

ature of the right reservoir or the magnetic field. The anom-

alous current can be in the range of tens of nanoamperes, which

is well within experimental reach.

Modeling of impurities
The anomalous current introduced above relies on non-mono-

tonic steps in the transmission function. For ballistic nanowires

the steps are sharp, but in the presence of impurities the steps

will get distorted. In order to simulate transport in a realistic

nanowires, we will assume short-range impurities. These are de-

scribed by

(3)

where W is the impurity strength. Due to fermion doubling, the

Hamiltonian in Equation 1 can not be directly discretized [37].

However, adding a fictitious quadratic term

(4)

solves the issue of fermion doubling [38]. To fix the value of λ,

we will first look at the longitudinal part of Equation 1 in the

absence of a magnetic field

(5)

If this Hamiltonian is discretized on a lattice with the lattice pa-

rameter a the spectrum will be

(6)

where . The value of λ can be set by the condition

that the Taylor expansion of (ε±(k))2 contains no quartic term,

which maximizes the region showing linear dispersion. This

condition is fulfilled when
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Figure 3: a) Transmission function and b) thermoelectric current calculated in the presence of impurities at B = 4.0 T. The nanowire length is
L = 1000 nm and the impurity densities are ni =3.0 nm−1, 6.0 nm−1 and 12 nm−1. The red curves are for scalar impurities with chemical potential
μ = 7.28 meV and the blue curves are for magnetic impurities with μ = 7.15 meV.

(7)

For zero magnetic field we choose the lattice parameter

a = 0.02 R, which ensures that the first ten states calculated via

the lattice model with the λ2 term deviate by less than 1% from

those obtained with the continuum model (Figure 1a). For a

non-zero magnetic field we use a = 0.01 R, because more states

contribute to the flat bands at E = 0. At this point we are free to

use standard discretization schemes and the transmission func-

tion in the case when impurities are included is obtained using

the recursive Green’s function method [39].

Experiments on normal (not topological) nanowires show a

conductance that can be complicated, but reproducible trace for

a given nanowire. This means that the measurement can be

repeated on the same nanowire and it will give the same

conductance trace as long as the sample is kept under un-

changed conditions. But a different nanowire would show a dif-

ferent, but reproducible, conductance trace [40]. This motivates

us to consider a fixed impurity configuration, i.e., no ensemble

average.

In Figure 3 we show the transmission functions and the thermo-

electric currents for a magnetic field of B = 4.0 T, for a nano-

wire of length L = 1000 nm. The disorder strength is set to W =

4.8  and the density of impurities is varied:

ni = 3.0 nm−1, 6.0 nm−1 and 12 nm−1. For comparison, we

consider two types of impurities: scalar impurities described by

Equation 3 (red traces), and magnetic impurities described by

Vimpσx (blue traces).

When the transmission function in Figure 3a in the presence of

impurities is studied, a definite trend towards reduced non-

monotonic intervals is visible as the density of impurities is in-

creased from 3.0 to 6.0 and 12 nm−1. This applies both to scalar

(red) and magnetic impurities (blue), even though the magnetic

impurities seem to cause a quicker reduction in the transmis-

sion peaks. Both scalar and magnetic impurities open up a gap

around E = 0. This is due to scattering between counter-propa-

gating states on the same side of the nanowire [24]. When

looking at the calculated charge current in Figure 3b, the differ-

ence between the scalar and magnetic impurities becomes more

clear. In both cases the strength and density of impurities is the

same but magnetic impurities are substantially more effective in

reducing the anomalous current. Note that due to the different

impurity configurations between the magnetic and scalar cases

we adjusted the chemical potential to μ = 7.15 meV to maxi-

mize the anomalous current. The values of Wimp and ni used

here were chosen such that we could observe an evolution in

Figure 3a from resolving the quantized steps to not seeing any.

For experiments, this would mean that samples that show some

indication of quantized conductance steps should suffice to

observe the anomalous current.

In our calculations we neglected the Coulomb interactions be-

tween electrons that, in the nonlinear regime of transport, may

alter the current, at least in non-topological materials [41-43].

To our knowledge, the present experimental data in TI nano-

wires can be explained without considering the Coulomb inter-

action. But, nevertheless, this issue can be an open question for

future research.

Conclusion
We studied the reversal of the thermoelectric current in topolog-

ical insulator nanowires and how it evolves with changing mag-

netic fields. Using lattice models we simulated realistic nano-

wires with both scalar and magnetic impurities. Even though

both scalar and magnetic impurities reduce the size of the



Beilstein J. Nanotechnol. 2018, 9, 1156–1161.

1160

anomalous current we expect that in quasiballistic samples the

effect should be observable. Interestingly, magnetic impurities

seem to be more effective than scalar impurities when it comes

to reducing the anomalous thermoelectric current. For hollow

nanowires described by the Schrödinger equation the backscat-

tering is the same for magnetic and scalar impurities, in the

absence of spin–orbit interactions. This is in contrast to the TI

nanowires studies here, which are more susceptible to scat-

tering by magnetic impurities due to spin–momentum locking

of the surface states [23].
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Abstract
We study the influence of the inverse proximity effect on the superconductivity nucleation in hybrid structures consisting of semi-

conducting nanowires placed in contact with a thin superconducting film and discuss the resulting restrictions on the operation of

Majorana-based devices. A strong paramagnetic effect for electrons entering the semiconductor together with spin–orbit coupling

and van Hove singularities in the electronic density of states in the wire are responsible for the suppression of superconducting

correlations in the low-field domain and for the reentrant superconductivity at high magnetic fields in the topologically nontrivial

regime. The growth of the critical temperature in the latter case continues up to the upper critical field destroying the pairing inside

the superconducting film due to either orbital or paramagnetic mechanism. The suppression of the homogeneous superconducting

state near the boundary between the topological and non-topological regimes provides the conditions favorable for the

Fulde–Ferrel–Larkin–Ovchinnikov instability.
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Introduction
The transport phenomena in semiconducting wires with in-

duced superconducting ordering and strong spin–orbit interac-

tion are in the focus of current experimental and theoretical

research in field of nanophysics and quantum computing [1-10].

The interest in these systems is stimulated by the perspectives

of their use for design of topologically protected quantum bits.

The key idea is based on the observation that for a certain range

of parameters and rather strong applied magnetic fields H the

induced superconducting order parameter reveals so called

p-wave symmetry realizing, thus, a model of Kitaev's chain [1].

The edges of such wires can host the subgap quasiparticle states

that are considered as a realization of Majorana particles in

condensed matter systems [11-16].

In most cases, theoretical studies of these Majorana wires are

based on a simplified model of the superconducting correla-

tions described by a phenomenological gap potential inside the

wire [3,4] placed in contact with a standard s-wave supercon-

ductor (Figure 1). This model, while being useful in many cases

for a qualitative understanding of the induced superconduc-
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tivity, is known to possess still a number of important short-

comings. An obvious way to overcome these shortcomings is to

use the microscopic theory of the proximity effect [17-24], i.e.,

Gor'kov equations. The microscopic approach allows one to get

the effective gap operator analogous to the one used in the

phenomenological model. On top of that it gives the gap depen-

dence on the transparency of the interface between the wire and

the s-wave superconductor and chemical potential via density of

states (DOS). Another important point is that the exchange of

electrons between the wire and superconductor can cause a

so-called inverse proximity effect, i.e., the suppression of the

gap function at the superconductor surface. For a rather thin

superconducting shell covering the wire this gap suppression

can result in the change of the superconducting critical tempera-

ture of the whole system. The analysis of this inverse proximity

phenomenon is important to find out the optimal range of pa-

rameters that allows one to realize the switching between the

topologically trivial and nontrivial states of the semiconducting

wire used in various braiding protocols.

Figure 1: Schematic picture of the semiconducting wire (yellow)
covered by the superconducting layer (green) placed on a substrate
(light blue). Rw, ds and φ0 show linear and azimuthal dimensions. The
magnetic field H is applied along the wire axis Oy while the Rashba
spin–orbit vector is perpendicular to the substrate (not shown).

The goal of this work is the self-consistent analysis of the criti-

cal-temperature behavior of the wires while considering the in-

fluence of the inverse proximity effect on the induced supercon-

ducting ordering. For this purpose we start from the full set of

microscopic equations for the Green functions taking into

account both scattering rates describing the quasiparticle

transfer between the superconducting film and the wire [17].

The first rate, γs, characterizes the electron leakage from the

wire to the superconductor and is responsible for the energy-

level broadening in the wire. The second rate, γw, corresponds

to the reverse process. These rates are determined both by the

probability of electron tunneling through the barrier at the

superconductor/semiconductor (S/SM) interface and the corre-

sponding densities of states. In particular, it is important that the

rate γw is proportional to the DOS in the SM nanowire resulting

in its non-trivial energy dependence. Indeed, considering, e.g., a

single-channel nanowire we get the DOS diverging as a square

root function of the energy relative to the bottom of the conduc-

tion band. This van Hove singularity in the DOS should cause a

strong energy dependence of the scattering rate γw and, as a

consequence, the superconducting critical temperature should

depend on the position of the Fermi level with respect to the

bottom of the one-dimensional conduction band in the SM wire.

The influence of the van Hove singularity on superconductivity

should be also accompanied by the strengthening of the para-

magnetic effect. Indeed, one can naturally expect that the scat-

tering rate γw could result in an additional effective Zeeman

field induced in the superconductor due to the electron

exchange with the SM wire. Due to the divergence in the DOS

together with the large g-factor in the wire this induced Zeeman

field can even exceed the value of the usual Zeeman field.

Under such conditions the field dependence of the critical tem-

perature would have a minimum near the fields H ≈ |μw|/gβ,

where μw is the Fermi energy of the wire relative to the bottom

of its conduction band at H = 0 and β is the Bohr magneton.

Strictly speaking, the spin–orbit interaction may cause the

emergence of the third van Hove singularity below −gβH/2, but

it appears only at rather large spin–orbit interaction strengths.

Note that for a vanishing induced superconducting gap Δind this

field separates the regimes with trivial and nontrivial topolog-

ical properties of the system [3,4,18]. Further increase in the

magnetic field is known to suppress the proximity effect since

in the absence of the spin–orbit coupling the Fermi level crosses

the only energy branch with a complete spin polarization along

the magnetic field direction. The nonzero spin–orbit coupling

destroys this spin polarization mixing different spin projections

and resulting in a nonzero induced superconducting gap in the

wire of approximately αΔind/gβH, where Δind is the induced

superconducting order parameter in the wire, and α is the

spin–orbit coupling constant. Still, even in the presence of the

spin–orbit coupling the increasing magnetic field suppresses the

induced superconductivity, which definitely restores the super-

conducting order parameter in the S film. This reentrant super-

conductivity stimulated by the magnetic field can only be main-

tained up to the upper critical field associated with either orbital

or intrinsic paramagnetic effect in the S shell.

The suppression of the superconducting order parameter near

the line of transition between the topologically trivial and

nontrivial phases can result in one more interesting phenome-

non: Similarly to the standard paramagnetic effect this suppres-

sion can cause the transition into the analogue of the so-called

Fulde–Ferrel–Larkin–Ovchinnikov (FFLO) [25,26] state with

the spatially modulated superconducting order parameter.

The paper is organized as follows: In section “Basic equations”

we give the main equation of our model. Section “Results and

Discussion” is devoted to the description of the solution and the

analysis of the phase diagrams. In the Conclusion section we

summarize our results and the suggestions for the experiment.
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Basic Equations
Hereafter we consider a long 1D semiconducting wire partially

covered by a thin superconducting shell with the thickness

, where ξs is the superconducting coherence length. In

the cross section of the wire the superconducting film covers the

angular sector φ0. The model system is schematically shown in

Figure 1. Hereafter we use the units with kB =  = 1, where kB

is the Boltzmann constant, and  is the Planck constant. The

Hamiltonian of the system reads:

(1)

with the first term

(2)

describing the s-wave superconducting shell.

(3)

corresponds to the Hamiltonian of the nanowire, and the tunnel

Hamiltonian takes the form

(4)

Here σ = ↑, ↓ denotes spin degrees of freedom (summation over

repeated spin indices is always assumed throughout the paper),

while  (m = x, y, z) are the Pauli matrices in the spin space.

Rw is the radius and  is the cross-sectional area of the

wire, (r) = (Rw, φ, y), φ is the polar angle in the plane perpen-

dicular to the wire axis, which changes in the interval

0 < φ < φ0. y denotes the coordinate along the wire,

 and  stand for

the quasiparticle kinetic energies in the shell and in the wire

with respect to the corresponding chemical potentials μs and μw.

ms and mw are the effective masses of the electrons in the

subsystems, Δs(r) is the superconducting order parameter, α is

the spin–orbit coupling constant, h = gβH/2 is the Zeeman

energy, and H is the applied magnetic field.

We consider the incoherent tunneling model, which does not

conserve the momentum, e.g., due to the presence of the

disorder at the interface. Thus, the ensemble average of the

tunneling amplitudes has the form:

(5)

where  is the length of the order of the atomic scale. The

tunneling is also assumed to be independent of energy and spin

and occurs locally in time and in space, i.e., from a point r on

the superconducting shell into the point y in the wire and back

with the amplitude .

It is important to note that here we do not consider the orbital

effects in the superconducting shell. This approximation

imposes some restrictions on the value of magnetic fields under

consideration, which are nevertheless quite realistic for the ex-

periments aimed at the manipulation with Majorana states in

such systems. It is the large g-factor in the SM wire that allows

to have the magnetic field values affecting the electronic states

in the wire and barely affecting the ones in the superconducting

cover. Note that omitting the orbital effects we cannot describe

possible Little–Parks effect arising in the wires fully covered by

the S shell [27,28].

Neglecting the order parameter inhomogeneity in the shell for

, we derive the following system of Gor'kov equations

written in the frequency–momentum representation (see Sup-

porting Information File 1 for the details of the derivation):

(6)

(7)

where ωn = 2πT(n + 1/2) is the Matsubara frequency, T is the

temperature, py is the momentum along the wire,  (m = x, y,

z) are the Pauli matrices acting in the Nambu space,

, , Δs is the superconducting order

parameter, which we assume to be constant in space and real-

valued,  ,  and .  The

tunneling self-energy parts are given by the following expres-

sion:

(8)

where  and . The func-

tions  are the quasiclassical Green’s functions:

(9)
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(10)

The precise definitions of the Green’s functions  of the

wire and of the shell, respectively, together with the derivation

of Equation 6 and Equation 7 are given in Supporting Informa-

tion File 1.

Note that we neglect here the possible dependence of these

quasiclassical Green’s functions on the coordinate along the

wire. That is, we assume the limit of an infinitely long wire

without edge effects. The velocity υ0 is introduced just for the

purpose of unification of dimensionality of the tunneling rates

Γw and Γs and does not appear in the product  that enters

the measurable quantities. One can choose this velocity, e.g., as

 so that the rate Γw includes the divergent DOS

in the 1D wire.

Tunneling rates for the quasiparticles from the shell into the

wire, Γw, and from the wire into the shell, Γs, can be expressed

in terms of the normal-state tunnel resistance  in the

following manner [20]:

(11)

(12)

where  is the contact area,  is the wire length,

G0 = e2/π is the conductance quantum, νs = ms/2π and

νw = (2mw/μw)1/2 are the normal DOS in the shell and in the

wire, respectively, , , and kFs(w) is

the Fermi momentum in the shell (wire). The expressions for

the tunneling rates can be conveniently written through the

numbers of transverse modes in the superconducting shell

( ) and in the wire (Nw):

(13)

(14)

where . Here we use the simplest generalization

[17] of the expression for Γw for the case of an arbitrary num-

ber of transverse modes in the nanowire assuming also the value

1/υ0 to be averaged over these modes. The resulting ratio of the

tunneling rates takes the form:

(15)

Due to the growth of Ns with the shell thinkness ds in the multi-

mode regime of the superconductor this ratio may become

rather small weakening the inverse proximity effect (the details

of experimental relevance are considered in the next section).

Equation 6 and Equation 7 must be solved together with the

self-consistency equation for the superconducting gap function:

(16)

where λ is the dimensionless pairing constant and the trace is

taken over the spin indices. The next section is devoted to the

perturbative solution of the Gor'kov equations (Equation 6 and

Equation 7) and the self-consistency equation (Equation 16) in

the gap potential which allows one to find the critical tempera-

ture of superconducting transition as a function of magnetic

field and materials parameters.

Results and Discussion
Considering the perturbation theory in the superconducting gap

function Δs it is natural to start with the equations for the

normal Green’s functions

(17)

(18)

(19)

(20)

which give us the zero-order solution of the Gor'kov equations

(21)

(22)
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(31)

(32)

Here, Uw = [(αpy + Γsgsx), (h + Γsgsy), Γsgsz] and the quasiclas-

sical Green’s functions are written in the spin form

(23)

with k = s(w) for the shell (wire). The solutions for spin matrix

functions  are given by Equation 21 and Equation 22 with

the replacements εk→−εk and .

According to the definitions for the quasiclassical Green’s func-

tions (Equation 9 and Equation 10) and due to a specific spin

structure of the Zeeman term and spin–orbit coupling term in

Equation 17–Equation 20, one can easily get that only gk0 and

gky are nonzero. It is convenient to rewrite the normal Green’s

function in the wire as a sum of singular contributions :

(24)

(25)

where

The equations for the anomalous Green’s functions read:

(26)

(27)

and give the solution for the anomalous Green’s functions 

within the first-order perturbation theory in the supercon-

ducting gap:

(28)

(29)

Introducing a general presentation for the components of the

quasiclassical anomalous Green’s functions

(30)

we get the set of equations in Equation 31 for them with

.

The solutions of Equation 31 take the form given in

Equation 32 and Equation 33.

We use the following notations:

(34)
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(33)

(35)

(36)

(37)

(38)

In addition, ν, η = ±1. The expressions for the integrals involv-

ing the products of the normal Green’s functions in the shell can

be written as follows:

(39)

(40)

(41)

In the definitions in Equation 34 and Equation 35 and

Equation 39–Equation 41, we have introduced the following

functions:

(42)

(43)

Here, gkη = (gk0 + ηgky), , and εI = Im(ε0).

Finally, we explicitly show the expressions for the normal

Green’s functions in the wire:

(44)

(45)

Note that in the absence of spin–orbit coupling, zero magnetic

field and for energy-independent DOS in the wire the self-

consistency equation formally coincides with the one obtained

in the seminal work by McMillan [17].

Turning now to the case of nonzero Zeeman energy and

spin–orbit coupling we use a numerical approach to analyze

the solution of the self-consistency Equation 16 with the Equa-

tion 32 and Equation 33 for the anomalous Green function.

Typical dependencies of the critical superconducting tempera-

ture on the magnetic field and chemical potential μw are shown

in Figure 2. Note that here we choose the strength of the

spin–orbit coupling consistent with the properties of InAs [22]:

εso = mwα
2 = 52 μeV, which corresponds to approximately

600 mK. Taking the critical temperature of Al Tc0 ≈ 1.3 K, we

find εso = mwα
2 = 0.46Tc0.

The color plots in Figure 2 show the critical temperature Tc both

in topologically trivial (|μw| > h) and nontrivial (|μw| < h)

regimes. The border lines μw = ±h (shown by white dashed

lines) coincide with the locations of van Hove singularities in

the SM nanowire. One can clearly see that the suppression of

the critical temperature appears to be the strongest close to these

lines. The magnetic field dependence of Tc appears to be drasti-

cally different in topologically trivial and nontrivial regimes.

Indeed, in the nontopological regime the critical temperature

decays as we increase the magnetic field due to a standard para-

magnetic effect. In contast, in the topologically nontrivial

regime Tc increases (with or without initial decay at small

fields). This increase in the critical temperature originates from

the reduction of the proximity effect due to almost pure spin po-

larization of quasiparticles in the wire. The above mentioned

increase in the critical temperature is limited from above by

either orbital or intrinsic paramagnetic effects in the S shell and
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Figure 2: Color plot of the critical temperature of the system as a function of the chemical potential μw and the Zeeman energy h = gβH/2 for
εso = mwα2 = 0.46Tc0 and several values of  and  with . In panels (a) and (b) Γw = 0.1Tc0, while in
panels (c) and (d) we take Γw = Tc0. In panels (a) and (c) Γs = 0.1Tc0, in panels (b) and (d) Γs = 10Tc0. In all panels the white dashed lines denote the
boundaries between nontopological and topological regimes μw = ±h.

Figure 3: The critical temperature of the system as a function of the Zeeman field h for different values of the chemical potential in the wire μw (shown
in the legend). Here, εso = 0.46Tc0 and Γw = Tc0. (a) Γs = 0.1Tc0 and (b) Γs = 10Tc0.

continues up to the upper critical field in the superconductor.

One can see that the scattering rates Γw and Γs have a strong

quantitative effect on the above physical picture because of

smearing and shifting of the peculiarities of the DOS and the re-

sulting smoothing of Tc variations. The nonmonotonic behavior

of Tc is illustrated by the plots in Figure 3. Using the above

expressions in Equation 13–Equation 15 for the tunneling rates,

we estimate the ratio of mode numbers as Nw/Ns ≈ 10−5–10−4

for typical Majorana nanowires [11-16]. Taking into account

the decrease of the υ0 value close to the van Hove singularity

( /υ0 ≈ 102–103), we get Γw/Γs ≈ 10−3–10−1. Assuming

strong coupling between the nanowire and superconducting

shell with Γs ≥ Tc0, we get Γw ≈ (10−3–10−1)Tc0. Note that

under realistic experimental conditions the number of modes in

the wire (Nw) can increase due to the formation of the accumu-

lation layer near the superconductor–semiconductor interface

[29-31]. However, the increase of the shell thickness ds may

weaken the effect in the multimode regime of the supercon-

ductor. Overall, such estimate allows us to expect that the

consequences of the inverse proximity effect analyzed in our

paper can be observed experimentally.

It is worth noting that the Tc(h) plot in the Figure 3a clearly

demonstrates the appearance of h regions where the linearized

self-consistency equation has three solutions instead of one. In

other words, there can exist three critical temperatures corre-

sponding to a given magnetic field. This is evidence for the fact

that although the superconducting shell has a small g-factor, the

indirectly superconducting region is affected by effective

Zeeman field through tunneling. The presence of several solu-



Beilstein J. Nanotechnol. 2018, 9, 1184–1193.

1191

Figure 4: Critical temperature of the system as a function of the
Zeeman field h for εso = 0.46Tc0, Γs→0 and Γw = Tc0 for the supercon-
ducting states with different modulation vectors q ranging from
q = 0.44msTc0/kFs at h = 11.05Tc0 to q = msTc0/kFs at h = 10.8Tc0.

tions for Tc is typical for the standard paramagnetic effect in

superconductors and usually this behavior results in the FFLO

instability of the homogeneous solution for the gap function

[32]. To verify this scenario in our system we have solved a

self-consistency equation for the modulated order parameter

 and found that the regions with several solutions for

Tc for the homogeneous gap can, indeed, host an energetically

more favorable inhomogeneous FFLO gap function. The criti-

cal temperature Tc(q) for different q values can be seen in

Figure 4. As we increase the h value from h = 10.8 to h = 11.05

the q value corresponding to the maximal Tc changes from

kFsq/ms = Tc0 to kFsq/ms = 0.44Tc0. It is important to note that

as we solve the linearized equation for the superconducting gap,

we find, of course, only the critical temperatures corresponding

to the second-order phase transitions. Changing the period of

the gap modulation of the FFLO-type we also find only the tem-

peratures corresponding to the second-order phase transition.

The physical picture can become more complicated if one takes

into account possible first-order transitions corresponding to the

interplay between different local minima of the thermodynamic

potential in the nonlinear regime. However, the solution of non-

linear gap equations is beyond the scope of the current work

and needs further investigations. Note also that the possible

FFLO phase appears on either side of topological transition

( ) depending on the sign of the chemical poten-

tial μw. Indeed, in general the temperature as a formal solution

of the self-consistency Equation 16 is not a single-valued func-

tion of the magnetic field in the regions h ≥ ±μw slightly above

the positions of van Hove singularities, being inside the topo-

logical (trivial) regime for the upper (lower) sign. In experimen-

tally feasible cases of considered Γs,w (Figure 2) the upper

singularity at μw = h is more pronounced (Figure 3). Additional-

ly, an accurate analysis of the FFLO state should include careful

consideration of the modulation of the superconducting order

parameter both along the wire and in the azimuthal direction

[27,28].

Before we conclude, we discuss briefly the influence of the

inverse proximity effect on the effective induced gap operator

Δtop in the topological regime, , which is of

crucial importance for topological superconducting electronics

and topologically protected fault-tolerant quantum computing.

In our estimates we take the standard limit of μw = 0 for

the sake of simplicity. First, the increase of Γw reduces the

parameter range of the topological insulator regime 

as the magnetic field should well exceed Γw to avoid the

suppression of the critical temperature due to the van Hove

singularities (see Figure 2a,c for small Γs values). As soon

as Γw becomes comparable with αp with the typical quasipar-

ticle momentum  this regime completely disap-

pears. Further increase of the scattering rate should suppress

the gap  in the Kitaev limit. Indeed, for

Γw > mwα
2 = εso its value is limited from above by the quantity

Δtop ≈ Δind(εso/Γw)1/2 < Δind. Such decrease in the attainable in-

duced gap values imposes more strict conditions on working

temperatures for Majorana-based devices, due to quasiparticle

poisoning as the residual quasiparticle density is exponentially

sensitive to the gap values [33-36]. Of course, at large values of

Γs (see Figure 2b,d) the van Hove singularities are smeared and

the critical temperature (together with the gap value) is

suppressed only partially. However, even the partial suppres-

sion up to tens of percents may drastically increase the effect of

quasiparticle poisoning mentioned above.

Conclusion
We have studied the distinctive features of the inverse prox-

imity effect arising in the presence of a large Zeeman energy

and strong spin–orbit coupling in the hybrid systems consisting

of the SM nanowires covered by thin superconducting films.

Assuming a strong difference in g-factors between the wire and

superconducting metal we find the range of parameters and

fields corresponding to the FFLO instability and the regime of

reentrant superconductivity. We focus on the topologically

nontrivial regime of relatively large magnetic fields and analyze

consequences of the inverse proximity effect on the quasipar-

ticle poisoning in Majorana-based devices.

Supporting Information
Supporting Information File 1
Derivation of the model Equation 6 and Equation 7.

[https://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-9-109-S1.pdf]

https://www.beilstein-journals.org/bjnano/content/supplementary/2190-4286-9-109-S1.pdf
https://www.beilstein-journals.org/bjnano/content/supplementary/2190-4286-9-109-S1.pdf


Beilstein J. Nanotechnol. 2018, 9, 1184–1193.

1192

Acknowledgements
We are pleased to thank J. P. Pekola for valuable and stimu-

lating discussions. This work has been supported in part by the

Russian Foundation for Basic Research Grant Nos. 17-52-

12044, 18-02-00390 (A. A. K.), German Research Foundation

(DFG) Grant No. KH 425/1-1 (I. M. K.), by the Russian

Science Foundation, Grant No. 17-12-01383 (A. S. M.), Foun-

dation for the advancement of theoretical physics “BASIS”, and

the Academy of Finland Grant No. 298451.

ORCID® iDs
Ivan M. Khaymovich - https://orcid.org/0000-0003-2160-5984

References
1. Kitaev, A. Yu. Phys.-Usp. 2001, 44, 131.

doi:10.1070/1063-7869/44/10S/S29
2. Alicea, J. Phys. Rev. B 2010, 81, 125318.

doi:10.1103/PhysRevB.81.125318
3. Lutchyn, R. M.; Sau, J. D.; Das Sarma, S. Phys. Rev. Lett. 2010, 105,

077001. doi:10.1103/PhysRevLett.105.077001
4. Oreg, Y.; Refael, G.; von Oppen, F. Phys. Rev. Lett. 2010, 105,

177002. doi:10.1103/PhysRevLett.105.177002
5. Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Das Sarma, S.

Rev. Mod. Phys. 2008, 80, 1083–1159.
doi:10.1103/RevModPhys.80.1083

6. Alicea, J.; Oreg, Y.; Refael, G.; von Oppen, F.; Fisher, M. P. A.
Nat. Phys. 2011, 7, 412. doi:10.1038/nphys1915

7. Aasen, D.; Hell, M.; Mishmash, R. V.; Higginbotham, A.; Danon, J.;
Leijnse, M.; Jespersen, T. S.; Folk, J. A.; Marcus, C. M.; Flensberg, K.;
Alicea, J. Phys. Rev. X 2016, 6, 031016.
doi:10.1103/PhysRevX.6.031016

8. Alicea, J. Rep. Prog. Phys. 2012, 75, 076501.
doi:10.1088/0034-4885/75/7/076501

9. Elliott, S. R.; Franz, M. Rev. Mod. Phys. 2015, 87, 137–163.
doi:10.1103/RevModPhys.87.137

10. Aguado, R. Riv. Nuovo Cimento Soc. Ital. Fis. 2017, 40, 523.
doi:10.1393/ncr/i2017-10141-9

11. Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.;
Kouwenhoven, L. P. Science 2012, 336, 1003–1007.
doi:10.1126/science.1222360

12. Chang, W.; Albrecht, S. M.; Jespersen, T. S.; Kuemmeth, F.;
Krogstrup, P.; Nygård, J.; Marcus, C. M. Nat. Nanotechnol. 2015, 10,
232. doi:10.1038/nnano.2014.306

13. Higginbotham, A. P.; Albrecht, S. M.; Kiršanskas, G.; Chang, W.;
Kuemmeth, F.; Krogstrup, P.; Jespersen, T. S.; Nygård, J.;
Flensberg, K.; Marcus, C. M. Nat. Phys. 2015, 11, 1017.
doi:10.1038/nphys3461

14. Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.;
Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.;
Jespersen, T. S. Nat. Mater. 2015, 14, 400. doi:10.1038/nmat4176

15. Albrecht, S. M.; Higginbotham, A. P.; Madsen, M.; Kuemmeth, F.;
Jespersen, T. S.; Nygård, J.; Krogstrup, P.; Marcus, C. M. Nature
2016, 531, 206. doi:10.1038/nature17162

16. Zhang, H.; Gül, Ö.; Conesa-Boj, S.; Nowak, M. P.; Wimmer, M.;
Zuo, K.; Mourik, V.; de Vries, F. K.; van Veen, J.; de Moor, M. W. A.;
Bommer, J. D. S.; van Woerkom, D. J.; Car, D.; Plissard, S. R.;
Bakkers, E. P. A. M.; Quintero-Pérez, M.; Cassidy, M. C.; Koelling, S.;
Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L. P.
Nat. Commun. 2017, 8, 16025. doi:10.1038/ncomms16025

17. McMillan, W. L. Phys. Rev. 1968, 175, 537–542.
doi:10.1103/PhysRev.175.537

18. Sau, J. D.; Tewari, S.; Lutchyn, R. M.; Stanescu, T. D.; Das Sarma, S.
Phys. Rev. B 2010, 82, 214509. doi:10.1103/PhysRevB.82.214509

19. Kopnin, N. B.; Melnikov, A. S. Phys. Rev. B 2011, 84, 064524.
doi:10.1103/PhysRevB.84.064524

20. Kopnin, N. B.; Khaymovich, I. M.; Mel’nikov, A. S. Phys. Rev. Lett.
2013, 110, 027003. doi:10.1103/PhysRevLett.110.027003

21. Kopnin, N. B.; Khaymovich, I. M.; Mel’nikov, A. S. J. Exp. Theor. Phys.
2013, 117, 418. doi:10.1134/S1063776113110113

22. Stanescu, T. D.; Lutchyn, R. M.; Das Sarma, S. Phys. Rev. B 2011, 84,
144522. doi:10.1103/PhysRevB.84.144522

23. Reeg, C.; Loss, D.; Klinovaja, J. Phys. Rev. B 2017, 96, 125426.
doi:10.1103/PhysRevB.96.125426

24. Reeg, C.; Loss, D.; Klinovaja, J. arXiv 2018, No. 1801.06509.
25. Larkin, A. I.; Ovchinnikov, Yu. N. Sov. Phys. - JETP 1965, 20, 762.
26. Fulde, P.; Ferrell, R. A. Phys. Rev. 1964, 135, A550.

doi:10.1103/PhysRev.135.A550
27. Samokhvalov, A. V.; Mel’nikov, A. S.; Ader, J.-P.; Buzdin, A. I.

Phys. Rev. B 2009, 79, 174502. doi:10.1103/PhysRevB.79.174502
28. Samokhvalov, A. V. J. Exp. Theor. Phys. 2017, 125, 298–309.

doi:10.1134/S106377611707010X
29. Antipov, A. E.; Bargerbos, A.; Winkler, G. W.; Bauer, B.; Rossi, E.;

Lutchyn, R. M. arXiv 2018, 1801.02616.
30. Mikkelsen, A. E. G.; Kotetes, P.; Krogstrup, P.; Flensberg, K. arXiv

2018, 1801.03439.
31. Woods, B. D.; Stanescu, T. D.; Das Sarma, S. arXiv 2018, 1801.02630.
32. Saint-James, D.; Sarma, G.; Thomas, E. Type II Superconductivity;

Pergamon Press: Oxford, United Kingdom, 1969.
33. Saira, O.-P.; Kemppinen, A.; Maisi, V. F.; Pekola, J. P. Phys. Rev. B

2012, 85, 012504. doi:10.1103/PhysRevB.85.012504
34. Knowles, H. S.; Maisi, V. F.; Pekola, J. P. Appl. Phys. Lett. 2012, 100,

262601. doi:10.1063/1.4730407
35. Maisi, V. F.; Lotkhov, S. V.; Kemppinen, A.; Heimes, A.;

Muhonen, J. T.; Pekola, J. P. Phys. Rev. Lett. 2013, 111, 147001.
doi:10.1103/PhysRevLett.111.147001

36. van Woerkom, D. J.; Geresdi, A.; Kouwenhoven, L. P. Nat. Phys. 2015,
11, 547. doi:10.1038/nphys3342

https://orcid.org/0000-0003-2160-5984
https://doi.org/10.1070%2F1063-7869%2F44%2F10S%2FS29
https://doi.org/10.1103%2FPhysRevB.81.125318
https://doi.org/10.1103%2FPhysRevLett.105.077001
https://doi.org/10.1103%2FPhysRevLett.105.177002
https://doi.org/10.1103%2FRevModPhys.80.1083
https://doi.org/10.1038%2Fnphys1915
https://doi.org/10.1103%2FPhysRevX.6.031016
https://doi.org/10.1088%2F0034-4885%2F75%2F7%2F076501
https://doi.org/10.1103%2FRevModPhys.87.137
https://doi.org/10.1393%2Fncr%2Fi2017-10141-9
https://doi.org/10.1126%2Fscience.1222360
https://doi.org/10.1038%2Fnnano.2014.306
https://doi.org/10.1038%2Fnphys3461
https://doi.org/10.1038%2Fnmat4176
https://doi.org/10.1038%2Fnature17162
https://doi.org/10.1038%2Fncomms16025
https://doi.org/10.1103%2FPhysRev.175.537
https://doi.org/10.1103%2FPhysRevB.82.214509
https://doi.org/10.1103%2FPhysRevB.84.064524
https://doi.org/10.1103%2FPhysRevLett.110.027003
https://doi.org/10.1134%2FS1063776113110113
https://doi.org/10.1103%2FPhysRevB.84.144522
https://doi.org/10.1103%2FPhysRevB.96.125426
https://doi.org/10.1103%2FPhysRev.135.A550
https://doi.org/10.1103%2FPhysRevB.79.174502
https://doi.org/10.1134%2FS106377611707010X
https://doi.org/10.1103%2FPhysRevB.85.012504
https://doi.org/10.1063%2F1.4730407
https://doi.org/10.1103%2FPhysRevLett.111.147001
https://doi.org/10.1038%2Fnphys3342


Beilstein J. Nanotechnol. 2018, 9, 1184–1193.

1193

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which

permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of

Nanotechnology terms and conditions:

(https://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjnano.9.109

http://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjnano
https://doi.org/10.3762%2Fbjnano.9.109


1194

Circular dichroism of chiral Majorana states
Javier Osca1 and Llorenç Serra*1,2

Full Research Paper Open Access

Address:
1Institut de Física Interdisciplinària i de Sistemes Complexos IFISC
(CSIC-UIB), E-07122 Palma de Mallorca, Spain and 2Departament de
Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca,
Spain

Email:
Llorenç Serra* - llorens.serra@uib.es

* Corresponding author

Keywords:
chiral states; circular dichroism; Majorana modes; optical absorption;
topological matter

Beilstein J. Nanotechnol. 2018, 9, 1194–1199.
doi:10.3762/bjnano.9.110

Received: 11 December 2017
Accepted: 13 March 2018
Published: 16 April 2018

This article is part of the Thematic Series "Topological materials".

Guest Editor: J. J. Palacios

© 2018 Osca and Serra; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
Background: Majorana states in condensed matter devices may be of a localized nature, such as in hybrid semiconductor/supercon-

ductor nanowires, or chirally propagating along the edges such as in hybrid 2D quantum-anomalous Hall/superconductor structures.

Results: We calculate the circular dichroism due to chiral Majorana states in a hybrid structure made of a quantum-anomalous Hall

insulator and a superconductor. The optical absorption of chiral Majorana states is characterized by equally spaced absorption peaks

of both positive and negative dichroism. In the limit of a very long structure (a 2D ribbon) peaks of a single sign are favored.

Conclusion: Circular-dichroism spectroscopy of chiral Majorana states is suggested as a relevant probe for these peculiar states of

topological matter.

1194

Introduction
The physics of Majorana states in condensed matter devices is

attracting strong interest for a few years now [1-8]. The

measured zero-bias conductance peaks in hybrid semiconduc-

tor/superconductor nanowires have been attributed to the pres-

ence of localized Majorana modes on the two ends of the nano-

wires [9-14]. A Majorana mode enhances the zero-bias conduc-

tance by allowing a perfect Andreev backscattering at zero exci-

tation energy when the nanowire is attached to a normal lead.

These peculiar pairs of states may be seen as nonlocal split

fermions, protected by an energy gap that separates them from

other normal states lying at finite energies. Besides the zero

energy of the Majorana state, also the conductance peak height

was recently seen to coincide with the expected value 2e2/h

[15].

Majorana end states in (quasi) 1D nanowires are inherently

localized, i.e., their wave function decays exponentially with the

distance to the nanowire end. By contrast, propagating Majo-

rana states with sustained spatial oscillations can be present at

the edges and along the perimeter of 2D-like hybrid structures.

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:llorens.serra@uib.es
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This is the situation in presence of p + ip superconductivity for

spinless quasiparticles, a class of hybrid systems where Majo-

rana states appear around 2D vortex cores in the bulk and on the

external edges of the sample [16]. Another class of 2D materi-

als with propagating Majorana modes are the topological insula-

tors based on the quantum-anomalous Hall effect. We refer,

specifically, to the hybrid devices of [17], consisting of a quan-

tum-anomalous Hall insulator and a superconductor material. In

such systems, chiral Majorana modes propagating along the

edges in a clockwise or anticlockwise manner, depending on the

orientation of a perpendicular magnetic field, are formed at the

2D interfaces between the quantum-anomalous Hall and the

superconductor materials [18-22]. Each chiral Majorana state

contributes 0.5e2/h to the linear conductance of the device, such

that by tuning the number of Majorana states the conductance

takes values 0.5e2/h and 1e2/h for the topological phases with

one and two chiral Majorana states, respectively. It is remark-

able that the intrinsic magnetization of the material in the anom-

alous Hall effect allows for the tuning of the phase transitions

using much weaker magnetic fields than with the standard Hall

effect.

In this work we discuss the connection between chiral Majo-

rana states and optical absorption. We expect that in presence of

chiral Majorana states, the optical absorption of circularly

polarized light will differ for clockwise and anti-clockwise po-

larizations. The difference, known as circular dichroism (CD)

[23,24], can thus be seen as a measure of the existence of such

chiral states. We want to investigate how this behavior is actu-

ally realized by explicit calculations of the optical aborption. In

previous works we analyzed the optical absorption of localized

Majorana states in nanowires [25,26]. In those systems the CD

vanishes and the presence of the Majorana state is signaled by a

plateau with lower absorption, starting at mid-gap energy, of the

y-polarized signal with respect to the x-polarized signal. It is

also worth mentioning that alternative techniques for detecting

Majorana fermions, based on microwave photoassisted tunnel-

ing in Majorana nanocircuits have been suggested in [27].

For chiral Majorana states in a 2D square or rectangular geome-

try the CD at low energies is characterized by a sequence of

equally spaced peaks, corresponding to transitions of Bogoli-

ubov–deGennes quasiparticles from negative to positive energy.

In the usual energy ordering of quasiparticle states (n = ±1, ±2,

…), the selection rules are: a) transitions between conjugate

states −n→n are forbidden by electron–hole symmetry, b) tran-

sitions −n→m are allowed only when n and m are both even or

both odd. The rationale behind rule b) is the constructive inter-

ference of the corresponding quasiparticle states connected by

the excitation operator on the edges of the system. Furthermore,

it will be shown below that the CD peaks corresponding to

those even–even or odd–odd quasiparticle transitions may be

either positive or negative. In the limit of a long 2D ribbon there

is a preferred CD sign, depending on the magnetic field orienta-

tion. For a disc geometry the generalized angular momentum Jz

becomes a good quantum number. Then, the combination of cir-

cular and particle–hole symmetries in a disc causes a vanishing

absorption for px ± ipy fields and, obviously, also a vanishing

CD.

Model
We use the model of [17] for a quantum-anomalous Hall (3D)

thin film in contact with two different superconductors. This

model represents the device as two surfaces with a certain inter-

action between them, with Majorana states being located at their

edges. In a Nambu spinorial representation that groups the field

operators in the top (t) and bottom (b) layers,

the Hamiltonian is reformulated in the notation of Pauli

matrices (with t and b surfaces corresponding to the Pauli

indices 1 and 2, respectively):

(1)

This Hamiltonian is acting in the combined position–spin–iso-

spin–pseudospin space. Spatial positions are treated as a 2D

continuum ( ) and a discrete two-valued pseu-

dospin (z). The two-valued spin, isospin and pseudospin degrees

of freedom are represented by σ, τ and λ Pauli matrices, respec-

tively. As mentioned, the pseudospin (λ) is modeling a coupled

bilayer system in which quasiparticles move. The set of Hamil-

tonian parameters is m0, m1, ΔB, μ, α, Δp and Δm. The latter two

are given in terms of the pairing interaction in the two layers, Δt

and Δb, by

(2)

Hybridization of the two surfaces is represented by parameters

m0 and m1. ΔB is an effective Zeeman-like parameter including

the exchange field associated with the intrinsic magnetization of

the material. The chemical potential is given by μ while α repre-

sents a Rashba-type spin–orbit interaction.
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Below we numerically determine the eigenvalues and eigen-

states of  using a 2D grid for x and y. When ΔB is increased,

the spectrum of low-energy eigenvalues evolves from a gapped

(void) spectrum around zero energy at low values of ΔB, to the

emergence of chiral near-zero-energy modes for sufficiently

large values of ΔB. When the pairing parameters for each layer

are equal (Δm = 0) chiral Majorana states appear in pairs

(0–2–…), while for sufficiently different parameters it is Δm ≠ 0

and there may be phases with odd numbers of chiral Majorana

states as well.

The numerical results shown below are given in an

effective unit system, characterized by the choice of ,

mass m ≡ 1/2m1 ≡ 1 and a chosen length unit LU, typically

LU  ≈  1 μm. The corresponding energy unit is then

.

Circular dichroism
We compute the optical absorption cross section for right (+)

and left (−) circularly-polarized light from

(3)

where  is the energy difference between particle

(unoccupied) and hole (occupied) states. The prefactor 

gives the squared inverse effective mass ( ) of the Hamil-

tonian and fixes the dimensions of  as an area. The circular di-

chroism at a given frequency  is then defined as the

difference between the absorptions for the two circular polariza-

tions,

(4)

Obviously, in absence of any chirality preference  exactly

vanishes.

Results and Discussion
Chiral bands
Figure 1 shows the evolution of the eigenvalue spectrum as a

function of the magnetic field parameter ΔB. The results repro-

duce already known results [17]. At vanishing ΔB the spectrum

around zero energy is gapped, a gap that tends to close with in-

creasing ΔB by the appearance of a quasi-continuum distribu-

tion of eigenvalues. These low-energy states are indicating the

presence of propagating Majorana states, energy-discretized due

to the finite size of the system. When Δt = Δb (Figure 1a,c) the

degeneracy is such that the Majorana branches appear in pairs.

Directly determining the degeneracy of the energy eigenstates

close to zero energy is an alternative way to characterize the

topological invariant or Chern number discussed in [20]. We

also notice that there is no qualitative difference in the eigen-

value distribution between a square and a rectangle (upper vs

lower panels). It is remarkable that when a Majorana phase is

well developed the low-energy states are equally spaced in

energy. This is particularly clear for 2 < ΔB/EU < 4 in Figure 1a

and Figure 1c, corresponding to the phases with two Majorana

states. It can also be seen in Figure 1b and Figure 1d for the

phases with one Majorana state while that the equally spaced

distribution also hints to the beginning of the phase with two

Majorana states.

Figure 1: Energy eigenvalues close to zero energy as a function of ΔB.
Panels a) and b) are for a square of dimensions Lx = Ly = 10LU, while
c) and d) correspond to a rectangle of Lx = 2Ly = 20LU. In a) and c) the
same pairing energy is assumed in each layer Δt = Δb = EU while in b)
and d) it is Δt = Δb/3 = EU. The framed labels indicate the degeneracy
of the near-zero energy states, which indicates the topological phase.
Other parameters: m0 = 0, μ = 0, α = EULU.

The chiral character of the gap-closing Majorana states is

clearly seen in Figure 2. The equally spaced states at low energy

arrange themselves on a line (a chiral band) when plotted as a

function of the z-component of the angular momentum. For pos-

itive ΔB the angular momentum decreases with increasing

energy, causing empty (particle) states to have negative values

of , while occupied (hole) states have positive values of

. The results of Figure 2a,b correspond to the rectangle

with different pairing energies in each layer shown in Figure 1d.

For ΔB = 2EU (Figure 2a) there is a single chiral band, while for

ΔB = 4.75EU (Figure 2b) there are two overlapping bands.

Notice that the overlap of states in Figure 2b degrades as the

energy deviates from zero, indicating that the second Majorana

band is not yet fully settled for this particular ΔB. Additionally,

Figure 2c explicitly shows the edge character of the states of a

chiral Majorana band. A similar distribution is obtained for all

the states in a chiral band. On the contrary, states that are not
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aligned along the chiral band in Figure 2a,b are bulk states sepa-

rated by a gap from zero energy.

Figure 2: Energy eigenvalues as a function of . Panels a) and b)
correspond to the phases in Figure 1d with one (ΔB = 2EU) and two
(ΔB =4.75EU) Majorana states, respectively. The grey shaded zones
indicate the occupied (hole) states while the arrows in panel a) show
the two lowest allowed transitions to the first particle state. Panel c)
shows the probability density corresponding to the lowest positive-
energy state in panel a), adding all spin, isospin and pseudospin
contributions.

Absorption and CD
Absorption cross-sections and CD for the spectra of the

rectangle with different pairing energies in the two layers

(Figure 1d) are shown in Figure 3 for selected values of ΔB.

They correspond to zero (Figure 3a), one (Figure 3b) and two

(Figure 3c) chiral bands. As anticipated, in presence of the

chiral states the system develops a clear CD. For the sake of a

better comparison, identical scales have been used in the three

panels of Figure 3. In these scales, the two absorptions and the

CD essentially vanish in the absence of chiral modes

(Figure 3a). The rightmost inset in panel Figure 3a shows that

for energies exceeding the quasiparticle gap a small absorption

eventually appears due to transitions between bulk states (cf.

Figure 1d). However, the CD still vanishes within numerical

precision. The negative CD peaks dominate in Figure 3b,c due

to the negative slope of the chiral bands (Figure 2a,b). It is

remarkable, however, that a few positive peaks are also present.

We attribute them to the fact that in a rectangular geometry Jz is

not a good quantum number and, therefore, there are states with

mixed angular momentum. We have performed calculations in a

circular geometry confirming this interpretation. Therefore,

quasiparticle scattering by the corners plays a nontrivial role on

the absorption by chiral edge states.

The most conspicuous feature of Figure 3b is the regular energy

spacing of the first few CD peaks. Analysing them in terms of

Figure 3: Absorption cross-sections ,  and  defined in the
main text. The shown results correspond to the spectra of Figure 1d for
Zeeman parameters of (a) ΔB = 0.3EU, (b) 2EU), and (c) 4.75EU. The
rightmost inset in Figure 3a corresponds to an extended energy range
and a zoomed vertical scale for the data of this panel.

energy transitions of the chiral band it is easily noticed that they

correspond to jumps of 3, 5, 7,… steps (see arrows in

Figure 2a). We explain this selection rule noticing the following

restrictions for transitions from the negative n-th state to the

positive m-th state (−n→m): (a) Transitions between conjugate

states −n→n are forbidden by particle–hole symmetry [25], and

(b) n even to m odd transitions (or vice versa) are forbidden

because of destructive interference along the nanostructure

perimeter with the excitation operator. This rule is far less

obvious than rule (a) and results from the approximately 1D

character of the chiral edge modes and the interference induced

by the propagation through corners. Indeed, we have seen that

for active transitions within the chiral bands the regions around

the corners are those contributing the most to the matrix ele-

ment in Equation 3.

For a disc, Jz becomes a good symmetry and, by angular

momentum conservation with a dipole operator only the transi-

tion −1→1 is possible. However, this transition is blocked by

rule (a) and, therefore, no dipole absorption is possible and the

CD exactly vanishes. We have also checked this behavior by

explicit calculation for a device with circular geometry. For a
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square and rectangle, quasiparticle scattering by the corners

plays a nontrivial role yielding the mentioned deviations with

respect to the disc.

The pattern of equally spaced peaks is fulfilled only when one

or several chiral bands are fully developed and they exactly

overlap. In Figure 3c we see that the slight degradation of the

two-band overlaps of Figure 2b manifests in a small twofold

splitting of the CD peaks. It is also worth stressing that once the

chiral bands are fully formed, the energy positions of the first

few CD peaks become independent on ΔB (cf. Figure 2b and

Figure 2c).

Figure 4 shows the absorption results for different geometries, a

square (Figure 4a) and a long rectangle resembling a 2D ribbon

(Figure 4b). For the square, the first CD peaks alter sign in a

remarkable way. For the ribbon the alternation is of a longer

period, the positive peaks having a much lower intensity than

the negative ones and there are groups of a few consecutive

negative peaks. The 2D ribbon shape thus favors the observa-

tion of CD peaks of the same sign. Nevertheless, the presence

of the corners is still essential since for a strictly infinite ribbon

the CD exactly vanishes. This is clear when realizing that with

fully translational invariant states the px operator in Equation 3

is not yielding any excitation and, therefore, the sign of the py

operator becomes irrelevant, yielding .

Figure 4: Absorption cross-sections ,  and  for (a) a square
of Lx = Ly = 20 LU), and for (b) a rectangle of Lx = 6Ly = 60LU (b). In
both cases we used ΔB = 2EU and Δt = Δb/3 = EU.

Conclusion
In this work we have investigated the manifestation of chiral

Majorana modes in the CD of the dipole absorption. The chiral

bands formed at the edges of a hybrid system made of a quan-

tum-anomalous Hall insulator and a superconductor yield

equally spaced peaks in the CD signal. We identified the parti-

cle–hole selection rules responsible for this behavior from the

analysis in terms of chiral bands. In a disc there is no CD signal

due to the incompatibility of the selection rules with the angular

momentum restriction; a square or rectangular geometry (or,

more generally, a system with straight edges or breaking circu-

lar symmetry) is needed. The presence of two chiral bands can

be inferred from the small splitting of the CD peaks. Finally,

both positive and negative CD peaks can be seen, with a perfect

alternation in a square and a favored sign in a long 2D ribbon

geometry.

Our results suggest the use of CD spectroscopy as a valuable

probe of chiral Majorana states, complementing the evidences

obtained with electrical conductance measurements [17]. This

may require the use of an array of absorbing devices, in order to

achieve a combined signal of sufficient intensity. Alternatively,

techniques such as those developed for single plasmonic nano-

particle sensing [28] might be applied to an isolated chiral

Majorana device. Particularly, among the latter we stress the

techniques for single-particle absorption that have allowed

measuring the extinction spectrum of a single silica shell-coated

silver nanoparticle excited with varying polarizations [29].
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Abstract
There have recently been several experiments studying induced superconductivity in semiconducting two-dimensional electron

gases that are strongly coupled to thin superconducting layers, as well as probing possible topological phases supporting Majorana

bound states in such setups. We show that a large band shift is induced in the semiconductor by the superconductor in this geome-

try, thus making it challenging to realize a topological phase. Additionally, we show that while increasing the thickness of the

superconducting layer reduces the magnitude of the band shift, it also leads to a more significant renormalization of the semicon-

ducting material parameters and does not reduce the challenge of tuning into a topological phase.

1263

Introduction
Topological superconductors host zero-energy Majorana bound

states at their edges that are highly sought for applications in

topological quantum computing [1-3]. The two proposals to

realize topological superconductivity that have received the

most attention to date involve engineering Majorana bound

states in either low-dimensional semiconducting systems [4-23]

or in ferromagnetic atomic chains [24-32]. After the first signa-

tures of topological superconductivity were observed [33-37],

much of the experimental focus was placed on developing more

suitable devices for realizing robust topological supercon-

ducting phases. One of the most significant experimental

advances of the past few years was the successful epitaxial

growth of thin layers of superconducting Al on InAs and InSb

nanowires [38-42]. The intimate contact between the semicon-

ductor and superconductor in these devices ensures a hard in-

duced superconducting gap. Recently, this epitaxial growth

technique has been applied also to InAs two-dimensional elec-

tron gases (2DEGs) [43-47].

The proximity effect has been theoretically studied recently in

both strictly one-dimensional (1D) [48] and quasi-1D [49] wires

coupled to thin superconducting layers. In both instances, a

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:christopher.reeg@unibas.ch
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strong proximity coupling induces a large band shift on the

semiconducting wire. This band shift is comparable to the level

spacing in the superconductor,  (which is δEs ~

400 meV for a superconductor thickness of d ~ 10 nm and a

Fermi velocity of Al of vF ~ 2 × 106 m/s). In both cases, this

large band shift makes it very challenging to realize a topolog-

ical phase when utilizing thin superconducting layers.

In this paper, we extend the works of [48,49] to the 2D limit.

We show that the large band shift that plagues the 1D case

persists also in two dimensions. First, we show that the self-

energy induced in an infinite 2DEG coupled to a supercon-

ductor of finite thickness is equivalent to that induced in an infi-

nite wire coupled to a 2D superconductor of finite width (corre-

sponding to the theoretical model of [48]), with the simple

replacement of a 1D momentum by the magnitude of a 2D

momentum. Analyzing the self-energy, we find that the in-

duced gap in the presence of only Rashba spin–orbit coupling

can be made comparable to the bulk gap of the superconductor

only if the tunneling energy scale exceeds the large level

spacing of the superconducting layer. As in the 1D case, the

large tunneling energy scale induces a large band shift on the

2DEG and makes it very challenging to realize a topological

phase. We also show that while the band shift can be signifi-

cantly reduced by increasing the thickness of the supercon-

ducting layer, the topological phase is still difficult to realize if

the 2DEG/superconductor interface remains very transparent.

Model of the Proximity Effect
The system we consider consists of a 2DEG with strong Rashba

spin–orbit interaction (SOI) proximity-coupled to an s-wave

superconductor of thickness d, as shown in Figure 1. The

2DEG-superconductor heterostructure is described by the action

(1)

The action of the 2DEG in Nambu space is given by

(2)

where ω is a Matsubara frequency, k = (kx,ky) is the momentum,

and

Figure 1: A 2DEG is proximity-coupled to an s-wave superconductor
with finite thickness d. Both systems are taken to be infinite in the
xy-plane.

is a spinor of Heisenberg operators describing states in the

2DEG. The Hamiltonian density is

(3)

where ξk = k2/2m2D − μ2D (m2D and μ2D are the effective

mass and chemical potential of the 2DEG, respectively, and

), α is the Rashba SOI constant, and σx,y,z (τx,y,z)

are Pauli matrices acting in spin (Nambu) space. The supercon-

ductor is described by the BCS action,

(4)

where

is a spinor of Heisenberg operators describing states in the

superconductor and the Hamiltonian density is

(5)

with ms, μs, and Δ the effective mass, chemical potential, and

pairing potential of the superconductor, respectively. Local

tunneling at the interface between the two materials is assumed

to conserve both spin and momentum,

(6)

where t is the tunneling amplitude. We must take the 2DEG to

be located at some finite z2D (0 < z2D < d) due to the break-

down of the tunneling Hamiltonian approach for the case where

the 2DEG is located at the boundary of the superconductor. The

breakdown of the tunneling Hamiltonian results from our
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Figure 2: Sketch of Bogoliubov excitation spectra as a function of
 in the absence of tunneling, assuming  and

μ2D = 0. The red and blue curves correspond to ± subbands of the
2DEG (Equation 7), respectively, which result from the spin-splitting
Rashba SOI. The black curve corresponds to the lowest-energy
subband of the superconductor (Equation 8). A weak tunneling ampli-
tude t induces anticrossings in the spectrum where indicated and in-
duces a superconducting gap in the 2DEG at the Fermi momenta (cor-
responding to those momenta for which E±(k)=0). Due to the large
energy mismatch between the superconducting subband and the
Fermi points of the 2DEG, the induced gap is very small.

neglect of the thickness of the 2DEG (for related calculations in

which the finite thickness is taken into account, see [50-53]).

However, as shown in [48], choosing  (where

 is the Fermi momentum of the superconductor)

yields good agreement with numerical calculations in which

there is no issue with placing the 2DEG strictly at the boundary.

In the absence of tunneling, the spectrum of the 2DEG consists

of two spin–orbit-split subbands described by

(7)

When the finite-size quantization scale of the superconductor

greatly exceeds the gap, , the first few subbands of

the superconductor follow a linearized form given by ( )

(8)

where δEs = πvF/d is the level spacing in the superconductor

(vF = kF/ms is the Fermi velocity) and . When the thick-

ness of the superconducting layer is much smaller than its

coherence length,  = πvF/Δ, the level spacing of the layer

greatly exceeds its gap, .

The spectra of the 2DEG and the superconductor are plotted in

Figure 2. Provided that , the bands

of the 2DEG and superconductor intersect at high energies

. Since we impose momentum conservation (in ad-

dition to energy conservation) in Equation 6, the subbands are

coupled only at the intersection points. Thus, a weak tunnel

coupling induces anticrossings in the spectrum, as indicated in

Figure 2, which leads to a shift in the subbands of the 2DEG.

Additionally, the tunnel coupling opens a superconducting gap

at the Fermi momenta of the 2DEG; however, due to the inter-

section points lying at very large energies, the gap opened in the

2DEG is very small. A large gap can only be induced if tunnel-

ing is strong enough to overcome the large energy mismatch

similar to δEs.

To determine the self-energy of the 2DEG induced by the

superconductor, we integrate out the superconducting degrees

of freedom. After integrating out, the 2DEG can be described

by the effective action

(9)

with the self-energy given by

(10)

In Equation 10,  is the Green’s function of the bare

superconductor (in the absence of tunneling), which satisfies

(11)

Imposing a vanishing boundary condition at z = 0 and z = d, we

find a solution to Equation 11 given by

(12)
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where  = 2ms(μs ± iΩ) − k2 and Ω2 = Δ2 + ω2 [48,54]. The

Green’s function of a bulk superconductor, expressed in real

space, is

(13)

where, in evaluating the integral, we make a semiclassical

expansion k± = kFφ ± iΩ/(vFφ) ≡ ζ ± iχ (valid in the limit

) and define a quantity  that parame-

trizes the trajectories of states in the superconductor. Substi-

tuting the Green’s function (Equation 12) into the self-energy

(Equation 10), we find

(14)

where we define

(15)

with γ = t2/vF, an energy scale determined by the tunneling

strength. The quantity Γk,ω can be interpreted as an effective

quasiparticle weight, as it takes values of 0 < Γ < 1, and is re-

sponsible for inducing superconductivity in the 2DEG, while

δμk,ω corresponds to a tunneling-induced shift in the effective

chemical potential of the 2DEG. Quite surprisingly, the self-

energy in Equation 14 and Equation 15 coincides with that of a

nanowire coupled to a two-dimensional superconductor with

finite width as found in [48], with the simple replacement of a

1D momentum by the magnitude of a 2D momentum.

Results and Discussion
Induced gap and band shift
Using the self-energy derived in the previous section, we first

calculate the size of the proximity-induced gap in the 2DEG.

Once we find an expression for the gap, we estimate the tunnel-

ing strength needed in order for the gap in the 2DEG to be

comparable to that in the superconductor. We then add a

Zeeman term to the Hamiltonian of the 2DEG and estimate the

Zeeman energy needed to reach the topological phase in such a

setup.

It is convenient to work in the chiral basis in which the normal

Green’s function of the 2DEG is diagonal. To this end, we

introduce a unitary transformation

(16)

with , which can be used to convert

between the spin (σ) and chiral (λ) bases, .

The Green’s function in the spin basis is given by

. Rotating to the chiral basis, we

find a Green’s function given by

(17)

where  = ω/Γk,ω,  = ξk − δμk,ω ± αk and  = Δ(1/Γk,ω − 1).

The spin–singlet pairing induced by the superconductor appears

as intraband chiral p-wave pairing (of the form px ± ipy) when

expressed in the chiral basis.

Before continuing, let us simplify the parameters Γk,ω and δμk,ω.

We will focus on the limit where the thickness of the supercon-

ducting layer is much smaller than its coherence length, 

(equivalently, ), and where the normal layer is located

close to the edge of the superconductor, . Because of

the large Fermi surface mismatch between the 2DEG and super-

conductor, we must have  (or, equivalently, φ ≈ 1); in the

following, we neglect the momentum dependence by setting φ =

1 (which is justified as long as we only consider momenta

). In the limit , the parameters simplify to
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Figure 3: Spectrum of a 2DEG coupled to a thin superconducting layer (see Equation 19) for (a) γ = Δ (corresponding to Γ = 0.9996 and δμ = 0.78Δ)
and (b) γ = δEs (corresponding to Γ = 0.735 and δμ = 780Δ). When tunneling is weak (as in panel a), the band shift is rather small but the induced gap
is negligible. If tunneling is strong enough to open a sizable gap (as in panel b), the band shift is very large (note that the band shift is given by E±(0) ~
Γδμ rather than δμ). In both plots, Eso = 2Δ, δEs = 1000Δ, μ2D = 0, kFd/π = 48.75, and kFz2D = 0.3. Here kso = mα is the spin–orbit momentum. Note
that although, in the insets, we show only the induced gap on the "−"-subband, there is an equally large gap induced on the "+"-subband.

(18)

where we drop the subscript (k,ω) because both Γ and δμ are

now independent of frequency and momentum. In expanding

Equation 15 to arrive at Equation 18, we assumed that

 (therefore, these expressions break down

when kFd/π→n, with ).

The spectrum of the proximitized 2DEG is determined by the

poles of the retarded Green’s function. After analytic continua-

tion iω→E + i0+, we find two branches of the spectrum from

Equation 17 given by

(19)

where μeff = μ2D + δμ is an effective chemical potential of the

2DEG. The spectrum describes an s-wave superconductor with

Rashba-split bands and an excitation gap

(20)

We see that the size of the excitation gap is determined by the

parameter Γ. When , the full bulk gap of the supercon-

ductor is induced in the 2DEG, while for , a very

small gap is induced. In order to have an induced gap compa-

rable (but not equal) to the bulk gap, we require that neither

 nor  is satisfied. However, to realize this situa-

tion requires a tunneling strength

(21)

where we have assumed that (kFz2D)2/sin2(kFd) ~ 1. If the

tunneling strength is chosen as in Equation 21, the band shift

measured at k = 0, E±(0), is

(22)

Therefore, the scale of the band shift is also set by the level

spacing in the thin superconducting layer. We note that while

the quantity δμ is bounded only by the chemical potential of the

superconductor μs (as the tunneling Hamiltonian approach itself

should break down for γ ~ μs), the band shift saturates to

E±(0) ~ δEs in the limit  (where ).

We plot the spectrum of the 2DEG (see Equation 19) in

Figure 3. In the weak-coupling limit (Figure 3a), there is a

rather small band shift but a negligible superconducting gap is

opened in the 2DEG. In the strong-coupling limit (Figure 3b),

we show that while a larger gap is induced, the band shift is

very large.

Topological transition
We now add a Zeeman splitting ΔZ to the Hamiltonian of the

2DEG such that

(23)
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Figure 4: (a) Evaluating the self-energy with the Green’s function of a bulk superconductor (see Equation 26) corresponds to a 2DEG embedded
within an infinitely large superconductor. (b) Evaluating the self-energy with the Green’s function of a semi-infinite superconductor (see Equation 27)
corresponds to a 2DEG placed on the surface of an infinitely large superconductor.

Such a Zeeman splitting can arise due to the application of an

out-of-plane magnetic field [4,5] (though orbital effects are not

incorporated here) or due to the proximity of a magnetic

insulator [8]. Also, it is possible to apply an in-plane magnetic

field (to avoid unwanted orbital effects) to reach the topolog-

ical phase if the 2DEG has a finite Dresselhaus SOI, as shown

in [9]. An in-plane magnetic field in the presence of only

Rashba SOI is not sufficient to reach the topological phase

because it does not open a gap in the Rashba spectrum. The

spectrum in the presence of the Zeeman splitting, which again

is determined by poles in the retarded Green’s function

, is given by

(24)

where we have used Eg = Δ(1 − Γ) as in Equation 20. Therefore,

we find a gap-closing topological transition at k = 0 for the criti-

cal Zeeman splitting

(25)

In the case of a very large band shift,  and ,

the topological transition is given by  [note that Γ drops

out of Equation 25 in this limit].

We now provide an estimate of the Zeeman splitting at which

we expect the k = 0 gap-closing transition to occur experimen-

tally in an Al/InAs 2DEG heterostructure. Given the thickness

of the superconducting Al layer of d = 10 nm [44], we estimate

a level spacing of δEs =  = 413 meV (taking vF =

2 × 106 m/s). Therefore, if a sizable gap is induced in the

2DEG, as observed experimentally, typical values for the band

shift are of the same order of magnitude as the level spacing,

Γδμ ~ 400 meV. Then, provided that the chemical potential

cannot be controlled over such a large scale by external gates,

the critical Zeeman splitting needed to reach the topological

phase is  = δμ ~ 400 meV. Such a large Zeeman splitting

cannot be achieved in the 2DEG without destroying supercon-

ductivity in the thin layer. We also note the possibility that, by

coincidence, the band shift vanishes (or becomes small); from

Equation 18, we see that δμ = 0 if kFd = cot−1(1/kFz2D) + nπ (for

). In this special case, which requires the thickness of the

superconducting layer to be finely tuned on the scale of its

Fermi wavelength, there is no band shift to prevent one from

tuning into a topological phase. However, for most devices, the

large band shift makes it very challenging to realize a topolog-

ical phase.

Increasing thickness of superconducting
layer
The self-energy appearing most frequently in the literature to

describe proximitized nanowires and 2DEGs [55-60], which

also has been used often in interpreting experimental results

[40,42], is that induced by a bulk superconductor,

(26)

Equation 26 can be obtained by setting z2D = d/2 and taking the

limit d→∞ in Equation 15 (or, as it is usually done, by substi-

tuting the bulk Green’s function in Equation 13 when evalu-

ating the self-energy in Equation 10). Hence, this self-energy

describes a 2DEG embedded within a bulk superconductor, as

shown in Figure 4a. To describe the case where a 2DEG is

placed at the surface of a bulk superconductor (as shown in

Figure 4b), the limit d→∞ should be taken in Equation 15 while

keeping z2D finite (or, equivalently, substituting the Green’s

function of a semi-infinite (SI) superconductor when evaluating

the self-energy in Equation 10). For this case, we obtain

(27)
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The most notable difference is the presence of a nonzero band

shift in the semi-infinite case. However, this band shift is signif-

icantly reduced compared to the case of a thin superconducting

layer, as it saturates to E±(0) ~ ΓSIδμSI ~ Δ in the limit .

Although it may seem that a topological phase can be much

more easily realized by simply increasing the thickness of the

superconducting layer in order to reduce the band shift induced

on the 2DEG, this is not the case. Crucially, both the bulk and

the semi-infinite self-energies give the ratio γ/Δ as the relevant

parameter determining whether the system is in the weak-cou-

pling [ , or equivalently ] or strong-coupling

[(1 − Γ) ~ 1, or equivalently Eg ~ Δ] limit. This is in stark

contrast to the limit of a thin superconducting layer, where a

tunneling energy  is required to open a gap Eg ~ Δ

in the 2DEG. Therefore, because the tunneling energy γ is a

property of the interface and should not be expected to change

as the thickness of the superconducting layer is increased, this

energy is fixed to γ ~ δEs provided that the interface is trans-

parent enough to induce a gap in the thin-layer limit (as seen in

the experiments). If the thickness of the superconductor is in-

creased, such that , the system will be deep within the

strong-coupling limit; from Equation 26 and Equation 27, we

find . The critical Zeeman splitting needed to in-

duce a topological phase (see Equation 25) is therefore given by

 ~ Δ/Γ ~ γ ~ 400 meV. We note that in the case of a thin

superconducting layer, the topological transition is pushed to

large Zeeman splitting by very large δμ, which could possibly

be compensated for if the chemical potential μ2D has a large

range of tunability. In the case of a bulk system, the topological

transition is pushed to large Zeeman splitting by very small Γ,

which cannot be affected by tuning μ2D. Hence, even if the

thickness d of the superconducting layer is made infinite, the

topological phase transition is determined by the interfacial

tunneling energy. In order to induce a topological phase more

reliably, a much weaker coupling between a 2DEG and a bulk

superconductor (such that γ ≤ Δ) should be sought. We also

note that this result applies to the 1D model considered in [48]

as well.)

Conclusion
We have studied the proximity effect in a two-dimensional elec-

tron gas (2DEG) strongly coupled to a thin superconducting

layer, showing that the detrimental band shift shown in [48,49]

to dominate the proximity effect in wires is also crucial in

2DEGs. In order to induce a sizable gap in the 2DEG, the

tunneling energy scale must overcome the large level spacing

within the superconductor. However, introducing such a large

energy scale to the semiconductor induces a large band shift

that makes it challenging to realize a topological phase. This

challenge cannot be alleviated by simply increasing the thick-

ness of the superconducting layer but requires a significant

weakening of the proximity coupling afforded by the epitaxial

interface.
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Abstract
Hybrid superconductor–semiconductor nanowires with Rashba spin–orbit coupling are arguably becoming the leading platform for

the search of Majorana bound states (MBSs) in engineered topological superconductors. We perform a systematic numerical study

of the low-energy Andreev spectrum and supercurrents in short and long superconductor–normal–superconductor junctions made of

nanowires with strong Rashba spin–orbit coupling, where an external Zeeman field is applied perpendicular to the spin–orbit axis.

In particular, we investigate the detailed evolution of the Andreev bound states from the trivial into the topological phase and their

relation with the emergence of MBSs. Due to the finite length, the system hosts four MBSs, two at the inner part of the junction and

two at the outer one. They hybridize and give rise to a finite energy splitting at a superconducting phase difference of π, a well-

visible effect that can be traced back to the evolution of the energy spectrum with the Zeeman field: from the trivial phase with

Andreev bound states into the topological phase with MBSs. Similarly, we carry out a detailed study of supercurrents for short and

long junctions from the trivial to the topological phases. The supercurrent, calculated from the Andreev spectrum, is 2π-periodic in

the trivial and topological phases. In the latter it exhibits a clear sawtooth profile at a phase difference of π when the energy split-

ting is negligible, signalling a strong dependence of current–phase curves on the length of the superconducting regions. Effects of

temperature, scalar disorder and reduction of normal transmission on supercurrents are also discussed. Further, we identify the indi-

vidual contribution of MBSs. In short junctions the MBSs determine the current–phase curves, while in long junctions the spec-

trum above the gap (quasi-continuum) introduces an important contribution.
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Introduction
A semiconducting nanowire with strong Rashba spin–orbit cou-

pling (SOC) with proximity-induced s-wave superconducting

correlations can be tuned into a topological superconductor by

means of an external Zeeman field [1-3]. This topological phase

is characterized by the emergence of zero-energy quasiparticles

with Majorana character localized at the nanowire ends. These

Majorana bound states (MBSs) are attracting a great deal of

attention owing to their potential for topological, fault-tolerant

quantum computation [4-6]. Tunneling into such zero-energy

MBSs results in a zero-bias peak of high 2e2/h in the tunnelling

conductance in normal–superconductor (NS) junctions due to

perfect Andreev reflection into a particle–hole symmetric state

[7]. Early tunnelling experiments in NS junctions [8-12] re-

ported zero-bias peak values much smaller than the predicted

2e2/h. This deviation from the ideal prediction, together with al-

ternative explanations of the zero-bias peak, resulted in contro-

versy regarding the interpretation. Recent experiments have re-

ported significant fabrication improvements and high-quality

semiconductor–superconductor interfaces [13-16] with an

overall improvement on tunnelling data that strongly supports

the observation of MBS [17-21].

Given this experimental state-of-the-art [22], new geometries

and signatures beyond zero-bias peaks in NS junctions will

likely be explored in the near future. Among them, nanowire-

based superconductor–normal–superconductor (SNS) junctions

are very promising since they are expected to host an exotic

fractional 4π-periodic Josephson effect [4,23,24], signalling the

presence of MBSs in the junction. While this prediction has

spurred a great deal of theoretical activity [25-32], experiments

are still scarce [33], arguably due to the lack of good junctions

until recently. The situation is now different and, since

achieving high-quality interfaces is no longer an issue,

Andreev-level spectroscopy and phase-biased supercurrents

should provide additional signatures for the unambiguous detec-

tion of MBSs in nanowire SNS junctions. Similarly, multiple

Andreev reflection transport in voltage-biased SNS junctions

[34,35] is another promising tool to provide further evidence of

MBSs [36].

Motivated by this, we here present a detailed numerical investi-

gation of the formation of Andreev bound states (ABSs) and

their evolution into MBSs in nanowire-based short and long

SNS junctions biased by a superconducting phase difference .

Armed with this information, we also perform a systematic

study of the phase-dependent supercurrents in the short- and

long-junction limits. Due to finite length, the junction always

hosts four MBSs in the topological regime. Apart from the

MBSs located at the junction (inner MBSs), two extra MBSs

are located at the nanowire ends (outer MBSs). Despite the

early predictions [4,23,24] of a 4π-periodic Josephson effect in

superconducting junctions containing MBSs, in general we

demonstrate that the unavoidable overlap of these MBSs

renders the equilibrium Josephson effect 2π-periodic [26,27] in

short and long junctions, since they hybridize either through the

normal region or through the superconducting regions giving

rise to a finite energy splitting at phase difference  = π. As an

example, our calculations show that, for typical InSb parame-

ters, one needs to consider junctions with long superconducting

segments of the order of LS ≥ 4μm, where LS is the length of the

S regions, in order to have negligible energy splittings.

In particular, we show that in short junctions with ,

where  is the normal region length and ξ is the superconduct-

ing coherence length, the four MBSs (inner and outer) are the

only levels within the induced gap. On the contrary, the four

MBSs coexist with additional levels in long junctions with

, which affect their phase dependence. Despite this

difference, we demonstrate that the supercurrents in both limits

exhibits a clear sawtooth profile when the energy splitting near

 = π is small, therefore signalling the presence of weakly over-

lapping MBSs. We find that while this sawtooth profile is

robust against variations in the normal transmission and scalar

disorder, it smooths out when temperature effects are included,

making it a fragile, yet useful, signature of MBSs.

We identify that in short junctions the current–phase curves are

mainly determined by the levels within the gap and by the four

MBSs, with only very little quasi-continuum contribution. In

long junctions, however, all the levels within the gap, the MBSs

and the additional levels due to longer normal region together

with the quasi-continuum determine the current–phase curves.

In this situation, the additional levels that arise within the gap

disperse almost linearly with  and therefore affect the features

of the supercurrents carried by MBSs only.

Another important feature we find is that the current–phase

curves do not depend on LS in the trivial phase (for both short

and long junctions), while they strongly depend on LS in the

topological phase. Our results demonstrate that this effect is

purely connected to the splitting of MBSs at  = π, indicating

another unique feature connected with the presence of MBSs in

the junction. The maximum of such current–phase curves in the

topological phase increases as the splitting is reduced, satu-

rating when the splitting is completely suppressed. This and the

sawtooth profile in current–phase curves are the main findings

of this work. Results presented here therefore strongly comple-

ment our previous study on critical currents [37] and should

provide useful insight for future experiments looking for Majo-

rana-based signatures in nanowire-based SNS junctions.
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The paper is organized as follows. In section “Nanowire model”

we describe the model for semiconducting nanowires with

SOC, where we show that only the right combination of Rashba

SOC, a Zeeman field perpendicular to the spin–orbit axis and

s-wave superconductivity leads to the emergence of MBSs.

Similar results have been presented elsewhere but we include

them here for the sake of readability of the next sections. In

section “Results and Discussion” we discuss how nanowire-

based SNS junctions can be readily modeled using the tools of

section “Nanowire model”. Then, we describe the low-energy

Andreev spectrum and its evolution from the trivial into the

topological phase with the emergence of MBSs. In the same

section, we report results on the supercurrent, which exhibits a

sawtooth profile at  = π as a signature of the emergence of

MBSs. In section “Conclusion” we present our conclusions. For

the sake of completeness, we also show wavefunction localiza-

tion and exponential decay as well as homogeneous charge

oscillations of the MBSs in wires and SNS junctions in Support-

ing Information File 1.

Nanowire model
The aim of this part is to properly describe the emergence of

MBSs in semiconducting nanowires with SOC. We consider a

single-channel nanowire in one-dimension with SOC and

Zeeman interactions, the model Hamiltonian of which is given

by [38-43]

(1)

where  is the momentum operator, μ the chemical

potential that determines the filling of the nanowire, αR repre-

sents the strength of Rashba spin–orbit coupling, 

is the Zeeman energy as a result of the applied magnetic field 

in the x-direction along the wire, g is the g-factor of teh wire

and μB the Bohr magneton. Parameters for InSb nanowires

include [8]: the effective mass of the electron, m = 0.015me,

with me being the mass of the electron, and the spin–orbit

strength αR = 20 meV·nm.

We consider a semiconducting nanowire placed in contact with

an s-wave superconductor with pairing potential ΔS′ (which is in

general complex) as schematically shown in Figure 1. Elec-

trons in such a nanowire experience an effective superconduct-

ing pairing potential as a result of the so-called proximity effect

[44,45]. In order to have a good proximity effect, a highly trans-

missive interface between the nanowire and the superconductor

is required, so that electrons can tunnel between these two

systems [13-16]. This results in a superconducting nanowire,

with a well-defined induced hard gap (namely, without residual

quasiparticle density of states inside the induced superconduct-

ing gap). The model describing such a proximitized nanowire

can be written in the basis ( ) as

(2)

where ΔS < ΔS′. Since the superconducting correlations are of

s-wave type, the pairing potential is given by

(3)

where  is the superconducting phase. We set  = 0 when

discussing superconducting nanowires, while the SNS geome-

try of course allows a finite phase difference  ≠ 0 across the

junction.

Figure 1: A semiconducting nanowire with Rashba SOC is placed on a
s-wave superconductor (S’) with pairing potential ΔS′ and it is subject-
ed to an external magnetic field  (denoted by the black arrow). Su-
perconducting correlations are induced into the nanowire via proximity
effect, thus becoming superconducting with the induced pairing poten-
tial ΔS < ΔS′.

It was shown [1,2,46] that the nanowire with Rashba SOC and

in proximity to an s-wave superconductor, described by Equa-

tion 2, contains a topological phase characterized by the emer-

gence of MBSs localized at the ends of the wire. This can be

understood as follows: The interplay of all these ingredients

generates two intraband p-wave pairing order parameters

and one interband s-wave
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Figure 2: Low-energy spectrum of a superconducting nanowire as function of the Zeeman field B. At zero superconducting pairing with finite SOC the
spectrum is gapless and becomes spin-polarized at B = μ as indicated by the green dashed line (a), while a finite superconducting pairing with zero
SOC induces a gap for low values of B (b). As B increases, the induced gap is reduced and closed at B = Δ (vertical magenta dash-dot line). The
bottom panels correspond to both finite superconducting pairing and SOC for LS = 4000 nm (c) and LS = 10000 nm (d). Note that as the Zeeman field
increases the spectrum exhibits the closing of the gap at B = Bc. While in the trivial phase, B < Bc, there are no levels within the induced gap (c,d), in
the topological phase for B > Bc, the two lowest levels develop an oscillatory behaviour around zero energy (c). These lowest levels are the sought-for
MBSs. For sufficiently long wires the amplitude of the oscillations is reduced (d) and these levels acquire zero energy. Solid red, green and dashed
cyan curves indicate the induced gaps Δ1,2 and min(Δ1, Δ2). Parameters: α0 = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and LS = 4000 nm (a,b).

where + and − denote the Rashba bands of H0. The gaps associ-

ated with the ± Bogoliubov–de Gennes (BdG) spectrum are dif-

ferent and correspond to the inner and outer part of the spec-

trum, denoted by Δ1,2 at low and high momentum, respectively.

These gaps depend in a different way on the Zeeman field.

Indeed, as the Zeeman field B increases, the gap Δ1, referred to

as the inner gap, is reduced while Δ2, referred to as the outer

gap, is slightly reduced although for strong SOC it remains

roughly constant. The inner gap Δ1 closes at B = Bc and reopens

for B > Bc giving rise to the topological phase, while the outer

gap remains finite. The topological phase is effectively reached

due to the generation of an effective p-wave superconductor,

which is the result of projecting the system Hamiltonian onto

the lower band (−) keeping only the intraband p-wave pairing

Δ−− [1,2]. Deep in the topological phase B > Bc, the lowest gap

is Δ2.

In order to elucidate and visualize the topological transition, we

first analyze the low-energy spectrum of the superconducting

nanowire. This spectrum can be numerically obtained by

discretising the Hamiltonian given by Equation 1 into a tight-

binding lattice:

(4)

where the symbol  means that v couples the nearest-neighbor

sites i, j; h = (2t − μ)σ0 + Bσx and v = −tσ0 + itSOσy are matrices

in spin space,  is the hopping parameter and

tSOC = αR/(2a) is the SOC hopping. The dimension of H0 is set

by the number of sites of the wire. Then, it is written in Nambu

space as given by Equation 2. Such a Hamiltonian is then diago-

nalized numerically with its dimensions given by the number of

sites NS of the wire. Since this description accounts for wires of

finite length, it is appropriate for investigating the overlap of

MBSs. The length of the superconducting wire is LS = NSa,

where NS is the number of sites and a is the lattice spacing. As

mentioned before, the superconducting phase in the order pa-

rameter is assumed to be zero as it is only relevant when inves-

tigating Andreev bound states in SNS junctions.

In Figure 2 we present the low-energy spectrum for a supercon-

ducting nanowire as a function of the Zeeman field at a fixed

wire length LS. Figure 2a shows the case of zero superconduct-

ing pairing and finite SOC (Δ = 0, αR ≠ 0), while Figure 2b
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shows a situation of finite pairing but with zero SOC (Δ ≠ 0,

αR = 0). These two extreme cases are very helpful in order to

understand how a topological transition occurs when the

missing ingredient (either superconducting pairing of finite SO)

is included. This is illustrated in the bottom panels, which corre-

spond to both finite SOC and superconducting pairing for

LS < 2ξM and LS > 2ξM, respectively. Here, ξM represents the

Majorana localization length, which can be calculated from

Equation 2[1,31],

where  and C0 = μ2 + Δ2 − B2. The Majorana locali-

zation length is defined as ξM = max[−1/ksol].

For the sake of the explanation, we plot the spectrum in the

normal state (Δ = 0), Figure 2a, which is, of course, gapless. As

the Zeeman field increases, the energy levels split and, within

the weak Zeeman phase, B < μ, the spectrum contains energy

levels with both spin components. In the strong Zeeman phase,

B > μ, one spin sector is completely removed giving rise to a

spin-polarized spectrum at low energies as one can indeed

observe in Figure 2a. The transition point from weak to strong

Zeeman phases is marked by the chemical potential B = μ

(green dashed line). Figure 2b shows the low-energy spectrum

at finite superconducting pairing, Δ ≠ 0, and zero SOC, αR = 0.

Firstly, we notice, in comparison with Figure 2a, that the super-

conducting pairing induces a gap with no levels for energies

below Δ at B = 0, being in agreement with Anderson’s theorem

[47]. A finite magnetic field induces a so-called Zeeman

depairing, which results in a complete closing of the induced

superconducting gap when B exceeds Δ. This is indeed ob-

served in Figure 2b (magenta dash-dot line). Further increasing

of the Zeeman field in this normal state gives rise to a region for

Δ < B < Bc, which depends on the finite value of the chemical

potential (between red and magenta lines) where the energy

levels contain both spin components (for μ = 0 the magenta

dash-dot and the red dashed line coincide, not shown). Note that

. For B > Bc, one spin sector is removed and the

energy levels are spin-polarized, giving rise to a set of Zeeman

crossings that are not protected. Remarkably, when αR ≠ 0, the

low-energy spectrum undergoes a number of important changes,

Figure 2c,d. First, the gap closing changes from Δ, Figure 2b, to

 (bottom panels). Second, a clear closing of the

induced gap at B =Bc and reopening for B > Bc is observed as

the Zeeman field increases. This can be seen by plotting the in-

duced gaps Δ1,2, which are finite only at finite Zeeman fields. In

Figure 2d, the red, green and dashed cyan curves correspond to

Δ1, Δ2 and min(Δ1, Δ2). Remarkably, the closing and reopening

of the induced gap in the spectrum follows exactly the gaps Δ1,2

derived from the continuum (up to some finite-size corrections).

Figure 3: Schematic of SNS junctions based on Rashba nanowires.
Top: A nanowire with Rashba SOC of length L = LS + LN + LS placed
on top of two s-wave superconductors (S’) with pairing potentials ΔS′
and subjected to an external magnetic field  (denoted by the black
arrow). Superconducting correlations are induced into the nanowire
through the proximity effect. Bottom: Left and right regions of the nano-
wire become superconducting, denoted by SL and SR, with induced
pairing potentials  and chemical potentials , while
the central region remains in the normal state with ΔN = 0 and chemi-
cal potential μN. This results in a superconductor–normal–supercon-
ductor (SNS) junction.

Third, the spin-polarized energy spectrum shown in Figure 2b at

zero SOC for B > Bc is washed out, keeping only the crossings

around zero energy of the two lowest levels. This kind of

closing and reopening of the spectrum at the critical field Bc in-

dicates a topological transition where the two remaining lowest-

energy levels for B > Bc are the well-known MBSs. Owing to

the finite length LS, the MBSs exhibit the expected oscillatory

behaviour due to their finite spatial overlap [48-51]. For suffi-

ciently long wires , the amplitude of the oscillations

is considerably reduced (even negligible), which pins the MBSs

to zero energy. Fourth, the SOC introduces a finite energy sepa-

ration between the two lowest levels (crossings around zero)

and the rest of the low-energy spectrum denoted here as “topo-

logical minigap”. Note that the value of this minigap, related to

the high momentum gap Δ2, remains finite and roughly con-

stant for strong SOC. In the case of weak SOC the minigap is

reduced and for high Zeeman field it might acquire very small

values, affecting the topological protection of the MBSs.

To complement this introductory part, calculations of the wave-

functions and charge density associated with the lowest levels

of the topological superconducting nanowire spectrum are

presented in the Supporting Information File 1.

Results and Discussion
Nanowire SNS junctions
In this part, we concentrate on SNS junctions based on the prox-

imitized nanowires that we discussed in the previous section.

The basic geometry contains left (SL) and right (SR) supercon-

ducting regions of length LS separated by a central normal (N)

region of length LN, as shown in Figure 3. The regions N and
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SL(R) are described by the tight-binding Hamiltonian H0 given

by Equation 4 with their respective chemical potentials, μN and

. The Hamiltonian describing the SNS junction without

superconductivity is then given by

(5)

where  with i = L/R and HN are the Hamiltonians of the su-

perconducting and normal regions, respectively,  and

 are the ones that couple Si to the normal region N. The el-

ements of these coupling matrices are non-zero only for adja-

cent sites that lie at the interfaces of the S regions and of the N

region, while zero everywhere else. This coupling is parame-

trized between the interface sites by a hopping matrix v0 = τv,

where , providing a good control of the normal trans-

mission TN. The parameter τ controls the normal transmission

that ranges from fully transparent (τ = 1) to tunnel (τ ≤ 0.6), as

discussed in [37] for short junctions, being also valid for long

junctions.

The superconducting regions of the nanowire are characterized

by chemical potential  and the uniform superconducting

pairing potentials [52,53]  and ,

where Δ < ΔS′ and . The central region of the nano-

wire is in the normal state without superconductivity, ΔN = 0,

and with chemical potential μN. Thus, the pairing potential

matrix in the junction space reads

(6)

Next, we define the phase difference across the junction as

. Thus, the Hamiltonian for the full SNS junction

reads in Nambu space [31,37]

(7)

In what follows, we discuss short ( ) and long ( )

SNS junctions, where LN is the length of the normal region and

 is the superconducting coherence length [52]. The

previous Hamiltonian is diagonalized numerically and in our

calculations we consider realistic system parameters for InSb as

described previously.

Low-energy Andreev spectrum
Now, we are in a position to investigate the low-energy

Andreev spectrum in short and long SNS junctions. In particu-

lar, we discuss the formation of Andreev bound states and their

evolution from the trivial (B < Bc) into the topological phases

(B > Bc). For this purpose we focus on the phase and the

Zeeman-dependent low-energy spectrum in short and long junc-

tions, presented in Figure 4 and Figure 5 for LS ≤ 2ξM. For

completeness we also present the case of  in Figure 6

and Figure 7.

We first discuss short junctions with LS ≤ 2ξM. In this regime,

at B = 0 two degenerate ABSs appear within Δ as solutions to

the BdG equations described by Equation 7, see Figure 4a. It is

interesting to point out that within standard theory for a trans-

parent channel the ABS energies reach zero at  = π in the

Andreev approximation  [54]. Figure 4a, however,

shows that in general the ABS energies do not reach zero at

 = π. The dense amount of levels above |εp| > Δ represents the

quasi-continuum of states, which consists of a discrete set of

levels due to the finite length of the N and S regions. Moreover,

it is worth to point out that the detachment (the space between

the ABSs and quasi-continuum) of the quasi-continuum at

 = 0 and 2π is not zero. It strongly depends on the finite length

of the S regions (see Figure 6).

For a non-zero Zeeman field, Figure 4b and Figure 4c, the

ABSs split and the two different gaps Δ1 and Δ2, discussed in

section ‘Nanowire model’, emerge indicated by the dash-dot red

and dashed green lines, respectively. By increasing the Zeeman

field, the low-momentum gap Δ1 gets reduced (dash-dot red

line), as expected, while the gap Δ2 (dashed green line) remains

finite although it gets slightly reduced (Figure 4b and

Figure 4c). For stronger, but unrealistic values of SOC we have

checked that Δ2 is indeed constant. The two lowest levels in this

regime, within Δ1 (dash-dot red line), develop a loop with two

crossings that are independent of the length of the S region but

exhibit a strong dependence on SOC, Zeeman field and chemi-

cal potential. We have checked that they appear due to the inter-

play of SOC and Zeeman field and disappear when μ acquires

very large values, namely, in the Andreev approximation.

At B = Bc, the energy spectrum exhibits the closing of the low-

momentum gap Δ1, as indicated by red dash-dot line in

Figure 4d. This indicates the topological phase transition, since

two gapped topologically different phases can only be

connected through a closing gap. By further increasing the

Zeeman field, Figure 4e,f, B > Bc, the inner gap Δ1 acquires a

finite value again. This reopening of Δ1 indicates that the

system enters into the topological phase and the superconduct-

ing regions denoted by SL(R) become topological, while the N
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Figure 4: Low-energy Andreev spectrum as a function of the superconducting phase difference  in a short SNS junction with LN = 20 nm and
LS = 2000 nm. Different panels show the evolution with the Zeeman field: trivial phase for B < Bc (a–c), topological transition at B = Bc (d), and in the
topological phase for B > Bc (e,f). The energy spectrum exhibits the two different gaps that appear in the system for finite Zeeman field (marked by
red and green dashed horizontal lines). Note that after the gap inversion at B = Bc, two MBSs emerge at the ends of the junction as almost dispersion-
less levels (outer MBSs), while two additional MBSs appear at  = π (inner MBSs). Parameters: αR = 20 meV·nm, μN = μS = 0.5 meV and
Δ = 0.25 meV.

Figure 5: Same as in Figure 4 for a long junction with LN = 2000 nm and LS = 2000 nm. Note that, unlike short junctions, in this case the four lowest
states for B > Bc coexist with additional levels within the induced gap which arise because LN is longer.
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Figure 6: Same as in Figure 4 for a short junction with LN = 20 nm and LS = 10000 nm. Note that in this case, the emergent outer MBSs are disper-
sionless with , while the inner ones touch zero at  = π acquiring Majorana character.

Figure 7: Same as in Figure 4 for a long junction with LN = 2000 nm and LS = 10000 nm. The four lowest levels coexist with additional levels. The
outer MBSs lie at zero energy and the inner ones reach zero at  = π acquiring Majorana character.
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region remains in the normal state. Thus, MBSs are expected to

appear for B > Bc at the ends of the two topological supercon-

ducting sectors, since they define interfaces between topologi-

cally different regions.

This is what we indeed observe for B > Bc in Figure 4e and

Figure 4f, where the low-energy spectrum has Majorana proper-

ties. In fact, for B > Bc, the topological phase is characterized

by the emergence of two (almost) dispersionless levels with ,

which represent the outer MBSs γ1,4 formed at the ends of the

junction. Additionally, the next two energy levels strongly

depend on  and tend towards zero at  = π, representing the

inner MBSs γ2,3 formed inside the junction. For sufficiently

strong fields, B = 2Bc, the lowest gap is Δ2 indicated by the

green dashed line, which in principle bounds the MBSs. The

quasi-continuum in this case corresponds to the discrete spec-

trum above and below Δ2, where Δ2 is the high-momentum gap

marked by the green dashed horizontal line in Figure 4e,f.

The four MBSs develop a large splitting around  = π, which

arises when the wave-functions of the MBSs have a finite

spatial overlap LS ≤ 2ξM. Since the avoided crossing between

the dispersionless levels (belonging to γ1,4) and the dispersive

levels (belonging to γ2,3) around  = π depends on the overlap

of MBSs on each topological segment. It can be used to quan-

tify the degree of Majorana non-locality (a variant of this idea

using quantum-dot parity crossings has been discussed in

[55,56]). This can be explicitly checked by considering SNS

junctions with longer superconducting regions, where the condi-

tion  is fulfilled such that the energy splitting at  = π

is reduced.

As an example, we present in Figure 6 the energy levels as a

function of the phase difference for , where the low-

energy spectrum undergoes some important changes. First, we

notice in Figure 6 that the energy spectrum at B = 0 for |εp| > Δ,

exhibits a visibly denser spectrum than that in Figure 4

signaling the quasi-continuum of states. Notice that in the topo-

logical phase, B > Bc, the lowest two energy levels, associated

to the outer MBSs, are insensitive to  remaining at zero

energy. Thus, they can be considered as truly zero modes. On

the other hand, the inner MBSs are truly bound within Δ2,

unlike in Figure 4, and for  = 0 and  = 2π they merge with

the quasi-continuum at ±Δ. Thus, an increase in the length of

the superconducting regions favors the reduction of the detach-

ment between the discrete spectrum and the quasi-continuum at

0 and 2π, as it should be for a ballistic junction [23,24]. More-

over, the energy splitting at  = π is considerably reduced, even

negligible. However, it will be always non-zero, though not

visible to the naked eye, due to the finite length and, thus, due

to the presence of the outer MBSs.

The low-energy spectrum as a function of the superconducting

phase difference for different values of the Zeeman field in long

SNS junctions is presented in Figure 5 for LS ≤ 2ξM. Addition-

ally, we show in Figure 7 the case for .

As expected, long junctions contain more levels within the

energy gap Δ, see Figure 5a and Figure 7a, than short junctions.

As we shall discuss, this eventually affects the signatures of

Majorana origin in the supercurrents for B B c, namely, the ones

corresponding to the lowest four levels.

The above discussion can be clarified by considering the depen-

dence of the low-energy spectrum on the Zeeman field at fixed

phase difference  = 0 and  = π. This is shown in Figure 8

(short junction limit), Figure 9 (intermediate junction limit) and

Figure 10 (long junction limit) for LS ≤ 2ξM (panels a and c in

each figure) and  (panels b and d in each figure). In

panels a and b, the gaps Δ1, Δ2 and min(Δ1,Δ2) are also plotted

as solid red, solid green and dashed cyan lines to visualize the

gap closing and reopening discussed in the previous section. In

all cases, it is clear that MBS smoothly evolve from the lowest

ABS either following the closing of the induced gap Δ1, indicat-

ed by the solid red curve, at  = 0 or evolving from the lowest

detached levels at  = π. The latter first cross zero energy,

owing to Zeeman splitting, and eventually become four low-

energy levels oscillating out of phase around zero energy

(Figure 8c). The emergence of these oscillatory low-energy

levels, separated by a minigap Δ2, indicated by the solid green

curve, from the quasi-continuum characterizes the topological

phase of the SNS junction. As expected, the oscillations become

reduced for  and the four levels at  = π become

degenerate at zero energy, see Figure 8b,d.

An increase in the length of the normal section results in an

increase of the amount of subgap levels as observed in Figure 9

and Figure 10. In both cases, in the topological phase, B > Bc,

these additional levels reduce the minigap with respect to short

junctions and also slightly reduce the amplitude of the oscilla-

tions of the energy levels around zero as seen Figure 9a and

Figure 9b as well as Figure 10a and Figure 10b. Also, the mini-

gaps for  = 0 and  = π are different, in contrast to short junc-

tions. In fact, the minigap at  = 0 is almost half of the value at

 = π for the chosen parameters. This can be understood from

the phase dispersion of the long junction ABS spectra such as

the ones in Figure 5 and Figure 7. For longer N regions, this

difference can be even larger.

From the above discussion it is clear that the energy spectrum

of SNS nanowire junctions offers the possibility to directly

monitor the ABSs that trace the gap inversion and eventually

evolve into MBSs.
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Figure 8: Low-energy Andreev spectrum as a function of the Zeeman field in a short SNS junction at  = 0 (a,b) and  = π (c,d) with LS = 2000 nm
(a,c) and LS = 10000 nm (b,d). The low-energy spectrum traces the gap closing and reopening by the solid red curve that corresponds to Δ1, while for
B > Bc we observe the emergence of two MBSs at  = 0 (a) and four MBSs at  = π (c), which oscillate around zero energy with B due to LS ≤ 2ξM
within a minigap defined by Δ2 (solid green curve). For  the MBSs are truly zero modes (b,d). Parameters: LN = 20 nm, αR = 20 meV·nm,
μ = 0.5 meV and Δ = 0.25 meV.

Figure 9: Same as in Figure 8 for an intermediate junction with LN = 400 nm.
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Figure 10: Same as in Figure 8 for a long junction with LN = 2000 nm.

Supercurrents
After having established in detail the energy spectrum in short

and long SNS junctions, we now turn our attention to the corre-

sponding phase-dependent supercurrents. They can be calcu-

lated directly from the discrete Andreev spectrum εp as

[37,54,57]:

(8)

where krmB is the Boltzmann constant, T is the temperature and

the summation is performed over positive eigenvalues εp. By

construction, our junctions have finite length, which implies

that Equation 8 exactly includes the discrete quasi-continuum

contribution.

In Figure 11 and Figure 12 we present supercurrents as a func-

tion of the superconducting phase difference I( ) for different

values of the Zeeman field in short and long SNS junctions, re-

spectively. Panels a and c correspond to LS ≤ 2ξM, while panels

b and d correspond to .

First, we discuss the short junction regime presented in

Figure 11. At B = 0 the supercurrent I( ) has a sine-like depen-

dence on , with a relative fast change of sign around  = π that

is determined by the derivative of the lowest-energy spectrum

profile around  = π. This result is different from usual ballistic

full transparent supercurrents in trivial SNS junctions [54],

where the supercurrent is proportional to sin( /2) being

maximum at  = π. This difference from the standard ballistic

limit can be ascribed to deviations from the ideal Andreev

approximation, see also the discussion of Figure 4a, owing to

the relatively low chemical potential needed to reach the helical

limit and, eventually, the topological regime as the Zeeman

field increases. At finite values of the Zeeman field B, but still

in the trivial phase B < Bc (dashed and dash-dot curves), I( )

undergoes changes. First, the maximum value of I( ) is reduced

due to the reduction of the induced gap that is caused by the

Zeeman effect. Second, I( ) develops a zig-zag profile (just

before and after  = π) signalling a 0–π transition in the super-

current. This transition arises from the zero-energy crossings in

the low-energy spectrum, see Figure 4b,c. As discussed above,

these level crossings result from the combined action of both

SOC and Zeeman field at low μ, and introduce discontinuities in

the derivatives with respect to . Besides these features, all the

supercurrent curves for B < Bc, for both LS ≤ 2ξM and

, exhibit a similar behavior, see Figure 11. Interest-

ingly, the system is gapless at the topological transition, B = Bc,

but the supercurrent remains finite, see red curve in Figure 11c.

For B > Bc, the S regions of the SNS junction become topolog-

ical and MBSs emerge at their ends, as described in the

previous subsection. Despite the presence of MBSs, the super-
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Figure 11: Supercurrent as a function of the superconducting phase difference in a short SNS junction, I( ), for LS = 2000 nm ≤ 2ξM (a,c) and
LS = 10000 nm  2ξM (b,d). Panels a and b show the Josephson current in the trivial phase for different values of the Zeeman field, B < Bc, while
panels c and d correspond to different values of the Zeeman field in the topological phase, B ≥ Bc. Note the sawtooth feature at  = π for .
Parameters: αR=20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .

Figure 12: Supercurrent as a function of the superconducting phase difference in a long SNS junction with LN = 2000 nm, for LS = 2000 nm ≤ 2ξM
(a,c) and LS = 10000 nm  2ξM (b,d). Panels a and b show the Josephson current in the trivial phase for different values of the Zeeman field, B < Bc,
while panels c and d correspond to different values of the Zeeman field in the topological phase, B ≥ Bc. In this case the magnitude of the supercur-
rent is reduced, an effect caused by the length of the normal section.
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current I( ) remains 2π-periodic, i.e., I( ) = I(  + 2π). This

results from the fact that we sum up positive levels only, as we

deal with an equilibrium situation. Since the supercurrent is a

ground state property, transitions between the negative and pos-

itive energies are not allowed, because of an energy gap origi-

nating from Majorana overlaps. Strategies to detect the pres-

ence of MBSs beyond the equilibrium supercurrents described

here include the ac Josephson effect, noise measurements,

switching-current measurements, microwave spectroscopy and

dynamical susceptibility measurements [25-30].

As the Zeeman field is further increased in the topological

phase, B > Bc, the supercurrent tends to decrease due to the

finite Majorana overlaps when LS ≤ 2ξM, see dotted and dashed

blue curves in Figure 11d. On the other hand, as the length of S

becomes larger such that  the overlap is reduced,

which is reflected in a clear sawtooth profile at  = π, see dotted

and dashed blue curves in Figure 11d. This discontinuity in I( )

depends on LS and results from the profile of the lowest-energy

spectrum at  = π, as shown in Figure 6d. The sawtooth profile

thus indicates the emergence of well-localized MBSs at the

ends of S and represents one of our main findings.

As discussed above, the supercurrent for B < Bc, Figure 11a and

Figure 11b, does not depend on LS. In contrast, supercurrents in

the topological phase, Figure 11c and Figure 11d, do strongly

depend on LS owing to the emergence of MBSs.

In Figure 12 we present I( ) for long junctions  at dif-

ferent values of the Zeeman field. Panels a and c correspond to

LS ≤ 2ξM and panels b and d correspond to . Even

though the maximum value of the current is reduced in this

regime, the overall behavior is very similar to the short-junc-

tion regime for both B < Bc and B > Bc. The only important

difference with respect to the short junction case is that I( ) in

the long-junction regime does not exhibit the zig-zag profile

due to 0–π transitions.

As the system enters into the topological phase for B > Bc and

LS ≤ 2ξM, Figure 12c, the maximum supercurrent decreases, in-

dicating the non-zero splitting at  = π in the low-energy spec-

trum. Deep in the topological phase, the supercurrent exhibits a

slow (slower than in the trivial phase Figure 12a) sign change

around  = π, and its dependence on  tends to approach a sine

function. However, for , shown in Figure 12d, the

supercurrent acquires an almost constant value as B increases

and develops a clear sawtooth profile at  = π due to the zero

energy splitting in the low-energy spectrum at  = π, similarly

to the short-junction case. It is worth to point out that, although

the maximum supercurrent is slightly reduced, deep in the topo-

logical phase (dashed and dotted blue curves) its maximum

value is approximately close to the maximum value in the trivial

phase, which is different from what we found in the short-junc-

tion case. This is a clear consequence of the emergence of addi-

tional levels within the induced gap due to the increase of LN.

These additional levels exhibit a strong dependence on the su-

perconducting phase, very similar to the inner MBSs as one can

see in Figure 5e,f.

In order analyze the individual contribution of outer and inner

MBSs with respect to the quasi-continuum we calculate and

identify supercurrents for such situations. This is presented in

Figure 13 for short junctions (Figure 13a,b) and for long junc-

tions (Figure 13c,d). In this regime the lowest gap is the high-

momentum gap Δ2, and the levels outside this gap constitute the

quasi-continuum.

Firstly, we discuss short junctions. The supercurrent due to

outer MBSs for LS ≤ 2ξM is finite only around  = π, exhibit-

ing an odd dependence on  around π. However, away from

this point it is approximately zero and independent of  (see

blue curve in Figure 13a). When , the outer MBSs are

very far apart and their contribution to I( ) is zero (see blue

curve in Figure 13b). On the other hand, the contribution of the

inner MBSs to I( ) is enormous and the outer part only slightly

changes the shape of the maximum supercurrent when

LS ≤ 2ξM, while for  the outer MBSs do not contrib-

ute, as shown by the dashed brown curve in Figure 13a,b. More-

over, the inner contribution exhibits roughly the same depen-

dence on  as the contribution of the whole energy spectrum

shown by the black curve in Figure 13a,b. As described in the

previous subsection, the quasi-continuum is considered to be

the discrete energy spectrum above |εp| > Δ2. The quasi-contin-

uum contribution to I( ) is finite and odd in  around π, as

shown by green curves in Figure 13a,b. The quasi-continuum

contribution to the total supercurrent I( ) far away from  = π

is appreciable mainly when the MBSs exhibit a finite energy

splitting as seen in Figure 13a. Interestingly, the outer and in

particular the inner MBSs (levels within Δ2) are the main source

when such overlap is completely reduced and determine the

profile of I( ), as shown in Figure 13b.

In long junctions the situation is different, mainly because more

levels emerge within Δ in the trivial phase. For B > Bc within

Δ2 these additional levels coexist with the inner and outer

MBSs, see Figure 13c,d. The contribution of the outer MBSs to

I( ) exhibits roughly similar behaviour as for short junctions al-

though smoother around  = π , shown by the blue curve in

Figure 13c,d. The inner MBSs, however, have a strong depen-

dence on  and develop their maximum value close to  = 2πn

with n = 0,1,… (see red curve). The outer MBSs almost do not

affect the overall shape of the I( ) curve (see dashed brown
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Figure 13: Supercurrent as a function of  at B = 1.5Bc. Contributions to the supercurrent for (a,b) short and (c,d) long junctions. (a,c) LS ≤ 2ξM and
(b,d) . The different curves in (a,b) correspond to individual contributions to I( ) from outer, inner, and outer + inner (levels within the lowest
induced gap Δ2), quasi-continuum (levels above the lowest gap Δ2) and total levels. In (c,d), the additional magenta curve corresponds to all levels
within Δ2. In long junctions the number of levels within Δ2 exceeds the number of MBSs. MBSs coexist with additional levels within Δ2. Parameters:
αR = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .

curve). Since a long junction hosts more levels, we also show

by the dash-dot magenta curve the contribution of all the levels

within Δ2, including also the four MBSs. This contribution is

considerably large only close to  = π, with a minimum and

maximum value before and after  = π for LS ≤ 2ξM, respec-

tively. This is indeed the reason why the supercurrent is reduced

as B increases in the topological phase for LS ≤ 2ξM, see dotted

and dashed blue curves in Figure 12c. For  the contri-

bution of all the levels within Δ2 exhibits a sawtooth profile at

 = π, which, instead of reducing the quasi-continuum contribu-

tion (green curve), increases the maximum value of I( ) at

 = π resulting in the solid black curve. Importantly, unlike in

short junctions, in long junctions the quasi-continuum modifies

I( ) around  = π. Thus, a zero-temperature current-phase mea-

surement in an SNS junction setup could indeed reveal the pres-

ence of MBSs by observing the reduction of the maximum

supercurrent. In particular, well-localized MBSs are revealed in

the sawtooth profile of I( ) at  = π. In what follows we

analyze the effect of temperature, variation of normal transmis-

sion and random disorder on the sawtooth profile at  = π of the

supercurrent.

Temperature effects
In this part, we analyze the effect of temperature on supercur-

rents in the topological phase. In Figure 14 we present the

supercurrent as a function of the superconducting phase differ-

ence, I( ), in the topological phase B = 1.5Bc at different tem-

perature values for LS ≤ 2ξM (Figure 14a) and 

(Figure 14b). At zero temperature, for LS ≤ 2ξM, shown by the

black solid curve in Figure 14a, the dependence of the supercur-

rent on  approximately corresponds to a sine-like function. A

small increase in temperature kBT = 0.01 meV (magenta dashed

curve) slightly modifies the profile of the maximum supercur-

rent. However, for  (Figure 14b), the same tempera-

ture (dashed curve) value has a detrimental effect on the

sawtooth profile of I( ) at  = π, which reduces the maximum

value and smooths the curve out due to the thermal population

of ABSs. We have checked that smaller temperature values than

the ones presented in Figure 14 also smooth out the sawtooth

profile but the fast sign change around  = π is still visible. This

effect remains as long as . As the temperature in-

creases, I( ) smoothly acquires a true sine shape, as seen in

Figure 14a. Although the sawtooth profile might be hard to

observe in real experiments, the maximum value of I( ), which

is finite in the topological phase and almost halved with respect

to the trivial phase in short junctions [37], still provides a

measure to distinguish it from I( ) in trivial junctions.

Normal transmission effects
The assumption of perfect coupling between N and S regions in

previous calculations is indeed a good approximation because

of the enormous advances in fabrication of hybrid systems.
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Figure 14: Finite temperature effect on the supercurrent, I( ), in (a,b) a short and (c,d) a long junction. (a,c) LS = 2000 nm ≤ 2ξM and (b,d)
LS = 10000 nm  2ξM. Different curves correspond to different values of kBT. The sawtooth profile smooths out at finite temperature. Parameters:
LN = 20 nm for short and LN = 2000 nm for long junctions, αR = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .

However, it is also relevant to study whether the sawtooth

profile of I( ) is preserved or not when the normal transmis-

sion TN, described by τ, is varied.

Figure 15 shows the supercurrent I( ) in short junctions at

B = 1.5Bc for different values of τ for LS ≤ 2ξM (Figure 15a)

and  (Figure 15b). When τ is reduced, the supercur-

rent I( ) is also reduced. However, for LS ≤ 2ξM, there is a tran-

sition from a sudden sign change around  = π to a true sine

function with reducing τ, very similar to the effect of tempera-

ture discussed above. Notice that in the tunnel regime, τ = 0.6,

I( ) is approximately zero. For  the sawtooth profile

at  = π is preserved and robust when τ is reduced from the

fully transparent to the tunnel regime, as seen in Figure 15b.

Quite remarkably, in the tunneling regime, I( ) is finite away

from nπ for n = 0,1,…. The finite value of the supercurrent

could serve as another indicator of the non-trivial topology and,

thus, of the emergence of MBSs in the junction.

Disorder effects
Now we analyze the sawtooth profile of I( ) for B > Bc in the

presence of disorder. Disorder is introduced as a random on-site

potential Vi in the tight-binding Hamiltonian given by

Equation 4. The values of Vi lie within [−w, w], with w being

the disorder strength. When considering this kind of disorder,

the chemical potential undergoes random fluctuations. Hence,

values of w do not include .

In Figure 16(a,b) we present I( ) in short junctions at B = 1.5Bc

for 20 disorder realizations and different values of the disorder

strength w. Disorder of the order of the chemical potential μ has

little effect on I( ) as shown by dashed curves in Figure 16a,b.

The behavior of I( ) is approximately the same as without

disorder. This reflects the robustness of the topological phase,

and thus of MBSs, against fluctuations in the chemical poten-

tial [58,59]. Stronger disorder (dotted and dash-dot curves)

reduce the maximum value of I( ) although its general behav-

ior is preserved. The sawtooth profile at  = π in Figure 16b is

robust against moderate values of disorder strength. We have

confirmed that these conclusions are still valid even when we

consider disorder of the order of 5μ (not shown).

Conclusion
In this numerical work we have performed a detailed investiga-

tion of the low-energy spectrum and supercurrents in short

( ) and long ( ) SNS junctions based on nanowires

with Rashba SOC and in the presence of a Zeeman field.

In the first part, we have studied the evolution of the low-energy

Andreev spectrum from the trivial phase into the topological
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Figure 15: Effect of normal transmission through the coupling parameter τ on the supercurrent, I( ), in (a,b) a short and (c,d) a long SNS junction.
(a,c) LS = 2000 nm ≤ 2ξM and (b,d) LS = 10000 nm  2ξM. Although after decreasing τ the magnitude of the supercurrent at  = π decreases, the
sawtooth profile is preserved. Parameters: LN = 20 nm for short and LN = 2000 nm for long junctions, αR = 20meV·nm, μ = 0.5 meV, Δ = 0.25 meV
and .

Figure 16: Effect of random on-site scalar disorder on the supercurrent I( ) in (a,b) a short and (c,d) a long SNS junction at B = 1.5Bc. (a,c)
LS = 2000 nm ≤ 2ξM and (b,d) LS = 10000 nm  2ξM. Each curve corresponds to 20 realizations of disorder, where w is the disorder strength. For
small values of w of the order of the chemical potential, the sawtooth profile at  = π is preserved (see right panel). Parameters: LN = 20 nm for short
and LN = 2000 nm for long junctions, αR = 20 meV·nm, μ = 0.5 meV, Δ = 0.25 meV and .
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phase and the emergence of MBSs in short and long SNS junc-

tions. We have shown that the topological phase is character-

ized by the emergence of four MBSs in the junction (two at the

outer part of the junction and two at the inner part) with impor-

tant consequences to the equilibrium supercurrent. In fact, the

outer MBSs are almost dispersionless with respect to supercon-

ducting phase , while the inner ones disperse and tend to reach

zero at  = π. A finite energy splitting at  = π occurs when the

length of the superconducting nanowire regions, LS, is compa-

rable to or less than 2ξM. Although in principle such energy

splitting can be reduced by making the S regions longer, we

conclude that in a system of finite length the current–phase

curves are 2π-periodic and the splitting always spoils the

so-called 4π-periodic fractional Josephson effect in an equilib-

rium situation.

In short junctions the four MBSs are truly bound within Δ only

when , while in long junctions the four MBSs coexist

with additional levels, which profoundly affects phase-biased

transport. As the Zeeman field increases in the trivial phase

B < Bc, the supercurrent I( ) is reduced due to the reduction of

the induced gap. In this case, the supercurrents I( ) are inde-

pendent of the length of the superconducting regions, LS, an

effect preserved in both short and long junctions.

In short junctions in the topological phase with B > Bc the

contribution of the four MBSs levels within the gap determines

the shape of the current–phase curve I( ) with only little contri-

bution from the quasi-continuum. For LS < 2ξM, the overlap of

MBS wavefunctions at each S region is finite, and the quasi-

continuum contribution is appreciable and of the opposite sign

than the contribution of the bound states. This induces a reduc-

tion of the maximum supercurrent in the topological phase. For

, when both the spatial overlap between MBSs and

the splitting at  = π are negligible, the quasi-continuum contri-

bution is very small and the supercurrent I( ) is dominated by

the inner MBSs. Remarkably, we have demonstrated that the

current–phase curve I( ) develops a clear sawtooth profile at

 = π, which is independent of the quasi-continuum contribu-

tion and represents a robust signature of MBSs.

In the case of long junctions we have found that the additional

levels that emerge within the gap affect the contribution of the

individual MBSs. Here, it is the combined contribution of the

levels within the gap and the quasi-continuum that determine

the full current–phase curve I( ), unlike in short junctions. The

maximum supercurrent in long junctions is reduced in compari-

son to short junctions, as expected. Our results also show that

the maximum value of the supercurrent in the topological phase

depends on LS, acquiring larger values for  than for

LS ≤ 2ξM.

Finally, we have analyzed the robustness of the characteristic

sawtooth profile in the topological phase against temperature,

changes in transmission across the junction and random on-site

scalar disorder. We found that a small finite temperature

smooths it out due to thermal population of ABSs. We demon-

strated that, although this might be a fragile indicator of MBSs,

the fast sign change around  = π could help to distinguish the

emergence of MBSs from trivial ABSs. Remarkably, the

sawtooth profile is preserved against changes in transmission,

i.e., it is preserved even in the tunneling regime. And finally, we

showed that reasonable fluctuations in the chemical potential μ

(up to 5μ) do not affect the sawtooth profile of I( ) at  = π.

Our main contribution are summarized as follows. In short and

long SNS junctions of finite length four MBSs emerge, two at

the inner part of junction and two at the outer ends. The

unavoidable overlap of the four MBSs gives rise to a finite

energy splitting at  = π, thus rendering the equilibrium

Josephson effect 2π-periodic in both short and long junctions.

Current–phase curves of short and long junctions exhibit a clear

sawtooth profile when the energy splitting near  = π is small,

which indicates the presence of weakly overlapping MBSs.

Remarkably, the current–phase curves do not depend on LS in

the trivial phase for both short and long junctions, while they

strongly depend on LS in the topological phase. This effect is

solely connected to the splitting of MBSs at  = π, indicating a

unique feature of the topological phase and therefore of the

presence of MBSs in the junction.

Supporting Information
Supporting Information File 1
Majorana wavefunction and charge density in SNS

junctions.
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Abstract
We investigate the effect of three types of intrinsic disorder, including that in pairing energy, chemical potential, and hopping

amplitude, on the transport properties through the superconducting nanowires with Majorana bound states (MBSs). The conduc-

tance and the noise Fano factor are calculated based on a tight-binding model by adopting a non-equilibrium Green’s function

method. It is found that the disorder can effectively lead to a reduction in the conductance peak spacings and significantly suppress

the peak height. Remarkably, for a longer nanowire, the zero-bias peak could be reproduced by weak disorder for a finite Majorana

energy splitting. It is interesting that the shot noise provides a signature to discriminate whether the zero-bias peak is induced by

Majorana zero mode or disorder. For Majorana zero mode, the noise Fano factor approaches zero in the low bias voltage limit due

to the resonant Andreev tunneling. However, the Fano factor is finite in the case of a disorder-induced zero-bias peak.
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Introduction
Searching for Majorana bound states (MBSs) have recently

received widespread attention due to their potential applica-

tions in topologically-protected quantum computing [1-9]. In

the past two decades, the realizations of MBSs has been pre-

dicted in many condensed-matter systems, including p-wave

superconductors [10,11], topological insulator-superconductor

hybrid structures [12,13], artificially engineered Kitaev chains

[14,15], semiconductor-superconductor hybrid nanowire

systems [16-21]. Very recently, the one-dimensional Majorana

mode running along the sample edge was shown in the hetero-

structure consisted of a quantum anomalous Hall insulator bar

contacted by a superconductor [22]. Among all these proposals,

the semiconductor-superconductor hybrid Majorana systems

have attracted particular attention and have been demonstrated

in several experiments since 2012 [23-30]. As an important

signature of MBSs in the semiconductor nanowires which are

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:lvhf04@uestc.edu.cn
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proximity-coupled to s-wave superconductors, the zero-bias

conductance peak has been observed in the tunneling spectra in

the presence of a finite magnetic field [23-28]. However, it is

suggested that such zero-bias features could also be induced by

non-topological physics such as Kondo effect [31], smooth

confinement [32], or strong disorder [33-35].

In one-dimensional case, the hybridization of the pair of MBSs

localized at the wire ends produces a finite Majorana energy

splitting and zero-bias peak splitting [36-38] due to the finite

size effects. In a recent experiment [39], the energy splitting of

Majorana zero mode has been observed in InAs nanowire seg-

ments with epitaxial aluminium, which forms a proximity-in-

duced superconducting Coulomb island. It is illustrated that the

energy splitting is exponentially suppressed with increasing

wire length. For short wires with a typical length of a few

hundred nanometers, the Majorana energies oscillate as the

magnetic field varies. These observations are consistent with

previous theoretical predictions [36,37]. However, there still

exist some critical discrepancies between the theories and ex-

perimental results of the evidences for the MBSs. Firstly, it is

easy to note that the zero-bias peak is significantly lower than

the predicated value of , whereas the MBSs are expected

to give exactly  [40-43]. Secondly, theory predicts an in-

creasing oscillation magnitude of Majorana energy splitting

with the increase of magnetic field [36,44], while the experi-

ment indicates the damped oscillation with increasing field.

Similar discrepancy was also shown in the Majorana-quantum

dot hybrid devices in the subsequent experiments [45-47]. It is

important to know what physical mechanism leads to the

damped oscillation of Majorana energy splitting.

Up to now, several theoretical studies have been devoted to

explain these discrepancies [48-61], among which some

possible reasons have been proposed, such as the combining

effect of high temperature and multisubband occupancy in a

Coulomb-blocked nanowire where the non-topological low-

energy Andreev bound states and MBSs simultaneously exist

[53], the zero-energy pinning effect induced by the interactions

between the bound charges in the dielectric surroundings and

the free charges in the nanowire [55], a finite leakage out of the

Majorana modes due to the presence the normal drain [59], a

finite coherence length in the induced superconducting pairing

[60], and the orbital magnetic effects [61]. Although it is

noticed that the trivial Andreev bound states are non-negligible

in the experiments, the enhanced Majorana energy oscillation

for increasing Zeeman field is robust and unaffected when

various mechanisms are taken into account.

Here we investigate the effect of different types of disorder on

the transport properties of a topological superconducting wire

Figure 1: Scheme of our one-dimensional Majorana system. A semi-
conductor nanowire with spin-orbit interaction sandwiched by two
normal leads (L, R) is proximity-coupled to an s-wave superconductor.
The nanowire is driven into the topological phase and a pair of MBSs
(γ1, γ2) emerge at the two wire ends with suitable parameters. A bias
voltage V is applied across the device. The nanowire is arranged along
the x-axis and the magnetic field (B) is applied along the z-axis, per-
pendicular to the spin-orbit coupling field (SO) in the y-direction.

hosting a pair of MBSs. Although the disorder-modulated phase

transition in this system has been widely discussed [43,62-74],

we focus on the transport properties, especially the splitting of

zero-bias conductance peak in presence of disorder. We adopt

the non-equilibrium Green’s function (NEGF) method for a

tight-binding model of the nanowire. Three different types of

disorder are separately considered, including the disorder in the

site-dependent chemical potential, the spatial deformations of

the superconducting gap, and hopping disorder between the

nearest neighbors. The results reveal that the disorder could sig-

nificantly suppress the conductance magnitude. More impor-

tantly, the splitting of the conductance peak is removed by the

disorder and a zero-bias peak is reformed with an increasing

disorder strength. This paper is organized as follows. In section

’The model’ we present a tight-binding model for the one-

dimensional superconducting nanowire and the theoretical

framework based on NEGF. In section ’Numerical results’ we

give the numerical results of the conductance and the noise

Fano factor for different wire lengths and discuss different types

of disorder-induced effect on these transport properties respec-

tively. Finally, we conclude our results in section ’Conclusion’.

Results and Discussion
The model
The schematic representation of our one-dimensional Majorana

system is shown in Figure 1. We consider a setup of two normal

metal leads sandwiching a spin-orbit coupled semiconductor

nanowire, which is covered by a parent s-wave superconductor

to induce the proximity effect. The Zeeman field is realized by

applying a magnetic field perpendicular to the spin-orbit cou-

pling direction and the wire. It is proposed that such a hybrid

system can hold a pair of MBSs at the two wire ends by tuning

the Zeeman field or chemical potential to satisfy 

[16-21], for which the nanowire will be driven into the topolog-
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ical phase. Here VZ, Δ and μ are the Zeeman splitting energy,

proximity-induced superconducting pairing and the chemical

potential, respectively. Although this work is motivated by the

experiment by Albrecht et al. [39], our model does not take the

Coulomb blockade effects into account. The reason is that the

physics of disorder-induced suppression of the conductance

peak spacings and reformation of the zero-bias peak, which we

discuss below, is independent of Coulomb blockade physics. In

the presence of a charging energy in the nanowire, it was shown

that the zero-bias conductance values are considerably

suppressed by the Coulomb energy [75]. The situation of

interest to us is how intrinsic disorder in the nanowire affect the

Majorana energy EM and the splitted zero-bias conductance

peak induced by EM. In situations like this, the intrawire

charging energy could modulate the actual conductance value,

but the main physics induced by the disorder is captured even

though the charging energy is not taken into account.

The generic form of the Hamiltonian that models this Majorana

hybrid structure reads as

(1)

where the term Hnw, HL(R), and HT account for the supercon-

ducting nanowire, the left (right) normal metal lead, and the

tunnel coupling between the leads and the wire, respectively.

Following the Bogoliubov–de Gennes formalism the Hamil-

tonian describing the low-energy physics for our one-dimen-

sional superconducting wire is given by

(2)

where  is the Nambu spinor

for which cσ(x)  annihilates (creates) electrons with spin

σ at position x. For numerical calculations, we invoke a lattice

tight-binding model to discretize the BdG Hamiltonian and the

Hamiltonian for the nanowire can then be written as [16-19]

(3)

where ti characterizes the nearest-neighbor hopping between

site i and i + 1, μi and Δi represent the on-site chemical

potential and pairing, α is the spin-orbit coupling constant,

ci = [ci↑, ci↓]
T ( ) is the spinor form of electron

annihilation (creation) operator on the ith site, and σi,

i = 0, x, y, z, are Pauli matrices acting on the spin space. The

wire length is L = Na where a is the lattice constant and N is the

total number of sites. In this work, three different types of

intrinsic disorder in the nanowire are considered: the fluctua-

tions of the site-dependent chemical potential, the nonlinear

tunneling between neighboring sites, and the disorder arising in

the pairing as a result of inhomogeneous superconductor–semi-

conductor coupling. In the case of a clean wire, we set μi = μ0,

Δi = Δ0, and ti = t0 for all sites. For each single disordered con-

figuration of the system, the on-site disorder are modeled by the

white noise and their strength is assumed to be randomly distri-

buted in the range [−δW, +δW], where the W = t, μ, Δ denotes

the strength for different types of disorder.

The Hamiltonian describing the normal metallic leads is given

by

(4)

where εαkσ (α = L, R) represents the single-particle energy in

the lead α and cαkσ ( ) is the annihilation (creation) oper-

ator for the lead α. The sum is over momentum k and the spin σ.

The last term in the total Hamiltonian, HT, characterizes the

coupling between the wire and the two leads, which is given by

(5)

where tL(R) denotes the hopping strength through left (right)

lead and the wire. The operators c1σ and cNσ correspond to the

annihilation operators on the first and last site at opposite ends

of the wire. Taking all lattice sites into account, we can now

write out the Hamiltonian for the nanowire as a 4N × 4N matrix

of which the submatrix entry Hi,j fully characterizes the cou-

pling between site i and site j. The nonzero off-diagonal entries

read as

(6)

(7)

and the subdiagonals are related to the superdiagonals by

 Here τi, i = 0, x,y,z, are the Pauli matrices acting

on the Nambu space.

The operator of tunneling current from the lead α to the central

region is defined as
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and then one can obtain [76-79]

(8)

The current noise correlations are defined as

(9)

Sαβ is referred to as the noise auto- or cross-correlation between

the currents flowing through the lead α and lead β. To evaluate

the current and noise within the framework of Keldysh

NEGF formalism, we need to derive the retarded (advanced)

Green’s function Gr(a) and the lesser (greater) Green’s

function G<(>) from the contour-ordered Green function

 in the Nambu space spanned by the

spinor  where cL(R) is

the electron annihilation operator in the left (right) lead. In this

Nambu space, we define the matrix of the lesser Green’s func-

tion G< [78,79]

(10)

In this representation, the currents are given by

(11)

and the noise spectrum Sαβ(ω) is given by:

(12)

where  is the frequency-independent Schottky noise origi-

nating from the self-correlation of a given tunneling event with

itself, which the double-time correlation function can not

contain, and  denotes the lesser

(greater) green functions in the frequency space. The matrices

of the current operators are given by

(13)

where ML and MR are the block (2N + 4) × (2N + 4) matrices

with nonzero elements

(14)

respectively. From the standard equation of motion for the

central region, we can write the retarded Green’s function Gr in

terms of the Dyson equation Gr = gr + grΣrGr, which gives

(15)

Here gr is the bare Green’s function of the central region with-

out coupling to the leads (tL = tR = 0),

(16)

where In×n is the n × n identity matrix. Since Gr is already

given and the advanced Green’s function Ga can be obtained

from Gr = (Ga)†, it is now straightforward to obtain the lesser

Green’s function from the standard Keldysh equation,

(17)

In the present case, Σ< = 0 and

(18)

with

(19)

where O4N×4N is the 4N × 4N zero matrix, 

is the Fermi–Dirac distribution function and kBT is the tempera-

ture. In the calculation of the noise spectrum Sαβ(ω), the greater



Beilstein J. Nanotechnol. 2018, 9, 1358–1369.

1362

Green’s function G> can be readily obtained since the relation

G< −G> = Ga −Gr holds. Finally, we define the noise Fano

factor F = SL(ω = 0)/2eIL to measure the deviation from the

uncorrelated Poissonian noise for which F = 1, with respect to

which the shot noise can be enhanced or suppressed because the

current fluctuations in the device are highly susceptible to dif-

ferent interactions in the system.

Numerical results
In this section we present the numerical results of the transport

properties for the disordered Majorana nanowire. Here we

mainly discuss the disorder-induced effects on the differential

conductance, especially on the conductance peak spacing and

its relation with the Majorana energy oscillation. To exclude

thermal fluctuations, we restrict our discussion to the zero tem-

perature kBT = 0. The lattice constant is set to a = 10 nm

throughout the paper. For the disorder-free situation, we choose

t0 = 12 meV, μ0 = 2.0 meV, Δ0 = 0.9 meV, α = 2.4 meV, and

the symmetric lead-wire coupling strength ΓL = ΓR = 0.3 meV.

The bias voltage V across the whole device will shift the chemi-

cal potential μL(μR) in the leads to ±V/2. In modeling the

disorder effect on the quantum transport in mesoscopic devices,

the numerical results need to be averaged over enough random

configurations. In our calculation, the conductance and the

noise Fano factor is averaged over 400 random configurations

for each data point.

In previous work [35], it was found that the disorder could in-

duce a nonquantized zero-bias peak at finite temperature even

when the nanowire is in a topologically trivial regime. In their

work, a single disorder realization is considered for their

3-dimensional multiband Majorana wire. The consideration of

the multiband wire model leads to the weaker sample–sample

fluctuations than the single channel model. Although a single

disorder configuration is considered, their results are obtained at

a finite temperature, which implies that thermal averaging is

done. With the increase of temperature, the sample-to-sample

fluctuations are suppressed [80]. It is thus reasonable for them

to consider a single disorder configuration.

Here we study the effect of three types of disorder on the trans-

port in a Majorana device. To exclude the thermal effect, we

restrict our discussion to the zero temperature case. The large

sample-to-sample fluctuations is thus unavoidable. In principle,

several similar samples are also needed in experiments to

confirm the existence of related physical mechanisms. In a

previous experiment [39], only one sample is reported for each

wire length. It is indicated that a damped oscillation magnitude

of the Majorana energy splitting occurs with the increase of

magnetic field, which contradicts the theoretical result. Our

calculation suggests that the discrepancy may arise from the

intrinsic disorder. To confirm this, more experiments are ex-

pected to be performed in the future for similar samples.

Majorana energy oscillation
We firstly present the lowest energy EM as a function of the

magnetic field in the presence of different kinds of disorder.

Considering the finite-size effects on the coupling between the

two MBSs and the recently reported suppression of the energy

splitting due to the increase in wire length [39], we consider

wires of two typical lengths in particular: a shorter one with

L = 0.60 μm and a longer one with L = 0.95 μm. In Figure 2,

when VZ is relatively small, the system stays in the topologi-

cally trivial phase, and the lowest energy is linearly suppressed

as the magnetic field strength increases. Without disorder in the

system, the nanowire is driven into a topological supercon-

ducting phase when we tune VZ to exceed the phase transition

point  and EM begins to oscillate near the zero

value. This behavior, originating from the finite-size effects, is

absent in a long enough wire, where the field-independent exact

Majorana zero mode emerges with its energy pinned to zero.

Figure 2: The Majorana energy EM as a function of the Zeeman split-
ting VZ for different types of disorder. (a,b) The clean cases;
(c,d) disorder in pairing energy δΔ = 0.9 meV; (e,f) disorder in the
chemical potential δμ = 1.0 meV; (g,h) disorder in the nearest hopping
δt = 1.0 meV. For comparison, two different wire lengths L = 0.6 μm
(left panels) and L = 0.95 μm (right panels) are separately considered.
Other parameters are taken as t0 = 12.0 meV, Δ0 = 0.9 meV,
μ0 = 2.0 meV, α = 2.4 meV, and ΓL = ΓR = 0.3 meV. The MBSs
appears at the wire ends for VZ > VZC.

For disordered wires, we find that the exact Majorana zero

mode gradually vanishes in the presence of disorder in hopping

or chemical potential. In particular, as shown in Figure 2, a δt
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with strength 1.0 meV, which is comparable to the strength of

Zeeman splitting, can remarkably flatten the energy oscillation.

On the contrary, the strong disorder in the pairing energy leaves

the Majorana energy oscillation almost unaffected. In the topo-

logical phase and in the strong Zeeman field regime, the spins

are nearly polarized and one can project the original Hamil-

tonian onto a simpler one-band problem [7]. To leading order,

one obtains an effective p-wave-like Hamiltonian with the

effective chemical potential μeff = μ + VZ/2 and the effective

pairing energy Δeff = αΔ/2VZ. Because small spin-orbit cou-

pling is considered, the effect of the disorder δΔ in the pairing

energy is considerably suppressed with increasing VZ due to the

multiplication factor α/2VZ. However, there is no multiplication

factor for μ, hence the disorder δμ has a stronger influence on

the Majorana energy oscillation. The hopping disorder and

chemical potential disorder can both considerably destroy the

Majorana zero modes, leading to increased Majorana energy

splitting and enhancement of the MBSs hybridization.

To get a closer look into the effects of disorder on the Majo-

rana energy splitting, it is beneficial to investigate the localiza-

tion length that characterizes the hybridization between the pair

of MBSs. In weak spin-orbit coupling regime, the localization

length increases gradually as B [36,38]. Therefore, the

strength of the Zeeman splitting VZ should be chosen as the

energy scale to determine whether the disorder strength is

strong or not. Meanwhile, the disorder strength that can remove

the energy splitting signature is also determined by the wire

length. For a longer wire, a disorder of the same strength could

lead to a more evident suppression of the energy splitting signa-

ture.

In Figure 3, without loss of generality, we focus on the evolu-

tion of the MBS probability density on the left wire end in the

presence of disorder in chemical potential, of which the influ-

ence is more evident compared with the limited effects induced

by the pairing disorder. Here we choose a rather long wire of

length L = 2.0 μm, where the two spatially separated MBSs are

well localized at each end of the wire, thus the hybridization be-

tween the pair of MBSs is negligibly small. In our case where

 the system is in a weak spin-orbit interaction

regime, and the approximate value of the localization length for

a discretized tight-binding model is analytically given by

with which the MBS probability density has an exponentially

decaying envelope of the form  [81]. As shown in

Figure 3, the numerically fitted decaying envelope of the

disorder-free probability density gives ξ ≈ 0.0727 μm, com-

pared to the approximate analytical results of ξ ≈ 0.0775 μm the

difference is below a lattice constant. With the disorder strength

increasing, the probability density at the end is suppressed and

the localization length ξ of the fitted envelope becomes larger.

This can also be directly identified from the noticeable defor-

mations of the tail part of the probability density, which implies

an enhanced hybridization between the two MBSs with an in-

creasing disorder strength. In a shorter wire where the overlap

between the two MBSs is stronger, it is reasonable to expect a

more evident disorder-induced increment in the MBSs hybridi-

zation, which agrees with the results shown in Figure 2.

Figure 3: The spatial distribution of probability density |Ψ|2 (solid lines)
and their fitted envelopes  (dashed lines) in the presence of dif-
ferent strengths of chemical potential disorder δμ; the inset shows the
localization length ξ of the fitted envelope varies with different values of
δμ. Here we choose L = 2.0 μm, μ = 0, Δ = 2.0 meV, VZ = 6.1 meV and
other parameters are taken as those used in Figure 2.

Conductance peak spacings
In Figure 4, we demonstrate the effects of three types of

disorder on the conductance peak spacings for different wire

lengths. In a disorder-free case, the Majorana energy splitting of

the system can be reflected by the conductance peak spacing.

We take a Zeeman field VZ = 6.6 meV that is associated with

clear energy splittings and conductance peak spacings.

For a shorter nanowire L = 0.6 μm, it is found that all three

types of disorder can suppress the amplitude of the conduc-

tance peak and broaden the peak width to some different extent.

The presence of disorder in the system leads to a similar result

induced by dissipation or finite temperature, both of which can

lower the peak and broaden its width [57]. What makes a differ-

ence here is that one can additionally observe a suppression,

which is pronounced especially in the cases of hopping or

chemical potential, of the conductance peak spacings due to the

effect of disorder.
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Figure 4: The differential conductance G = dI/dV as a function of the bias voltage V under the influence of different types of disorder. (a,d) disorder δμ
in the chemical potential; (b,e) disorder δt in the nearest hopping; (c,f) disorder δΔ in pairing energy. The upper panels corresponds to the shorter wire
case L = 0.6 μm and the lower panels represents the case of L = 0.95 μm. Other parameters are taken as those used in Figure 2.

When the device becomes longer (L = 0.95 μm), the Majorana

energy splitting is exponentially suppressed, thus the conduc-

tance peak spacing in a clean system becomes much narrower.

As illustrated in the lower panels of Figure 4, smaller disorder

than that in the shorter wire can lead to notable suppressions on

the conductance peak spacings, and as the disorder strength

eventually exceeds some certain value, a zero-bias peak is

formed from the two spaced peaks. It is interesting that a strong

disorder in pairing could even elevate the induced zero-bias

conductance peak. These numerical results, together with that

revealed in Figure 2, suggest that we can not simply neglect the

role played by disorder in detecting Majorana energy oscilla-

tion experimentally through transport measurements since for

some values of Zeeman field the disorder-induced effects can

broaden the Majorana energy splitting of the low-energy states

while simultaneously narrows the conductance peak spacing.

This means that the Majorana energy splitting can not be

genuinely characterized by the conductance signature. One

possible reason is that the Majorana energy splitting is not

robust. When the energy splitting of the Majorana modes is

negligible compared to the magnitude of disorder, the conduc-

tance signature associated with the Majorana energy splitting

could be annihilated by the noise arising in the system, which is

equivalent to raising the temperature. Different from the ther-

mal fluctuations that could be excluded by lowering the temper-

ature, the three types of intrinsic disorder discussed here are

hard to avoid in a realistic experiment.

Figure 5: The differential conductance G = dI/dV in the longer wire
(L = 0.95 μm) as a function of the bias voltage V with
δμ = δΔ = δt = 0.8 meV approaching the critical Zeeman splitting
VZC = 0.9 meV. Here we have μ0 = 0, VZ = 6.0 meV and other parame-
ters are taken as those used in Figure 4.

Above we consider the case that the critical Zeeman field VZC is

much stronger than the disorder strength δW. Now we turn to

discuss the more experimentally relevant case where δW ≈ VZC.

Figure 5 demonstrates the effect of three types of disorder on

the conductance for a small VZC. The chemical potential in the

wire is tuned as μ0 = 0, while the other parameters are taken as

the same as that for the lower panels in Figure 4. It is shown in
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Figure 6: The zero-bias conductance G as a function of the Zeeman splitting VZ for different types of disorder. (a,e) The clean case; (b,f)disorder in
pairing energy δΔ = 0.5 meV; (c,g) disorder in the chemical potential δμ = 1.0 meV; (d,h) disorder in the nearest hopping δt = 0.5 meV and 1.0 meV.
The upper panels correspond to the shorter wire case L = 0.6 μm and the lower panels represent the case of L = 0.95 μm. In panel (h), we show that
a disorder of δt = 1.0 meV could remove the conductance oscillation as VZ increases. Other parameters are taken as those used in Figure 2.

Figure 5 that for δW ≈ VZC, the disorder can suppress the peak

spacing and a single zero-bias peak is produced. Similar to the

large VZC case, the main conclusion is qualitatively consistent

with the results in Figure 4.

In previous experiments [39,46,47], the Majorana energy split-

ting for a nanowire with Coulomb interactions was represented

by the even–odd peak spacing differences. However, the ex-

pected field-dependent decay behavior of Majorana energy

oscillations is not observed in the experiments. On the contrary,

the detected conductance peak differences tend to decay sharply

as the magnetic field increases, which contradicts the theoreti-

cal predictions. Although here we consider an interaction-free

scenario, our results indicate that the disorder can partially

reduce the splitting of the conductance peak. In addition, for a

shorter wire, the hybridization of the MBSs at two ends can

generate a relatively large splitting in the conductance peak,

which is consistent with the result of the previous experiments.

The magnetic field could suppress the superconducting pairing

energy, which leads to the enhancement of disorder strength in

some sense.

Zero-bias conductance as a function of Zeeman
field
In superconducting nanowire systems, a quantized zero-bias

conductance peak is considered as direct evidence for the pres-

ence of MBSs, and its emergence is often associated with the

resonant Andreev reflection [41]. However, for realistic Majo-

rana nanowires, the observed conductance peaks are often much

smaller than 2e2/h. In Figure 6, we show the disorder-induced

effects on the zero-bias conductance oscillation as a function of

the Zeeman splitting VZ. For the clean wire, the zero-bias

conductance has a clear oscillating behavior in the topological

phase (VZ > VZC), and its peak value is quantized to 2e2/h.

These quantized peaks of the conductance emerge from the

exact zero-energy modes, while the valley of the conductance

corresponds to the peak value of Majorana energy splitting.

With an increasing magnetic field, the valley of the conduc-

tance gradually decays, corresponding to an enhancement of the

Majorana energy splitting through the magnetic field. When the

magnetic field is strong enough, the transport channel of the

resonant Andreev reflection is almost closed and the valley of

conductance approaches zero.

In the presence of disorder, the most notable difference is that

the conductance oscillation peaks do not become more quan-

tized. In Figure 2, it is shown that the disorder could destroy the

exact Majorana zero mode and produce a finite energy splitting.

Correspondingly, the quantized zero-bias conductance peak is

suppressed by the disorder, as a manifestation of the induced

finite energy splitting. This phenomenon is particularly evident

for the cases where the disorder in the hopping or in chemical

potential exists. As shown in Figure 6b and Figure 6f, the

conductance peaks stay almost quantized even in the presence

of a relatively strong pairing disorder. Additionally, one can

find that the valleys of the conductance oscillation are almost

unaffected by all kinds of disorder, which also agrees with the

result of Figure 2. These observations suggest that the intrinsic

disorder in the nanowire could strongly reduce the zero-bias

conductance oscillation associated with the Majorana energy
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Figure 7: Comparison of the noise Fano factor F between the cases of Majorana zero mode and disorder-induced zero-bias conductance peaks. The
upper, middle, and lower panels represent the effect of disorder in chemical potential δμ, superconducting pairing δΔ, and the hopping amplitude δt,
respectively. (a), (d) and (g): Majorana energy EM as a function of VZ. The points A and B denote the MBSs with zero energy and a finite energy in the
disorder-free case, respectively. The points C corresponds to the MBSs with a finite energy splitting in the disordered cases, where VZ at point C
equals to that at point B. (b), (e) and (h): The differential conductance G as a function of the bias voltage V. In the clean case, the quantized zero-bias
peak is formed for Majorana zero mode (green lines). Disorder-induced zero-bias peaks (black lines) are formed from the spaced conductance peaks
(orange, dotted line). (c), (f) and (i): The noise Fano factor F as a function of the bias voltage V. In the clean case, F in the low bias limit approaches
zero for Majorana zero mode (green line), and F is finite for a finite energy splitting (orange, dotted line). For the disordered case, F in the low bias
limit is finite (black line) although a zero-bias peak emerges in this case. The disorder strengths are δμ = 1.0 meV, δΔ = 0.8 meV, and δt = 0.5 meV.
The wire length is taken as L = 0.95 μm and other parameters are taken as those in Figure 2.

splitting. However, although the disorder significantly sup-

presses the oscillation, it does not eliminate the zero-bias

conductance peak.

Shot noise
We now turn to investigate the shot noise properties of the

Majorana system. For a long nanowire, the Majorana energy

splitting is negligible, and the noise Fano factor is suppressed at

zero voltage due to the resonant Andreev tunneling in an isolat-

ed MBS. In the clean case, a large Majorana energy splitting

could strongly suppress the resonant Andreev tunneling, leading

to the increase of the noise Fano factor and splitting of the

conductance peak. It is shown in Figure 4 that the split conduc-

tance peaks are reformed to one zero-bias peak by the disorder.

However, the zero-bias conductance peak can also arise due to

the exact Majorana zero mode in the clean case. It is expected

that the shot noise may provide the signature to distinguish the

zero-bias conductance peak in a clean system from that which

arises in a disordered one. This can be verified by the results

given in Figure 7.

Here we present the Majorana energy splitting EM, the conduc-

tance G and the noise Fano factor F = S/2eI in the clean and

disordered cases, in which three different types of disorder are

taken into account. In the clean case, we separately choose point

A and B which represents the zero energy mode and a finite

splitting case, respectively. For a Majorana zero mode, a quan-

tized zero-bias conductance peak could be induced and the

noise Fano factor approaches zero due to the resonant Andreev

tunneling. While for the case of finite energy splitting, the zero-

bias conductance peak is split and the shot noise is enhanced

due to the crossed Andreev reflection (CAR) which, con-

trasting with the local Andreev reflection that injects a Cooper

pair in a single lead, would split a Cooper pair over two leads.

The CAR processes will induce a current noise cross-correla-

tion between two normal leads and predominate over the local

Andreev reflection with the presence of a MBSs pair [77-79].

For short wires, the Fano factor at zero bias is close to unity for

a strongly coupled MBS pair between two leads. As the wire

length increases, the coupling between the MBSs at the two

ends decreases, leading to the suppression of CAR process and

a reduction of Fano factor.

For comparison we also choose a point C for the disordered

case. The points C correspond to MBSs with a finite energy

splitting in the disordered case, where VZ at point C is equal to
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the Zeeman field at point B. As shown in Figure 7 the Majo-

rana energy splitting in point C has a non-zero value, and its

value is slightly enhanced or weakened with respect to the

Zeeman field strength. For the conductance, the peak splitting at

point B is reformed to a single zero-bias peak induced by three

types of disorder. Differently, in the low-bias voltage regime,

the noise Fano factor F deviates from zero in the presence of

disorder, indicating a stronger coupling between the two sepa-

rated MBS. This result is a clear manifestation of the Majorana-

assisted CAR process. This means that although the zero-bias

conductance peak could originate from an exact zero mode or

intrinsic disorder in the nanowire, one can discriminate these

two different mechanisms from the shot noise properties. In a

clean nanowire, the zero-bias peak is induced by the Majorana

zero mode. In this case, the appearance of the zero-bias peak is

always accompanied by the zero noise Fano factor, i.e., F = 0.

However, in the disordered case, the zero-bias conductance

peak could also be induced for a finite energy splitting, while

the noise Fano factor F has a finite value. Thus, whether the

Fano factor F at the low-bias limit equals to zero or a finite

value provides a signature to distinguish the zero-bias peak in-

duced by Majorana zero mode from that by disorder.

Conclusion
To conclude, we investigated the effect of intrinsic disorder on

the transport properties of a Majorana nanowire by adopting a

one-dimensional tight-binding model. We introduce three types

of disorder into the system, including random fluctuations in the

chemical potential, spatially changing in the superconducting

pair potential, and the anisotropy of the nearest-neighbor

hopping strength through lattice sites. We demonstrated that the

disorder could remove the peak spacing in the differential

conductance and induce a zero-bias peak for a finite Majorana

energy splitting. For a shorter nanowire, the magnitude of the

conductance peaks and the peak spacings are considerably

suppressed as the disorder is taken into account. Such a

disorder-induced suppression of conductance peaks and peak

spacings provides a simple but interesting scenario to explain

the absence of Majorana energy oscillation observed in previous

experiments. Especially for a longer nanowire (L ≈ 1 μm), the

Majorana energy splitting is exponentially small, and the spaced

conductance peaks are facilitated to form a zero-bias peak by

the disorder. However, the presence of disorder does not

suppress the Majorana energy splitting. On the contrary, the

disorder in hopping and chemical potential destroys the locali-

zation of MBSs and thus enhance their hybridization, leading to

an increase in the Majorana energy splitting. This phenomenon

can be further identified with the disorder-induced increment in

the localization length. The exact Majorana zero modes in the

clean case gradually vanish with increasing disorder strength.

As a function of Zeeman field, the quantized zero-bias conduc-

tance peaks by the exact zero mode are shown to be strongly

suppressed due to the presence of disorder. In particular, for an

increase in hopping disorder, the oscillation behavior in the

zero-bias conductance spectra vanishes in the longer wire case.

In the presence of disorder, the Majorana energy splitting is not

suppressed and zero modes are removed, while the zero-bias

conductance peaks are induced for a finite energy splitting. To

distinguish whether the zero-bias conductance peak is induced

by a Majorana zero mode or by the disorder, we further investi-

gate the shot noise properties of the device. For a clean nano-

wire, we show that the appearance of the zero-bias peak is

always accompanied by a zero-noise Fano factor (F = 0) in the

low-bias voltage limit. In contrast, the Fano factor F in the

disordered case has a finite value at the low-bias limit. In this

case, the finite Majorana energy splitting induces a crossed

Andreev reflection and the resonant Andreev tunneling is

suppressed, resulting in the deviation of the Fano factor from

zero. Therefore, the shot noise provides a clear signature to

discriminate between the two different mechanisms that lead to

the formation of the zero-bias conductance peak.
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Abstract
We investigate single and multiple defects embedded in a superconducting host, studying the interplay between the proximity-in-

duced pairing and interactions. We explore the influence of the spin–orbit coupling on energies, polarization and spatial patterns of

the bound (Yu–Shiba–Rusinov) states of magnetic impurities in a two-dimensional square lattice. We also address the peculiar

bound states in the proximitized Rashba chain, resembling the Majorana quasiparticles, focusing on their magnetic polarization that

has been recently reported by S. Jeon et al. (Science 2017, 358, 772). Finally, we study leakage of these polarized Majorana quasi-

particles into side-attached nanoscopic regions and confront them with the subgap Kondo effect near to the singlet–doublet phase

transition.
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Introduction
Magnetism is usually detrimental to superconductivity because

it breaks the Cooper pairs (at the critical field strength Hc2).

There are, however, a few exceptions in which these phenome-

na coexist, e.g., in iron pnictides [1], CeCoIn5 [2]. Also, some-

times magnetic fields induce superconductivity [3]. Plenty of

other interesting examples can be found in nanoscopic systems,

where magnetic impurities (dots) exhibit a more subtle relation-

ship with the electron pairing driven by the proximity effect

[4,5]. Cooper pairs easily penetrate the nanoscopic impurities,

inducing the bound (Yu–Shiba–Rusinov) states that manifest

the local pairing in coexistence with magnetic polarization.

Such bound states have been observed in various systems

[6-14]. In-gap states (appearing in pairs symmetrically around

the Fermi level) can be nowadays controlled electrostatically or

magnetically [12] whereas their topography, spatial extent and

polarization can be precisely inspected by the state-of-art

tunneling measurements [15,16].

It has been reported that adatoms deposited on a two-

dimensional  (2D) superconducting surface develop

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:doman@kft.umcs.lublin.pl
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Yu–Shiba–Rusinov (YSR) states, extending to a dozen of inter-

site distances and they reveal particle–hole oscillations [11].

Bound states of these magnetic impurities in superconducting

NbSe2 are characterized by the star shape [17] typical for the

rotational symmetry of its triangular lattice. More complex

objects, such as dimers, reveal other spatial features, showing

the bonding and antibonding states [18]. In a somewhat differ-

ent context it has been pointed out [19] that exchange coupling

between numerous quantum defects involving their intrinsic

spins can couple them ferromagnetically. This can be used (e.g.,

in metallic carbon nanotubes) for a robust transmission of mag-

netic information over large distances.

In all cases the bound YSR states are also sensitive to interac-

tions. One of them is the spin–orbit coupling (usually mean-

ingful at boundaries, e.g., surfaces) [20-22]. Such interaction in

one-dimensional magnetic nanowires can induce the topologi-

cally nontrivial superconducting phase, in which the YSR states

undergo mutation to Majorana (zero-energy) quasiparticles.

Coulomb repulsion between the opposite spin electrons can

bring additional important effects. In the proximitized quantum

dots it can lead to a parity change (quantum phase transition)

with further influence on the subgap Kondo effect (driven by

effective spin-exchange coupling with mobile electrons).

Furthermore, such spin exchange can be amplified by the in-

duced electron pairing, and can have constructive influence on

the Kondo effect [23,24].

We study here the polarized bound states, taking into account

the spin–orbit and/or Coulomb interactions. In particular, we

consider: (i) a single magnetic impurity in a 2D square lattice of

a superconducting host, (ii) a nanoscopic chain of magnetic

impurities on the classical superconductor (i.e., proximitized

Rashba nanowire) in its topologically trivial/nontrivial super-

conducting phase, and (iii) a strongly correlated quantum dot

side-attached to the Rashba chain, where the Kondo and the

leaking Majorana quasiparticle can be confronted with each

other. These magnetically polarized YSR and Majorana quasi-

particles as well as the subgap Kondo effect can be experimen-

tally verified using tunneling heterostructures with ferromag-

netic lead (STM tip).

Results and Discussion
Single magnetic impurity
Let us start by considering a single magnetic impurity on the

surface of an s-wave superconductor in presence of spin–orbit

interactions. This situation can be modeled by the Anderson-

type Hamiltonian

(1)

We describe the superconducting substrate by

(2)

where  ( ) denotes creation (annihilation) of an electron

with spin σ at the i-th site, t is a hopping integral between the

nearest neighbors, μ is the chemical potential, and 

is the number operator. For simplicity, we assume a weak

attractive potential U < 0 between itinerant electrons and treat it

within the mean-field decoupling

where  is the local superconducting order parame-

ter and niσ = . The Hartree term can be incorporated

into the local  (spin-dependent)  chemical  potent ial

μ →  ≡ μ − . The second term in Equation 1 refers to

the local impurity

(3)

which affects the order parameter χi near the impurity site i = 0,

inducing the YSR states [25,26]. In this work we focus on the

magnetic term J [4,27], disregarding the potential scattering K.

The spin–orbit coupling (SOC) can be expressed by

(4)

where the vector  refers to positions of the

nearest neighbors of the i-th site, and  = (σx, σy, σz) stands for

the Pauli matrices. The unit vector  shows the direction of the

spin–orbit field, which can be arbitrary. Here we restrict our

considerations to the in-plane  = (1, 0, 0) polarization,

which will be important for nontrivial superconductivity in

nanowires discussed in the subsection ’Magnetically polarized

Majorana quasiparticles’. The other (out-of-plane) component

could eventually mix ↑ and ↓ spins [22].

Impurities break the translational invariance, therefore the

pairing amplitude χi and occupancy niσ have to be determined

for each lattice site individually. We can diagonalize the Hamil-

tonian (Equation 1) by the unitary transformation
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(5)

where  are quasiparticle fermionic operators with eigenvec-

tors uinσ and vinσ. This leads to the Bogoliubov–de Gennes

(BdG) equations

(6)

where Dij = δijUχi, and the single-particle term is given by

with the spin–orbit coupling term

Here,  and  (where  is opposite to σ) correspond to

in-plane and out-of-plane spin–orbit field, respectively, and

satisfy .

Solving numerically the BdG equations (Equation 6) we can de-

termine the local order parameter χi and occupancy niσ

(7)

(8)

where f(ω) = [1 + exp(ω/kBT)]−1. In what follows, we shall

inspect the spin-resolved local density of states

For its numerical computation we replace the Dirac delta func-

tion with the Lorentzian function δ(ω) = ζ/[π(ω2 + ζ2)] with a

small broadening ζ = 0.01 t. We have solved the BdG equations,

considering a single magnetic impurity in a square lattice, com-

prising Na × Nb = 41 × 41 sites. We assumed U/t = −3, μ/t = 0,

and determined the bound states for two representative values

of the spin–orbit coupling λ upon varying J.

The magnetic potential has substantial influence on the local

order parameter χ0. In particular, at some critical value Jc this

quantity discontinuously changes its magnitude and sign (see

the upper panel in Figure 1), signaling a first-order phase transi-

tion [28-30]. This quantum phase transition at Jc is an artifact of

the classical spin approximation. When spin fluctuations are

allowed, a Kondo-like crossover is obtained instead of a first-

order phase transition [31,32]. In general, the quasiparticle

spectrum at the impurity site is characterized by two bound

states ±EYSR inside the gap Δ of the superconducting host

(displayed in the bottom panel of Figure 1). These energies

±EYSR and the related spectral weights depend on J. At J = Jc

the YSR bound states cross each other EYSR(Jc) = 0 and their

crossing signifies the ground-state parity change [33] from

BCS-type (spinless) to the singly occupied (spinful) configura-

tions [8,15,21,34]. Let us remark that this quantum phase transi-

tion is also accompanied with a reversal of the YSR polariza-

tion (see bottom panel in Figure 1). A similar behavior can be

observed also for multiple impurities, at several critical values

of J [35].

Within the BdG approach we can inspect spatial profiles of the

YSR states by integrating the spectral weights

in the interval  capturing the quasiparticles at nega-

tive/positive energies ±EYSR [36]. Figure 2 illustrates the results

obtained for λ = 0 (left panel) and λ = t (right panel). We clearly

notice a fourfold rotational symmetry (typical for the square

lattice) and the spatial extent of YSR states reaching several

sites away from the magnetic impurity. The non-vanishing

difference of the spectral weight |uin↑|
2 −|uin↓|

2 at the positive

energy ω = +EYSR and of |vin↑|
2 −|vin↓|

2 at the negative energy

ω = −EYSR implies the effective spin-polarization of the bound

states (their polarization is illustrated in the bottom panel of

Figure 1).

For a quantitative estimation of the spatially varying magnetiza-

tion (driven by the particle–hole asymmetry) we have com-

puted the displaced moving average , which corresponds

to an averaged spectral weight contained in a ring of the radius r

and a small half-width δr. This quantity is sensitive only to the

radial distance r from the magnetic impurity, averaging the

angular anisotropy. Our results, presented in Figure 3, clearly

indicate the spatial particle–hole oscillations  of the YSR

states (compare the blue and red lines). Such particle–hole

oscillations decay exponentially with r in agreement with

previous studies [11,37,38]. The dominant (particle or hole)

contributions to the YSR bound states are displayed by the
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Figure 1: The local order parameter obtained at zero temperature for weak λ/t = 0.1 (red line) and strong spin–orbit coupling λ/t = 1 (blue line). The
bottom panel shows the energies and magnetic polarization ρ0↑(ω) − ρ0↓(ω) of YSR states obtained in the weak-coupling limit λ/t = 0.1.

Figure 2: Spatial profiles of the YSR states  obtained for |J| < Jc in the absence of spin–orbit coupling (left panel) and for strong in-plane cou-
pling λ = t (right panel). The spin–orbit field is chosen along the x-axis and leads to an additional imaginary hopping term along the y-axis, which elon-
gates the YSR states in the y-direction. The impurity spin is oriented along the (0, 0, 1) direction.

alternating color of the background in Figure 3. We notice that

the spin–orbit coupling seems to suppress these particle–hole

oscillations.

Summarizing this section, we point out that the quantum phase

transition at Jc depends on the spin–orbit coupling λ and it has

experimentally observable consequences in the magnetization

induced near the impurity site. For weak magnetic scattering

|J| < Jc the impurity is partly screened, whereas for stronger

couplings |J| > Jc the impurity polarizes its neighborhood in the

direction of its own magnetic moment. Similar effects have

been previously discussed in [21], but here we additionally

consider the role of spin–orbit coupling. First of all, such inter-

action shifts the quantum phase transition (to larger values of J)

and secondly it enhances the spatial extent of YSR states and

gradually smoothes the particle–hole oscillations.
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Figure 3: Hole-like (blue line) and electron-like (red line) displaced moving average  as a function of the radial distance r from the impurity site
obtained for |J| < Jc using δr = 0.5a. The blue and red background color indicates the dominant type (hole or particle) of the YSR states at a given dis-
tance r. The left and right panels correspond to λ = 0 and λ = t, respectively.

Magnetically polarized Majorana quasiparti-
cles
In this section we increase the number of impurities. Let us now

imagine a nanoscopic chain of magnetic impurities (for instance

Fe atoms) deposited on the surface of a conventional s-wave

superconductor. We study the magnetically polarized bound

states, focusing on the proximity-induced nontrivial supercon-

ducting phase. In practice, the quasiparticle spectrum can be

probed within STM-type setups, by attaching a conducting

[39,40], superconducting [41], or a magnetically polarized tip

[42]. We assume the spin–orbit interaction aligned perpendicu-

larly to the wire and the magnetic field parallel to it, leading to

the effective intersite pairing of identical spins and (under spe-

cific conditions) inducing zero-energy end modes resembling

Majorana quasiparticles. This issue has been recently studied

very intensively but here we simply focus on the spin-polarized

aspects of this problem.

Due to the spin–orbit interaction, momentum and spin are no

longer “good” quantum numbers. By solving the problem

numerically, however, we can estimate the percentage with

which the true quasiparticles are represented by the initial spin.

We have recently emphasized [43], that the amplitude of inter-

site pairing (between identical spin electrons) differs several

times for ↑ and ↓ sectors. This leads to an obvious polarization

of the YSR and Majorana quasiparticles (the latter appearing

near the nanochain edges).

Let us consider the STM-type geometry relevant to the recent

experimental situation addressed by A. Yazdani and co-workers

[42], which can be described by the following Hamiltonian

(9)

We assume here that the STM tip describes a polarized fermion

gas

where the energy  can be controlled by some

finite detuning of the chemical potentials μN↑ − μN↓. Individual

atoms of the nanochain are coupled with such STM tip through

For simplicity, we assume constant couplings

The low-energy physics of such proximitized Rashba nanowire

can be described by [44]

(10)

where  annihilates (creates) an electron of spin σ at site i

with energy εi, and tij is the hopping integral. The effective

intersite (p-wave) pairing is induced through a combined effect

of the Rashba and the Zeeman terms
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(11)

(12)

The proximity effect, which induces the on-site (trivial) pairing,

can be modelled as [45]

(13)

with the local pairing potential Δi = ΓS/2.

Figure 4 shows evolution of the spin-dependent spectrum ρiσ(ω)

as a function of a varying magnetic field. At a critical value

(B ≈ 0.2) we observe the emergence of zero-energy quasiparti-

cles, whose spectral weights strongly depend on the spin σ.

Figure 4: The effective quasiparticle spectrum ρiσ(ω) as a function of a
magnetic field B aligned along the nanochain obtained for σ = ↑ (upper
panel) and σ = ↓ (bottom panel). The magnetic field B is expressed in
units of t/(gμB/2).

For a better understanding of the polarized zero-energy quasi-

particles, we present in Figure 5 the spatial profiles of the zero-

energy (Majorana) quasiparticles. As usually such quasiparti-

cles emerge near the edges of a nanoscopic chain, practically

over 10 to 15 sites (see inset). Note the substantial quantitative

difference between these zero-energy quasiparticles appearing

in ↑ and ↓ spin sectors. This “intrinsic polarization” of the

Majorana modes has been previously suggested in [46], and

recently we have proposed [47] their empirical detection by

means of selective equal-spin Andreev reflection (SESAR)

spectroscopy.

Figure 5: Magnetically polarized spectrum ρi,↑(ω) − ρi,↓(ω) obtained at
ω = 0 for peripheral sites of the Rashba chain.

The main idea is to apply a bias voltage V between the STM tip

and the superconducting substrate, inducing a charge transport

that, in a subgap regime ( ) originates from the

Andreev (particle to hole) scattering mechanism. The polarized

Andreev current can be expressed by the Landauer–Büttiker

formula

(14)

where transmittance is defined as

and

The anomalous Green’s functions can be computed

numerically from the solution of the Bogoliubov–de Gennes

equations of this model (Equation 10). The net spin current

 turns out to be predominantly sensi-

tive to the Majorana end-modes. Its differential conductance

 can thus distinguish the polarized

Majorana quasiparticle (near V = 0) from the YSR states

(appearing at finite voltage).
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Figure 6: Leakage of the spin-polarized Majorana quasiparticles from
the topological superconducting phase of the Rashba chain (i ≥ 10)
onto the side-attached multi-site ( ) quantum dot. The upper
and bottom panel show ρiσ(ω) at ω = 0 for ↑ and ↓ spin, respectively.

Bound states can leak to other side-attached nanoscopic objects.

This proximity effect has been also predicted for the Majorana

quasiparticles by E. Vernek et al. [48] and it has been indeed

observed experimentally by M. T. Deng and co-authors [49].

Inspired by this achievement, extensive studies have been

carried out regarding the YSR states coalescencing into the

zero-energy Majorana states in side-coupled quantum dots

driven by electrostatic or magnetic fields [50-52]. This issue

would be particularly important when attempting to braid the

Majorana end modes, e.g., in T-shape nanowires upon turning

on and off the topological superconducting phase in its seg-

ments. We briefly analyse here the polarized zero-energy Majo-

rana modes leaking into the multi-site quantum dot (comprising

ten lattice sites) side-attached to the proximitized Rashba chain

discussed above.

Figure 6 displays the spatial profile of the polarized spectrum

obtained at ω = 0 as a function of the gate voltage Vg, which

detunes the energies Vg = εi − μ of the multi-site (1 ≤ i ≤ 10)

quantum dot. For numerical calculations we used the model pa-

rameters λ = 0.15t, μ = −2t, Δi = 0.2t and B > Bc, which guar-

antee the Rashba chain to be in its topologically nontrivial

superconducting phase, hosting the zero-energy Majorana

quasiparticles (intensive black or red regions). We clearly

observe that for some values of Vg these Majorana modes

spread over the entire quantum dot region. By inspecting

Figure 6 we furthermore notice the pronounced spatial oscilla-

tions of these zero-energy modes. In our opinion, this is a signa-

ture of a partial delocalization of the polarized Majorana quasi-

particles. Surprisingly, this process seems to be less efficient in

Figure 7: Schematic illustration of the quantum dot (QD) coupled be-
tween the metallic (N) and superconducting (S) leads and hybridized
with the Rashba nanowire, hosting the Majorana quasiparticles η1 and
η2 at its edges.

the minor spin (σ = ↓) section. This effect has to be taken into

account, when designing nanostructures for a controllable

spatial displacement of the Majorana modes (criticial for the re-

alization of quantum computations with use of the Majorana-

based qubits) either by electrostatic or magnetic means. Some

proposals for such nanodevices have been recently discussed by

several authors [52,53].

In summary of this section, we emphasize that the Majorana

modes coalescing from the YSR states in the proximitized

Rashba nanowire are characterized by their magnetic polariza-

tion. Indeed, such a feature has been recently observed by STM

spectroscopy with use of a polarized tip [42]. We have studied

here the evolution of the polarized quasiparticle states with

respect to the magnetic field (Figure 4) and investigated the

spatial oscillations of the Majorana zero-energy modes near the

chain edges (Figure 5). Finally, we analyzed leakage of the

polarized Majorana modes on the multi-site quantum dots,

revealing their partial delocalization (Figure 6).

Majorana vs Kondo effect
In previous section we have discussed the polarized Majorana

modes leaking into side-attached objects, such as single impuri-

ties or segments of normal nanowires. In this section we shall

focus on the correlation effects [54-56], confronting the Majo-

rana quasiparticle with the Kondo effect (both manifested at

zero energy). This can be practically achieved using STM-type

configurations sketched in Figure 7. In particular, we consider

the subgap Kondo effect, effectively driven by the Coulomb

repulsion U and coupling of the quantum dot (QD) with the

normal lead ΓN in presence of electron pairing (induced via ΓS),

which has a significant influence on the spin-polarized bound

states of the QD. The basic mechanism of this subgap Kondo

effect showing up near the quantum phase transition has been

earlier considered by us in absence of the Rashba nanowire
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[24,57]. Our considerations can be practically verified within

STM geometry [39,40] using magnetic atoms (e.g., Fe) and

side-coupled nonmagnetic atoms (for instance Ag or Au)

deposited on the superconducting substrate (such as Pb or Al)

probed with a conducting STM tip [42].

The topological superconducting phase, hosting the Majorana

modes, can be driven in semiconducting wires [58,59] or in

nanochains of magnetic atoms [39-42] through nearest-neighbor

equal-spin pairing. The efficiency of such p-wave pairing

differs for each spin [47], giving rise to polarization of the

Majorana quasiparticles, with noticeable preference for the ↑

sector (see Figure 4). In order to study the correlation effects we

shall assume here a complete polarization of the Majorana

quasiparticles. We thus focus, for simplicity, on the topological

state originating from intersite pairing of only ↑ electrons and

consider its interplay with the correlations. Let us remark, how-

ever, that the superconducting lead mixes both the QD spins

with the side-attached Majorana quasiparticle [60]. In conse-

quence we shall observe an interesting and spin-dependent rela-

tionship between the Majorana and Kondo states that could be

probed by the polarized Andreev (particle-to-hole conversion)

mechanism.

Our setup (Figure 7) can be described by the following

Anderson-type Hamiltonian

(15)

where  corresponds to the metallic electrode,  refers to

the s-wave superconducting substrate and the correlated QD is

modeled by , where ε denotes the

energy level and U stands for the repulsive interaction between

opposite spin electrons. The QD is coupled to both β = N,S

reservoirs through  and we

assume a wide bandwidth limit, using the constant couplings Γβ.

It can be shown [61-64] that for energies  the super-con-

ducting electrode induces the static on-dot pairing

Taking into account the finite magnitude of superconducting

gap [50] does not affect the main conclusions of our study.

The effective Majorana modes of the nanowire can be modeled

by [65]

where  are Hermitian operators and εm corresponds to an

overlap between Majoranas. We recast these operators by

the standard fermionic ones [66] 

and . Finally, the Hamiltonian of Equa-

tion 15 simplifies to

(16)

with the auxiliary coupling . The subgap Kondo

physics originates in this model from the Coulomb term 

and the effective spin-exchange interactions due to . It

has been shown [23,24] that under specific conditions the

on-dot pairing can cooperate with the subgap Kondo effect.

This particular situation occurs only near the quantum phase

transition.

Let us examine how the subgap Kondo effect gets along with

the Majorana mode. Earlier studies of the correlated quantum

dot coupled to both normal (conducting) electrodes indicated

that the side-attached Rashba chain leads to a competition be-

tween the Kondo and Majorana states [67-72]. For a suffi-

ciently long wire (εm = 0) the Kondo effect persists only in the

spin-channel ↓, whereas for ↑ electrons there appears a dip in

the spectral density at ω = 0. The resulting tunneling conduc-

tance is then partly reduced (from the perfect value 2e2/h) to the

fractional value 3e2/2h [67,68,71-73]. In contrast, for the short

Rashba wires (with εm ≠ 0) the Kondo physics persists in both

spin channels.

In our present setup (Figure 7) the correlated quantum dot is be-

tween the metallic and superconducting reservoirs, therefore the

Kondo effect is additionally affected by on-dot pairing. Its in-

fluence is mainly controlled by the ratio U/ΓS and partly by the

level ε, determining whether the QD ground state is in the

spinful or spinless configuration [23,24,62,64,74]. Obviously

the latter one cannot be screened. For instance, for the half-

filled QD (ε = −U/2) the spinful (doublet) configuration occurs

in the regime U ≥ ΓS.

For studying the correlations we adopt perturbative treatment of

the Coulomb potential, treating it self-consistently to the second

order in the normal and anomalous channels [62,75]. Specific

expressions have been provided by us in [24]. Figure 8 shows

the spectral function ρσ(ω) for both spins obtained at zero tem-

perature for the Coulomb potential U, covering the (spinless)
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singlet and (spinful) doublet configurations. In the weak inter-

action regime we observe appearance of two YSR states. For

U ≈ ΓS these peaks merge, signaling the quantum phase transi-

tion. The Kondo effect shows up only in the correlated limit

(U > ΓS), but its spectroscopic signatures are qualitatively dif-

ferent for each of the spins. Leakage of the Majorana quasipar-

ticle suppresses the low-energy states of ↑ electrons. We notice

that the initial density (for tm = 0) is reduced by half, whereas

we observe a constructive influence of the Majorana quasipar-

ticle on opposite-spin ↓ electrons.

Figure 8: The polarized spectral function ρσ(ω) obtained at zero tem-
perature for the half-filled QD (ε = −U/2), ΓS = 2ΓN, tm = 0.1ΓN and
several values of the Coulomb potential U (as indicated). Energies are
expressed in units of ΓN.

Figure 9 shows evolution of the spectral function ρ↑(ω) for

various couplings tm. In the weak-coupling limit we clearly

observe a reduction (by half) of the initial density of states.

With increasing tm the spectrum develops the three-peak struc-

ture that is typical for the “molecular” limit. This behavior indi-

cates that the Majorana and Kondo states have rather a compli-

cated relation, which is neither competitive nor cooperative. In

fact, some novel scaling laws have been recently reported by

several authors [69,70,76-79] also considering the correlation

effects directly in the Rashba nanowire.

Conclusion
We have studied the polarized bound states of magnetic impuri-

ties embedded in an s-wave superconducting material, taking

Figure 9: The spectral function ρ↑(ω) of the half-filled quantum dot
(ε = −U/2) obtained at T = 0 for ΓS/ΓN = 2, U/ΓN = 4 and several values
of tm (as indicated).

into account the spin–orbit and/or Coulomb interactions.

We have shown that spin–orbit coupling strongly affects the

subgap states, both of the single impurities and their conglom-

erate arranged into a nanoscopic chain. For the case of single

magnetic impurity the spin–orbit interaction (i) shifts the

quantum phase transition towards higher magnetic coupling

Jc, (ii) enhances the spatial size of the YSR states, and

(iii) smoothes the particle–hole oscillations. For the magnetic

chain spin–orbit coupling combined with the Zeeman term in-

duce the topologically nontrivial superconducting state and

indirectly give rise to substantial polarization of the Majorana

modes (Figure 4), the oscillations of which show up near the

chain edges (Figure 5). The polarized Majorana quasiparticles

can also leak into other side-coupled objects, such as single or

multiple quantum impurities (Figure 6). These polarized Majo-

rana quasiparticles can be controlled by a magnetic field or by

an electrostatic potential. This would be important for future

quantum computers using qubits based on topologically pro-

tected Majorana states. Finally, we have also confronted the

Majorana quasiparticles with the subgap Kondo effect,

revealing their complex relationship that can be hardly regarded

as competitive or collaborative in some analogy to the Kondo

effect originating from multiple degrees of freedom [80]. The

aforementioned spin-polarized effects can be experimentally

verified by polarized ballistic tunneling or by using STM spec-

troscopy, relying on the selective equal-spin Andreev reflec-

tions.
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Abstract
The cubic ThTaN3 compound has long been known as a semiconductor with a band gap of approximately 1 eV, but its electronic

properties remain largely unexplored. By using density functional theory, we find that the band gap of ThTaN3 is very sensitive to

the hydrostatic pressure/strain. A Dirac cone can emerge around the Γ point with an ultrahigh Fermi velocity at a compressive strain

of 8%. Interestingly, the effect of spin–orbital coupling (SOC) is significant, leading to a band gap reduction of 0.26 eV in the

ThTaN3 compound. Moreover, the strong SOC can turn ThTaN3 into a topological insulator with a large inverted gap up to

0.25 eV, which can be primarily attributed to the inversion between the d-orbital of the heavy element Ta and the p-orbital of N.

Our results highlight a new 3D topological insulator with strain-mediated topological transition for potential applications in future

spintronics.
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Introduction
The ThTaN3 compound generally presents three structural

phases in cubic perovskite (c-PV), hypothetic orthorhombic

perovskite (o-PV GdFeO3-type), and post-perovskite (PPV)

forms [1]. Among them, c-PV ThTaN3 was first synthesized in

early 1995 [2] and is known to crystallize in the space group

Pm3m with a band gap of approximately 1 eV [1]. Pressure can

induce a phase transition from c-PV to o-PV and PPV accompa-

nied by the transition from a moderate band gap semiconductor

(≈1 eV band gap in c-PV) to a small band gap semiconductor

(PPV) in ThTaN3 [1]. c-PV ThTaN3 has also been proposed as

a potential ground for studying nonlinear optical response [2]

due to its large band gap and non-centrosymmetry. As protons

are found to be significantly stable in nitrides, c-PV ThTaN3 is

also evaluated as an ideal proton-conducting ceramic [1].

Nevertheless, theoretical understanding of the electronic proper-

ties of ThTaN3 is so far very limited and mainly focused on

pressure-induced phase transition [3]. Therefore, a systematic

study of the electron structure of ThTaN3 in a certain phase is

highly desired.

Topological insulators (TIs) have attracted much attention due

to their distinct quantum mechanical properties, which makes

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:aijun.du@qut.edu.au
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Figure 1: (a) Top view of ThTaN3 with green, grey, and brown spheres representing Th, N, and Ta atoms, respectively. (b–e) The band structures of
3D cubic ThTaN3 calculated by PBE, HSE, PBE+SOC, and HSE+SOC methods, respectively.

them important in the fields of physics [4,5], chemistry, and

materials science [6]. TIs are materials with a bulk band gap

generated by strong spin–orbit coupling (SOC) that have topo-

logically protected metallic surface states. Although many ma-

terials are theoretically predicted to be TIs [7-11], the experi-

mental realization of TIs is very limited. Therefore, the search

for experimentally synthesized large band gap TIs is of para-

mount importance for their practical application. Theoretically,

the transition from the trival insulator to the topological insu-

lator can be achieved by increasing the SOC or by altering the

lattice parameters [12,13]. A number of compounds [14-25],

such as LaPtBi, LuPtSb, YPdBi [15-18], and HgTe [19,20],

have been studied using a first-principles approach, showing

that they can be turned into TIs under external strain. All these

materials possess heavy elements and the strong SOC can in-

duce a band inversion, which is a typical mechanism for TIs

[26,27].

The experimentally observed pressure-induced phase transition

in ThTaN3 indicates that the electronic structure of 3D ThTaN3

is likely very sensitive to the external strain. In particular, c-PV

ThTaN3 can crystallize in the tetragonal shape with C4 rota-

tional symmetry, which is an ideal platform to study its topolog-

ical properties [28]. The combination of such C4 rotational and

time-reversal symmetry and the heavy elements (Th, Ta) in

ThTaN3 are expected to substantially alter the electronic band

structure and thus achieve an exotic topological property [26].

By using first-principles calculations, we demonstrate here, for

the first time, that the cubic perovskite ThTaN3, a relatively

large band gap semiconductor, can turn into a TI under moder-

ate pressure/strain. A Dirac cone can emerge in the ThTaN3

compound with an ultrahigh Fermi velocity under an 8%

compressive strain. The band gap opening, induced by SOC,

can be as high as 0.25 eV, which is large enough for the realiza-

tion of the quantum spin Hall (QSH) states at room temperature.

In addition, by tuning the SOC strength, we predict that the

topological feature actually starts to show up at a 5% compres-

sive strain. The strain-mediated topological phase transition in

the perovskite ThTaN3 compound is attributed to band inver-

sion between the d-orbital of the heavy elements and the

p-orbital of the N atom [12,29,30].

Computational Methods
First-principles calculations were performed based on density

functional theory (DFT) as implemented in the plane wave basis

VASP code [31-33]. A generalized gradient approximation

(GGA) in the Perdew, Burke, and Ernzerhof (PBE) form

exchange–correlation functional was used. The hybrid

Heyd–Scuseria–Ernzerhof (HSE06) functional [34,35] was

adopted for the accurate calculation of band structures of 3D

ThTaN3. A plane-wave basis set with an energy cut-off of

500 eV was employed and long range van der Waals dispersion

[36] was incorporated to correct the total energy. The geometry

structures were fully optimized until the maximum energy and

force were less than 10−6 eV and 0.01 eV/Å, respectively. A

Monkhorst–Pack k-point mesh of 7 × 7 × 7 was used for geom-

etry optimization. The SOC effect was also considered in the

calculation. The electron effective mass (m*) of ThTaN3 at the

conduction band minimum (CBM) is estimated from the curva-

ture of the electronic band dispersion, that is, the formula

where E and k are the band energy and reciprocal lattice vector.

For anisotropic materials,  where i, j and k

label the transport direction along the x, y and z-axis.

Results and Discussion
The geometry structure of cubic perovskite ThTaN3 was first

fully relaxed as shown in Figure 1a. It crystallizes in the space

group Pm3m with C4 rotational symmetry. The lattice parame-
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Figure 2: The modulation of band gap (red line) by hydrostatic and tensile strain (−8% to +7%) in ThTaN3 by using the HSE method. A Dirac cone
emerges when a −8% strain is added to the ThTaN3 compound. And the green arrow shows that the change from a direct band gap to an indirect
band gap with strain is increased from 3% to 7%. The Fermi level is set at an energy of zero.

ters of c-PV ThTaN3 were then calculated by using the PBE

functional and the hybrid HSE06 functional methods, respec-

tively. It was found that the PBE functional overestimates the

experimental lattice constants by 1%, whereas the HSE06 can

successfully reproduce the experimentally reported lattice pa-

rameters (4.02 Å) [2].

Figure 1 presents the detailed electronic band structure of 3D

ThTaN3 for the PBE exchange correlation (Figure 1b) and HSE

hybrid functional (Figure 1c). A small direct band gap of

0.07 eV at the Γ point is predicted by the PBE functional and

the HSE functional produced a large band gap of 0.76 eV,

which is very close to the experimental measurement (1.0 eV)

[1]. The band gap should exhibit substantial differences

depending on the relative weights of the Hartree–Fock and

traditional LDA or GGA exchange energies in the hybrid func-

tional as well as those of the long range van der Waals interac-

tions. However, we found that the impact of van der Waals

interaction on the band gap of ThTaN3 is negligible. Figure 1d

and Figure 1e present band structures in the presence of the

effect of SOC. Clearly, an energy gap of 0.15 eV and 0.49 eV

were opened by the SOC for the PBE and the HSE functional

methods, respectively. Compared to the HSE result without

SOC (Figure 1c), the band gap reduction is significantly high

(0.26 eV) after the incorporation of SOC.

Then we turned to study the effect of strain [37] on the elec-

tronic structure of c-PV ThTaN3 by applying a hydrostatic

strain ranging from −10% (compressive strain) to +15% (tensile

strain) on 3D ThTaN3. As shown in Figure 2d–g, the size of the

direct gap continued to increase as the positive strain was in-

creased. At a strain of 3%, the direct band gap turned to an indi-

rect one and the band gap slightly decreased with further in-

creasing strain. When a compressive strain was exerted into 3D

ThTaN3, the band gap could be significantly reduced. As shown

in Figure 2a, the energy gap was reduced to 0 eV at a compres-

sive strain of −8%. A Dirac-cone-like band structure [38]

emerged with an ultrahigh Fermi velocity 6.33 × 105 m/s that is

comparable to that of graphene (1.1 × 106 m/s) [39]. It is very

important to note that the conduction band (CB) of ThTaN3 is

very dispersive around the Γ point, signifying a very low elec-

tron effective mass. The effective mass of the electron at the Γ

point is calculated to be 0.395 me. Such a small electron mass

will greatly improve charge carrier mobility, suggesting great

potential for application of ThTaN3 in electronics.

As eluded to above, the effect of SOC on the band gap of

ThTaN3 is significant. It is therefore important to further study

the effect of strain on the electronic structure of ThTaN3 in the

presence of SOC (Figure 3). For strain-free ThTaN3, the band

gap is 0.49 eV as calculated by the HSE+SOC method. The

band gap is reduced approximately 0.26 eV compared to the

HSE result (0.76 eV) without SOC. When an 8% compressive

strain is exerted on the ThTaN3 compound, SOC opens a large

band gap (approximately 0.25 eV) for the Dirac cone as shown

in Figure 3d. It can be seen that under compressive strain, the

SOC gap of ThTaN3 can be closed and reopened. In addition,

the shape of the band structure is changed correspondingly, in-

dicating a topological phase transition [40-42]. In order to deter-

mine topological features, we calculated the Z2 topological

index [19,27]. The topological invariant Z2 is 1;(0,0,0) for

ThTaN3 under 8% compressive strain, which indicates the

strong topological property (more details including methods and

parities of the relevant bands can be found in Supporting Infor-

mation File 1). We further scrutinized the SOC band structure

of ThTaN3 (Figure 3c) and find that the band inversion actually

occurred at a 5% compressive strain. The above results clearly

indicated that we can turn ThTaN3 into a TI by applying an

external hydrostatic pressure in the presence of SOC.

We further analyzed the orbital-resolved band structure of

ThTaN3 at a lower compressive strain (5%) as shown in

Figure 4. The conduction band (CB) state mainly consisted of

px, py and pz orbitals of the N atom, while the valence band
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Figure 3: Band structures of ThTaN3 calculated by the HSE+SOC method under a strain of −8% to 0%. The Fermi level is set to zero.

Figure 4: Orbital-resolved band structures for ThTaN3 under 5% compressive strain as calculated by the HSE (top panel) and HSE+SOC methods
(bottom panel). The contributions are mainly from px, py, pz of N atoms and dxz, dxy, dyz of Ta atoms. The thicker and thinner lines account for large
and low orbital contributions, respectively.

(VB) state is comprised of the hybridization dxy, dxz, dyz

orbitals of the Ta atom. When the SOC effect was incorporated,

a p–d-type band inversion took place with the reduction of the

band gap, manifesting a topological phase transition due to the

synergistic effects of SOC and lattice strain.

Generally, the topological phase transition can be also directly

observed by modifying the SOC strength [29,30]. To provide a

clear picture of the band inversion or topological phase transi-

tion in ThTaN3 under a 5% compressive strain, we then studied

the electronic structure of 3D cubic perovskite ThTaN3 at

various SOC strengths as shown in Figure 5a–e. With increas-

ing SOC, the VBM and CBM gradually become closer (see

Figure 5a–e), and then the gap closed and reopened with a large

portion of band inversion, which can be clearly seen from the

enormous change of the CBM and VBM band shape into

Mexican-hat-like band dispersion, a typical indication of topo-

logical phase transition (see Figure 5e).

Conclusion
In summary, we have systematically studied the electronic

structure in the 3D perovskite ThTaN3 compound. We find the

band gap of ThTaN3 is very sensitive to the lattice strain. A

Dirac-cone-like band with an ultrahigh Fermi velocity can

emerge at a compressive strain of 8%. The topological phase

transition can be realized with a large gap (≈0.25 eV) opened in

the presence of SOC. Further analysis of orbital contribution in-

dicates p–d band inversion in 3D ThTaN3. Our results highlight

a new, interesting, 3D, topological insulator material with great

potential for future application in spintronics.
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Figure 5: Band structures for 3D cubic ThTaN3 with a 5% compressive strain as calculated by the HSE+SOC method at different SOC strengths
(0–2.5 times). The Fermi energy level is set to zero.

Supporting Information
Supporting Information File 1
Additional calculations.

The lattice parameters of ThTaN3 under strain, the surface

state of ThTaN3, and the calculation of the topological

invariant number Z2.
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Abstract
Several IV–VI semiconductor compounds made of heavy atoms, such as Pb1−xSnxTe, may undergo band-inversion at the L point of

the Brillouin zone upon variation of their chemical composition. This inversion gives rise to topologically distinct phases, charac-

terized by a change in a topological invariant. In the framework of the k·p theory, band-inversion can be viewed as a change of sign

of the fundamental gap. A two-band model within the envelope-function approximation predicts the appearance of midgap inter-

face states with Dirac cone dispersions in band-inverted junctions, namely, when the gap changes sign along the growth direction.

We present a thorough study of these interface electron states in the presence of crossed electric and magnetic fields, the electric

field being applied along the growth direction of a band-inverted junction. We show that the Dirac cone is robust and persists even

if the fields are strong. In addition, we point out that Landau levels of electron states lying in the semiconductor bands can be

tailored by the electric field. Tunable devices are thus likely to be realizable, exploiting the properties studied herein.

1405

Introduction
In 1982, Thouless et al. [1] made a connection between the

quantum Hall effect and a topological invariant, the so-called

first Chern number [2]. The fact that a quantum Hall system

was insulating in the bulk but had a quantized conductivity on

the edge could be related to the non-trivial topology of the band

structure. In 2006, topology came up to stage once again with

the theoretical prediction by Bernevig et al. [3] of a topological

insulating behaviour in a HgTe/CdTe quantum well. The differ-

ence between the latter and the quantum Hall system lies in the

fact that the quantum well required no magnetic field at all, but

just relativistic corrections (Darwin and mass–velocity

interactions) large enough so as to invert the Γ6 and Γ8

bands [4]. The HgTe/CdTe quantum well possesses non-trivial

edge states when a certain width is exceeded. In 2007,

experiments verified this remarkable result and established the

existence of the quantum spin Hall effect [5]. However, no clear

signatures of conductance quantization have been observed yet

[6,7].

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
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Besides II–VI compound semiconductors, such as HgTe, IV–VI

semiconductors support non-trivial edges states as well [8]. In

this regard, Dziawa et al. reported evidence of topological crys-

talline insulator states in Pb1−xSnxSe [9]. High-resolution scan-

ning tunneling microscopy studies of these topological

crystalline insulators provided strong evidence of the coexis-

tence of massless Dirac fermions, protected by crystal

symmetry, with massive Dirac fermions consistent with crystal-

symmetry breaking [10]. Recently, these results have received

further support with the aid of Dirac Landau level spectroscopy

[11,12].

Band-inverted structures were already studied back in the

1980’s and 1990’s under the name of band-inverted junctions,

in which the fundamental gap has opposite sign on each semi-

conductor. A salient feature is the existence of interface states

lying within the gap, provided that the two gaps overlap [13-

17]. These states are protected by symmetry, and are responsi-

ble for the conducting properties of the surface. In IV–VI

heterojunctions, such as PbTe/SnTe, interface states are accu-

rately described by means of a two-band model using the effec-

tive k·p approximation [18,19]. The equation governing the

conduction- and valence-band envelope functions reduces to a

Dirac-like equation after neglecting far-band corrections. In

view of this analogy, exact solutions can be then straightfor-

wardly found by means of supersymmetric [16] or Green’s

function approaches [20]. In the context of symmetry-protected

topological phases, our model can be applied not only to topo-

logical crystalline insulators, like the ones mentioned above [8],

but also to more general three-dimensional topological insula-

tors, such as Bi2Se3, in contact with a trivial insulator [21,22].

In the former case, mirror symmetry makes it possible to define

mirror Chern numbers, which determine the topological crys-

talline phase [8]. In the latter, time-reversal symmetry, parity

and particle–hole symmetry allow us to define a topological

index given by the sign of the Dirac mass [21].

In 1994, Agassi studied the case of a band-inverted junction

with a magnetic field applied parallel to the junction [23]. This

author showed that the Dirac point remains robust upon the ap-

plication of a magnetic field of arbitrary strengths and that the

Landau levels in the continuum split for non-zero values of the

in-plane momentum in the direction perpendicular to the mag-

netic field. By means of the modern theory of symmetry-pro-

tected topological phases, the protection of the Dirac point can

be understood in the case of topological crystalline insulators

from the fact that a magnetic field perpendicular to a mirror

plane renders a system that is still symmetric about that plane

[8]. This is not the case in a magnetic field parallel to the mir-

ror plane, where the Dirac cone turns into the usual relativistic

Landau levels [13,15,24]. Going back to the parallel magnetic

field, Agassi demonstrated that for large values of this in-plane

momentum, the states evolve to the bulk Landau states and the

midgap state becomes the zero Landau level, usual of these

Dirac systems. The reason is that the in-plane momentum per-

pendicular to the magnetic field is proportional to the position

of the Landau orbits. If it becomes very large and the magnetic

length is at the same time small, which happens for large mag-

netic fields, then the orbits do not intersect the junction and they

might not notice that boundary. Hence, the case of most

interest is in the vicinity of low in-plane momentum perpendic-

ular to the field, where the states differ the most from the

Landau levels of the bulk and we can see the effects of the

interface.

In this same topic of external fields applied to band-inverted

junctions, we have recently studied band-inverted junctions

based on IV–VI compounds using a two-band model when an

electric field is applied along the growth direction [25]. We

have demonstrated that the Dirac cone of midgap states is

robust against moderate values of the electric field but Fermi’s

velocity decreases quadratically with the applied field. The aim

of this paper is to characterize electron states in band-inverted

junctions using a two-band model in the presence of crossed

magnetic and electric fields, the former parallel to the junction,

the latter perpendicular to it. We show that the Dirac cone of

midgap states arising in the single-junction configuration is

robust against crossed electric and magnetic fields. In addition,

Landau levels of electron states lying in the semiconductor

bands can be tailored by the electric field. Finally, the elec-

tronic structure of band-inverted junctions when the magnetic

field is applied along the growth direction, parallel to the elec-

tric field, will also be briefly discussed for comparison.

Theoretical model
We consider heterojunctions of IV–VI compound semiconduc-

tors, such as Pb1−xSnxTe and Pb1−xSnxSe. The latter are known

to shift from being semiconductors to topological crystalline

insulators due to the band inversion at the L points of the Bril-

louin zone as the Sn fraction increases [8,26,27]. In order to

keep the algebra as simple as possible, we restrict ourselves to

the symmetric heterojunction with same-sized and aligned gaps,

as depicted in Figure 1a. This assumption simplifies the calcula-

tions while keeping the underlying physics [28]. Thus, a single

and abrupt interface presents the following profile for the mag-

nitude of the gap

(1)

where sgn(z) = |z|/z is the sign function. Here the Z-axis is

parallel to the growth direction [111].



Beilstein J. Nanotechnol. 2018, 9, 1405–1413.

1407

Figure 1: (a)  and  band-edge profile of an abrupt band-inverted
junction with aligned and same-sized gaps, located at the XY-plane,
and b) schematic view of the applied electric and magnetic fields.

The envelope functions of the electron states near the band

extrema  and  in IV–VI compounds are determined from

the following Dirac-like Hamiltonian [15,16,19]

(2)

Here α = (αx, αy, αz) and β denote the usual 4 × 4 Dirac

matrices,  and , σi and  being the

Pauli matrices and n × n identity matrix, respectively. More-

over, v is an interband matrix element having dimensions of

velocity and it is assumed scalar, corresponding to isotropic

bands around the L point. It is worth mentioning that the bands

of IV–VI compounds around the L points are actually

anisotropic. Nevertheless, this anisotropy can be absorbed in the

definition of the dimensionless parameters defined below. That

is, it is possible to consider a direction-dependent velocity, but

it will not change the results shown below, except for a propor-

tionality constant in the definition of the dimensionless in-plane

momenta (see [19,28] for further details). In addition, we focus

on states close to one of the L points of the Brillouin zone [8]

and neglect other valleys in what follows since midgap states

are stable against gap opening by valley mixing. Also notice

that only linear momentum terms are taken into account in

Equation 2 but quadratic momentum terms could have an

impact of the electronic levels [29,30]. However, the two-band

model Hamiltonian (Equation 2) successfully describes the

hybridization of interface states in band-inverted quantum wells

[31], in perfect agreement with more elaborated models includ-

ing quadratic momentum terms [30]. The Hamiltonian (Equa-

tion 2) acts upon the envelope function χ(r), which is a four-

component vector composed of the two-component spinors

χ+(r) and χ−(r) belonging to the  and  bands. The inter-

face momentum is conserved and the envelope function can be

expressed as , where it is understood

that the subscript “ ” in a vector indicates the nullification of

its z-component. In the case of aligned and same-sized

gaps, it is found that , with  and

the interface dispersion relation is a single Dirac cone

, where the origin of energy is taken at the

center of the gaps [20]. v is the group velocity at the Fermi level

in undoped samples and it will be referred to as Fermi velocity

hereafter.

Electron states under crossed electric
and magnetic fields
We now turn to the electronic states of a single band-inverted

junction exposed to a perpendicular electric field  and a

parallel magnetic field , as shown schematically in

Figure 1b. By choosing the Landau gauge, the vector potential

is given as .

The electrostatic potential eFz and the vector potential A(z)

only depend on the z-coordinate. Therefore,  is a con-

stant of motion and the envelope function can still be factorized

to the form . Now the longitudinal

envelope function  satisfies the following Dirac equation:

(3)

where  is given by Equation 2. To address this problem we

shall follow the Feynman–Gell-Mann ansatz [32] and define a

new four-component vector ψ(z) as

(4)

It is convenient to introduce the following dimensionless quan-

tities , ξ = z/d, ε = E/Δ, f = eFd/Δ, and .

Notice that f/2 is the ratio between the electric potential drop

across the spatial extent of the midgap states  in the

absence of fields and the magnitude of the fundamental gap 2Δ.

Similarly, b is the square of the ratio between d and the magnet-

ic length . Hereafter we shall consider b > f ≥ 0 for

reasons that will become clear shortly. Let us define

(5)

where μ = (b2 − f 2)1/4 is real. Then, inserting the ansatz (Equa-

tion 4) in Equation 3 and taking into account Equation 5, we get
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(6)

where s0 ≡ s(ξ = 0). Here  and  are 4 × 4 matrices given

by

(7)

Let us diagonalize the left-hand side of the equation by intro-

ducing a unitary matrix U such that . Doing so

and defining  and  we obtain

(8)

In order to solve Equation 8 we shall use the Green’s function

method. The solution to Equation 8 will be given by

(9)

where the retarded Green’s function G(s,s′) satisfies

(10)

and G(s,s′)→0 as |s|,|s|′→∞. Note that G(s,s′) is continuous on

the line s = s′. Equation 9 can be particularized for s = s0,

leading to a homogeneous system of equations with non-trivial

solutions existing for energies satisfying the vanishing of the

determinant

(11)

Since G(s,s′) can be considered as the inverse of the operator

that acts upon it and the latter is diagonal, we may consider

G(s,s′) to be block diagonal. Hence,

(12)

where  is the 2 × 2 null matrix and the scalar functions

g±(s,s′) satisfy

(13)

with . Since s is real because we have chosen μ to

be so, then s2 > 0 and this equation corresponds to a harmonic

oscillator. Notice that this would not be the case if μ were imag-

inary as in that case s2 < 0 and we would not have the positive

parabola required for a harmonic oscillator. The solution to this

problem is known to be [33,34]

(14)

where Γ(z) is the Gamma function, Dγ(z) is the parabolic-

cylinder function, s> = max(s,s′) and s< = min(s,s′). Now that

we have G(s,s′), it is straightforward to obtain from Equation 11

that g+(s0,s0)g−(s0,s0) = μ2/2. Equivalently

(15)

Equation 15 determines the dispersion relation ε(κ) of midgap

interface states as well as Landau levels lying in the semicon-

ductor bands. It reduces to the result found by Agassi when the

electric field vanishes [23].

Results and Discussion
Energy levels in the absence of electric field
This section is added for completeness and essentially repro-

duces the results found by Agassi [23] for small values of κx.

However, we will be able to give approximate dispersion rela-

tions for the midgap state and the Landau levels that will

provide us with a clearer view of the effect of the magnetic field

in our case of interest. This section then corresponds to the f = 0

case, where approximate results can be obtained. In fact, these

results are exact when κx = 0, where s0 = 0. Let us explore this

last case. Using Γ(1 + z) = zΓ(z) and the Legendre duplication

formula , it is straightfor-

ward to obtain from Equation 15

(16)

There are now two possibilities, either the numerator goes to

zero or the denominator goes to infinity. If p < 0, it is neces-
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sary to have a numerator equal to zero, which amounts to

having,

(17)

This is nothing but a Dirac linear dispersion in the y-direction. It

is remarkable that the Dirac point remains robust for any

strength of b. Taking into account the definition of p, the case

where p < 0 corresponds to |ε| < 1 at κx = κy = 0, meaning that

these states lie within the gap.

Let us explore other possibilities. If p = 0, then both the numer-

ator and the denominator are finite, which implies that p = 0 is

not a solution. The other option where p > 0 is only achieved if

the denominator goes to infinity because the numerator is

always positive in this case. For this to happen, p must be a pos-

itive integer. The corresponding energies are the usual Landau

levels of a relativistic particle

(18)

There is no zero Landau level because the requirement of p > 0

implies |ε| > 1 at κx = κy = 0, that is, Landau levels exist outside

the gap. With this results in mind, we can now turn to the case

where κx ≠ 0, but s0→0. After some tedious algebra we arrive at

the following expression:

(19)

where

(20)

If s0 = 0 we obtain again Equation 16, corresponding to κx = 0.

Now if κx ≠ 0, then either the term in curly brackets is zero or

the prefactor multiplying this term is zero. As before, if the pre-

factor is zero then p is a positive integer. However, that would

imply two possible energies for each integer, but numerically

we will show briefly that this is not the case. Thus, we must

consider the term in curly brackets to be equal to zero. If we

consider b→0, but at the same time κx→0 sufficiently fast so

that s0→0, then it is not difficult to obtain for the states inside

the gap

(21)

whereas for the Landau levels we obtain to lowest order in κx

(22)

where c(n) results from the expansion around integer values of

p of η(p) + η−1(p) + 2 ≈ c(n)(p − n)−2. For instance, c(1) = 2/π,

c(2) = 1/π, c(3) = 3/2π,… Before we consider each case, it is

important to mention that the approximation of low b corre-

sponds to the range of interest in experiments since typically d

≈ 4.5 nm and as a result b = 0.5 corresponds to a very large

magnetic field of about 16 T.

Let us now consider each case separately. On the one hand,

Equation 21 corresponds to an elliptic cone and for b = 0 we

recover the original Dirac cone. It is not only remarkable, as we

mentioned above, that the Dirac point is robust, but also that the

shape of the dispersion relation remains a cone but slightly

widened in the x-direction, as shown in Figure 2. Hence, the

Fermi velocity becomes anisotropic and can actually be modu-

lated with the magnetic field. It is expected that the application

of an electric field will lead to further reduction of the Fermi

velocity [25]. We will prove later that this is actually the case.

Figure 2: Dirac cones with, b≠ 0, and without, b = 0, a magnetic field
applied. The original cone is distorted along the x-direction and the
Fermi velocity, i.e., the slope, becomes anisotropic.

In Figure 3a we show a comparison between the Fermi velocity

in the x-direction (recall that it does not change in the y-direc-

tion) given by the numerical evaluation of Equation 15 and the

approximation in Equation 21. The agreement is noteworthy for

low values of b.
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Figure 3: Comparison between exact and approximate results given
by (a) Equation 21 and (b) Equation 22. In panel (a) the Fermi velocity
along the x-direction, calculated as the slope of the dispersion relation,
is substantially reduced and the agreement between the exact and ap-
proximate results is noteworthy up to b ≤ 0.2. In panel (b), the Landau
level splitting in the x-direction is very well predicted even for b = 0.5,
as shown for the first level.

We can now focus on the Landau levels given by Equation 22.

As it can be seen, for non-zero values of κx, each Landau level

at κx = 0 splits into two Landau levels at κx ≠ 0 due to the occur-

rence of a “±”-sign inside the square root. The comparison for

the first Landau level, n = 1, between the approximate result

and the numerical calculations from Equation 15 are shown in

Figure 3b. In contrast to Figure 3a, there is still agreement be-

tween both approaches for a large field of b = 0.5.

Energy levels at finite electric field
Let us now bring our attention to the case of f ≠ 0. In contrast to

the case of f = 0, we have been unable to obtain explicit expres-

sions of the dispersion relation, but the numerics shows remark-

able results. Let us focus first on the midgap states. Since the

magnetic field did not erase the Dirac point and based on

known results of a band-inverted junction under an electric field

[25,28], it seems plausible to argue that the effect of the electric

field will be to enhance the reduction of the Fermi velocity in

the x-direction and to introduce a reduction in the y-direction as

well, leaving however the Dirac point untouched. This is indeed

what we observe and we show our results in Figure 4. The

insets show the Fermi velocity reduction as a function of the

electric field for a fixed value of b = 0.5. It is remarkable how

the Fermi velocity along the x-direction is substantially de-

creased in band-inverted junctions subject to crossed magnetic

and electric fields.

We may now turn to the evolution of the Landau levels as a

function of the electric field. For simplicity, we shall consider

only the first Landau level. It is illustrative to consider first the

evolution of the lowest point of the Landau bands, that is,

. If the electric field is zero, we already know what the

Figure 4: The additional effect of the electric field leads to a further
reduction of the Fermi velocity in the x-direction and to a reduction
along the y-direction as well. The Dirac point, however, remains
robust. The insets show the Fermi velocity reduction as a function the
electric field for a fixed magnetic field of b = 0.5.

energy will be from the discussion above. However, as we turn

on the electric field, a splitting similar to the one we had with κx

begins to develop. This splitting increases with electric field, up

to a point where it starts decreasing again as f approaches b. In

the limiting case where f→b, the splitting goes to zero, as we

show in Figure 5 for b = 0.5.

Figure 5: Splitting of the Landau levels at  and b = 0.5 as a
function of the electric field. It is important to note that the Landau
levels move below the band edge due to the bending by the electric
field (see main text for details).

In Figure 5 it may be surprising to see that the Landau bands

shift below the band edge, leading to the apparent and erro-

neous belief that the latter enter the band gap. The effect of the

electric field is to bend the constant band edges shown in

Figure 1a upwards due to the presence of the electrostatic
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potential eFz, and so the Landau levels of the conduction band

can move towards lower energies as long as the corresponding

wave functions are not inside the band gap in position space.

Finally, it deserves consideration the previous discussion for

low values of . As we can see in Figure 6, the parabolic

dispersion that we obtained in the y-direction in the absence of

an electric field splits into two parabolic bands. However, it is

more remarkable to see that, instead of obtaining a splitting

similar to that in Figure 3b, the dispersion goes downwards.

Figure 6: First Landau level dispersions for b = 0.5 and f =0.499. In
panel (a), the original parabolic dispersion along the y-direction splits
into two parabolic dispersions with energies below the band edge for
the chosen fields, whereas in panel (b), the previously obtained split-
ting in the x-direction is now exclusively downwards.

Electron states under perpendicular
electric and magnetic fields
In the previous sections we considered electron states when the

magnetic field is parallel to the band-inverted junction, as

depicted in Figure 1. For completeness, we now briefly discuss

the salient features of the energy spectrum when the electric and

magnetic fields are both perpendicular to the junction. The

vector potential is then given as  in the Landau

gauge and thus . Starting from the Dirac Equation 3 with

this vector potential and using the Feynman–Gell-Mann ansatz

(Equation 4), one is led to a two-dimensional Schrödinger equa-

tion in the XZ plane. The resulting equation turns out to be sepa-

rable in the x and z coordinates and can be straightforwardly

solved by Green’s function techniques. At low or moderate

electric and magnetic fields (f < b < 1), the energy levels within

the gap are found to be

(23)

where n = 0, 1,… The above expression resembles the Landau

levels of relativistic particles for an effective dimensionless

magnetic field beff ≡ b(1 − 5f/8)2 ≈ b(1 − 5f/4). Therefore, the

electric field decreases the Landau level spacing as in the

previous field configuration. There is yet another way of inter-

preting this result. If we undo the change of variables, we obtain

for the energy the usual expression for the Landau levels that

develop from a Dirac cone, the same as in graphene,

(24)

but with a renormalized Fermi velocity,

(25)

where FC = Δ/ed. In [25], it was anticipated that this renormal-

ization of the Fermi velocity in a band-inverted junction with a

perpendicular electric field could be measured by means of

magnetotransport experiments, a prediction that is confirmed

here.

Conclusion
We have studied band-inverted junctions under crossed electric

and magnetic fields, the electric field being applied along the

growth direction. Electron states are described by a spinful two-

band model that is equivalent to the Dirac model for relativistic

electrons. The mass term is half the bandgap and changes its

sign across the junction. For the sake of algebraic simplicity, we

assumed same-sized and aligned gaps, although this is not a

serious limitation to the validity of the results [28].

In the absence of external fields, it is well known that band-

inverted junctions support topologically protected states locat-

ed at the interface. Their energy lies within the common gap of

the two semiconductors and the dispersion relation is a Dirac

cone [13,15,16,20]. The Dirac cone remains even if an electric

field perpendicular to the junction is applied, but it widens and

the Fermi velocity is quadratically reduced with the electric

field [25,28]. In this paper we have proved that electrons with

energy within the gap still behave as massless fermions when an

additional magnetic field parallel to the band-inverted junction

is applied. The original Dirac cone widens only in the direction

perpendicular to the magnetic field but remarkably the disper-

sion relation remains gapless. Hence, the Fermi velocity

becomes anisotropic and the combination of both electric and

magnetic fields allows the Fermi velocity to be finely tuned. In

addition, states lying within the semiconductor bands display

relativistic-like Landau levels that split upon the application of

the magnetic and electric fields. Interestingly, if both fields are

parallel to the growth direction, the Landau level spacing can be
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further reduced by the electric field. We expect that the control

of the Fermi velocity of topologically protected states will have

applications for the design of novel electronic devices based on

topological materials.

Acknowledgements
The authors thank L. Chico and J. W. González for helpful

discussions. This work was supported by the Spanish MINECO

under grant MAT2016-75955.

ORCID® iDs
Álvaro Díaz-Fernández - https://orcid.org/0000-0001-9432-7845
Natalia del Valle - https://orcid.org/0000-0001-7751-5422
Francisco Domínguez-Adame - https://orcid.org/0000-0002-5256-4196

References
1. Thouless, D. J.; Kohmoto, M.; Nightingale, M. P.; den Nijs, M.

Phys. Rev. Lett. 1982, 49, 405. doi:10.1103/PhysRevLett.49.405
2. Kane, C. L.; Mele, E. J. Phys. Rev. Lett. 2005, 95, 146802.

doi:10.1103/PhysRevLett.95.146802
3. Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C. Science 2006, 314, 1757.

doi:10.1126/science.1133734
4. Chu, J.; Sher, A. Physics and Properties of Narrow Gap

Semiconductors; Springer: Berlin, Germany, 2008; p 157.
5. König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.;

Molenkamp, L. W.; Qi, X.-L.; Zhang, S.-C. Science 2007, 318, 766.
doi:10.1126/science.1148047

6. Gusev, G. M.; Kvon, Z. D.; Shegai, O. A.; Mikhailov, N. N.;
Dvoretsky, S. A.; Portal, J. C. Phys. Rev. B 2011, 84, 121302.
doi:10.1103/PhysRevB.84.121302

7. Grabecki, G.; Wróbel, J.; Czapkiewicz, M.; Cywiński, Ł.;
Gierałtowska, S.; Guziewicz, E.; Zholudev, M.; Gavrilenko, V.;
Mikhailov, N. N.; Dvoretski, S. A.; Teppe, F.; Knap, W.; Dietl, T.
Phys. Rev. B 2013, 88, 165309. doi:10.1103/PhysRevB.88.165309

8. Hsieh, T. H.; Lin, H.; Li, J.; Duan, W.; Bansil, A.; Fu, L. Nat. Commun.
2012, 3, 982. doi:10.1038/ncomms1969

9. Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.;
Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.;
Berntsen, M. H.; Tjernberg, O.; Story, T. Nat. Mater. 2012, 11, 1023.
doi:10.1038/nmat3449

10. Okada, Y.; Serbyn, M.; Lin, H.; Walkup, D.; Zhou, W.; Dhital, C.;
Neupane, M.; Xu, S.; Wang, Y. J.; Sankar, R.; Chou, F.; Bansil, A.;
Hasan, M. Z.; Wilson, S. D.; Fu, L.; Madhavan, V. Science 2013, 341,
1496. doi:10.1126/science.1239451

11. Serbyn, M.; Fu, L. Phys. Rev. B 2014, 90, 035402.
doi:10.1103/PhysRevB.90.035402

12. Phuphachong, T.; Assaf, B. A.; Volobuev, V. V.; Bauer, G.;
Springholz, G.; de Vaulchier, L.-A.; Guldner, Y. Crystals 2017, 7, 29.
doi:10.3390/cryst7010029

13. Volkov, B. A.; Pankratov, O. A. Sov. Phys. - JETP 1985, 42, 178.
14. Korenman, V.; Drew, H. D. Phys. Rev. B 1987, 35, 6446.

doi:10.1103/PhysRevB.35.6446
15. Agassi, D.; Korenman, V. Phys. Rev. B 1988, 37, 10095.

doi:10.1103/PhysRevB.37.10095
16. Pankratov, O. A. Semicond. Sci. Technol. 1990, 5, S204.

doi:10.1088/0268-1242/5/3S/045

17. Kolesnikov, A. V.; Silin, A. P. J. Phys.: Condens. Matter 1997, 9,
10929. doi:10.1088/0953-8984/9/49/012

18. Kriechbaum, M. Envelope Function Calculations for Superlattices. In
Two-Dimensional Systems: Physics and New Devices; Bauer, G.;
Kuchar, F.; Heinrich, H., Eds.; Springer: Berlin, Germany, 1986;
pp 120–129.

19. Ando, Y.; Fu, L. Annu. Rev. Condens. Matter Phys. 2015, 6, 361.
doi:10.1146/annurev-conmatphys-031214-014501

20. Domínguez-Adame, F. Phys. Status Solidi B 1994, 186, K49.
doi:10.1002/pssb.2221860231

21. Zhang, F.; Kane, C. L.; Mele, E. J. Phys. Rev. B 2012, 86, 081303.
doi:10.1103/PhysRevB.86.081303

22. Tchoumakov, S.; Jouffrey, V.; Inhofer, A.; Bocquillon, E.; Plaçais, B.;
Carpentier, D.; Goerbig, M. O. Phys. Rev. B 2017, 96, 201302.
doi:10.1103/PhysRevB.96.201302

23. Agassi, D. Phys. Rev. B 1994, 49, 10393.
doi:10.1103/PhysRevB.49.10393

24. Pankratov, O. A.; Pakhomov, S. V.; Volkov, B. A. Solid State Commun.
1987, 61, 93. doi:10.1016/0038-1098(87)90934-3

25. Díaz-Fernández, A.; Chico, L.; González, J. W.; Domínguez-Adame, F.
Sci. Rep. 2017, 8, 8058. doi:10.1038/s41598-017-08188-3

26. Assaf, B. A.; Phuphachong, T.; Volobuev, V. V.; Inhofer, A.; Bauer, G.;
Springholz, G.; de Vaulchier, L. A.; Guldner, Y. Sci. Rep. 2016, 6,
20323. doi:10.1038/srep20323

27. Xu, S.-Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.;
Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A.; Landolt, G.;
Slomski, B.; Dil, J. H.; Marcinkova, A.; Morosan, E.; Gibson, Q.;
Sankar, R.; Chou, F. C.; Cava, R. J.; Bansil, A.; Hasan, M. Z.
Nat. Commun. 2016, 7, 12505. doi:10.1038/ncomms12505

28. Díaz-Fernández, A.; Domínguez-Adame, F.
Phys. E (Amsterdam, Neth.) 2017, 93, 230.
doi:10.1016/j.physe.2017.06.026

29. Kriechbaum, M.; Ambrosch, K. E.; Fantner, E. J.; Clemens, H.;
Bauer, G. Phys. Rev. B 1984, 30, 3394.
doi:10.1103/PhysRevB.30.3394

30. Buczko, R.; Cywiński, Ł. Phys. Rev. B 2012, 85, 205319.
doi:10.1103/PhysRevB.85.205319

31. Díaz-Fernández, A.; Chico, L.; Domínguez-Adame, F.
J. Phys.: Condens. Matter 2017, 29, 475301.
doi:10.1088/1361-648X/aa91a6

32. Feynman, R. P.; Gell-Mann, M. Phys. Rev. 1958, 109, 193.
doi:10.1103/PhysRev.109.193

33. Domínguez-Adame, F. Europhys. Lett. 1991, 15, 569.
doi:10.1209/0295-5075/15/6/001

34. Glasser, M. L.; Nieto, L. M. Can. J. Phys. 2015, 93, 1588.
doi:10.1139/cjp-2015-0356

https://orcid.org/0000-0001-9432-7845
https://orcid.org/0000-0001-7751-5422
https://orcid.org/0000-0002-5256-4196
https://doi.org/10.1103%2FPhysRevLett.49.405
https://doi.org/10.1103%2FPhysRevLett.95.146802
https://doi.org/10.1126%2Fscience.1133734
https://doi.org/10.1126%2Fscience.1148047
https://doi.org/10.1103%2FPhysRevB.84.121302
https://doi.org/10.1103%2FPhysRevB.88.165309
https://doi.org/10.1038%2Fncomms1969
https://doi.org/10.1038%2Fnmat3449
https://doi.org/10.1126%2Fscience.1239451
https://doi.org/10.1103%2FPhysRevB.90.035402
https://doi.org/10.3390%2Fcryst7010029
https://doi.org/10.1103%2FPhysRevB.35.6446
https://doi.org/10.1103%2FPhysRevB.37.10095
https://doi.org/10.1088%2F0268-1242%2F5%2F3S%2F045
https://doi.org/10.1088%2F0953-8984%2F9%2F49%2F012
https://doi.org/10.1146%2Fannurev-conmatphys-031214-014501
https://doi.org/10.1002%2Fpssb.2221860231
https://doi.org/10.1103%2FPhysRevB.86.081303
https://doi.org/10.1103%2FPhysRevB.96.201302
https://doi.org/10.1103%2FPhysRevB.49.10393
https://doi.org/10.1016%2F0038-1098%2887%2990934-3
https://doi.org/10.1038%2Fs41598-017-08188-3
https://doi.org/10.1038%2Fsrep20323
https://doi.org/10.1038%2Fncomms12505
https://doi.org/10.1016%2Fj.physe.2017.06.026
https://doi.org/10.1103%2FPhysRevB.30.3394
https://doi.org/10.1103%2FPhysRevB.85.205319
https://doi.org/10.1088%2F1361-648X%2Faa91a6
https://doi.org/10.1103%2FPhysRev.109.193
https://doi.org/10.1209%2F0295-5075%2F15%2F6%2F001
https://doi.org/10.1139%2Fcjp-2015-0356


Beilstein J. Nanotechnol. 2018, 9, 1405–1413.

1413

License and Terms
This is an Open Access article under the terms of the

Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which

permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of

Nanotechnology terms and conditions:

(https://www.beilstein-journals.org/bjnano)

The definitive version of this article is the electronic one

which can be found at:

doi:10.3762/bjnano.9.133

http://creativecommons.org/licenses/by/4.0
https://www.beilstein-journals.org/bjnano
https://doi.org/10.3762%2Fbjnano.9.133


1512

Robust topological phase in proximitized core–shell
nanowires coupled to multiple superconductors
Tudor D. Stanescu1, Anna Sitek2,3 and Andrei Manolescu*3

Full Research Paper Open Access

Address:
1Department of Physics and Astronomy, West Virginia University,
Morgantown, WV 26506, USA, 2Department of Theoretical Physics,
Faculty of Fundamental Problems of Technology, Wroclaw University
of Science and Technology, Wroclaw, 50-370, Poland and 3School of
Science and Engineering, Reykjavik University, Menntavegur 1,
IS-101 Reykjavik, Iceland

Email:
Andrei Manolescu* - manoles@ru.is

* Corresponding author

Keywords:
core–shell nanowires; Majorana states; multiple 1D chains; prismatic
geometry; topological superconducting phase

Beilstein J. Nanotechnol. 2018, 9, 1512–1526.
doi:10.3762/bjnano.9.142

Received: 03 December 2017
Accepted: 13 April 2018
Published: 22 May 2018

This article is part of the Thematic Series "Topological materials".

Guest Editor: J. J. Palacios

© 2018 Stanescu et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
We consider core–shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a mag-

netic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which

strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding

model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing

transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases

strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and

reduces the value of the critical field associated with the topological quantum phase transition.

1512

Introduction
The intense ongoing search for Majorana zero modes (MZMs)

in solid states systems is motivated, in part, by the perspective

of using them as a platform for fault-tolerant topological quan-

tum computation [1-4]. Several practical realizations of “syn-

thetic” topological superconductors that host zero-energy Majo-

rana modes have been proposed in the past few years, the most

promising involving semiconductor-superconductor hybrid

systems [5-9]. The basic idea [10-13] is to proximity-couple a

semiconductor nanowire with strong Rashba-type spin-orbit

coupling (e.g., InSb or InAs) to a standard s-type supercon-

ductor (e.g., NbTiN or Al) in the presence of a longitudinal

magnetic field. The system is predicted to host zero-energy

Majorana modes localized at the two ends of the nanowire

[5,7,8]. These zero-energy states combine equal proportions of

electrons and holes and are created by second quantized opera-

tors satisfying the “Majorana condition” γ† = γ. The topological

character of these modes endows them with robustness against

perturbations that do not close the superconductor gap, e.g.,

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:manoles@ru.is
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weak interactions, wire bending, a certain amount of disorder,

etc.

The most straightforward experimental signature of a Majorana

mode is a zero-bias conductance peak that is produced in a

charge transport measurement by tunneling electrons between

the semiconductor wire and external electrodes attached to its

ends [14-24]. These experiments have provided strong indica-

tions regarding the presence of Majorana bound states at the end

of the wire, but no clear evidence of a phase transition to the

topological phase, as revealed by the closing of the bulk quasi-

particle gap [10-13], or evidence of correlated features at the

opposite ends of the wire [25].

Ideally, the MZMs are hosted by a one-dimensional (1D)

p-wave superconductor. However, the experimental realization

and detection of these modes involve 3D nanowires [26]. The

most common materials are InSb and InAs due to their large

g-factor and strong SOC. The wires are grown by bottom-up

methods and have usually a prismatic shape with a hexagonal

cross section, as determined by the crystal structure [27]. The

finite cross section of the wires used in the experiments may

generate additional phenomena, which are not captured by ideal

1D models. In particular, the orbital effects of the magnetic

field, which is oriented parallel to the nanowire, may reduce or

even destroy the stability of the Majorana modes [28].

Proximitized core–shell nanowires are slightly more complex

systems recently shown [29] to have interesting Majorana

physics that is practically immune to orbital effects. With a

conductive shell and an insulating core, such heterostructures

become tubular conductors. The prismatic shape of the

core–shell wires implies that the cross section of the shell can

be seen as a polygonal ring. This is an interesting geometry

because the corners of the polygon act like quantum wells

where the states with the lowest energies are localized. Further-

more, a group of states with higher energies is localized on the

sides of the polygon [30]. Although most of the core–shell

nanowires have a hexagonal profile, square [31] or triangular

[32-36] cross sections can also be obtained. The core diameter

is typically between 50–500 nm and the shell thickness is be-

tween 1–20 nm. For all these geometries, the edge states corre-

sponding to corner localization represent better approximations

of the ideal 1D limit than the states hosted by a full wire.

Remarkably, the energy separation between the corner states

and the side states increases when the shell thickness is narrow

compared to the radius of the wire, and when the corners are

sharp. This means that the triangular shell would be the best

choice for the realization of 1D edge channels. For example,

with a shell thickens of 8–10 nm and a radius of 50 nm the

energy separation between corner and side states can be be-

tween 50–100 meV [29,37]. In this case the corner states are

extremely robust to orbital effects of the magnetic field and the

low-energy subspace is well separated from higher-energy

states. Another interesting aspect of a prismatic shell is that it

can host several Majorana states at each end of the wire. One

can actually view the wire as a set of n coupled chains, each

having a pair of Majorana modes at its ends. On the one hand,

this results in a rich phase diagram [29], which means that

core–shell nanowires provide an interesting playground for

studying topological quantum phase transitions. On the other

hand, this richness is associated with rather fragile topological

phases [29]. In practice, it would be extremely useful to have a

knob enabling one to control the robustness of topological

superconducting phase.

In this work we show that coupling a core–shell nanowire to

two or more parent superconductors with non-vanishing rela-

tive phases enhances the stability of the topological phase and

lowers the critical magnetic field associated with the (lowest

field) topological quantum phase transition. In principle the

phase difference between superconductors can be achieved

either by applying an additional magnetic field, i.e., other than

the longitudinal field needed for the Zeeman energy, or by

driving a supercurrent through the superconductors. Hence, by

controlling the relative phases of the parent superconductors

coupled to the wire one can stabilize the topological supercon-

ducting phase that hosts the zero-energy Majorana modes and

one can obtain an additional experimental knob for exploring a

rich phase diagram and observing potentially interesting low-

energy physics.

The rest of this article is organized as follows. We first describe

the coupled-chains tight binding model that we use in our nu-

merical analysis. Then, using this simple model, we study the

topological phase diagram of (infinite) core–shell wires with

triangular and square cross section coupled to superconductors

having the same superconducting phase. Next, we show that a

finite phase difference can stabilize the topological phase in

both triangular and square geometries. In addition, we show that

the critical field associated with the (low-field) topological

quantum phase transition can be made arbitrarily low. The

implications of these findings for the stability of the Majorana

modes emerging in finite wires is discussed in the subsequent

section. Next, we corroborate our results for the topological

phase diagram using an alternative “geometric” model. Finally,

we summarize our findings and present our main conclusions.

The Coupled-chains Tight-binding
Model
We start by formulating the effective thigh-binding model that

describes the low-energy physics of a core–shell nanowire with
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n edges. The model has already been introduced for triangular

core–shell nanowires in [29] (Appendix), and also previously

considered by other authors, in different forms, for ladder

systems [38,39]. A “coarse-grained” shell is modeled by one

chain associated with each vertex and one or more chains corre-

sponding to each side, as shown in Figure 1. Note that the

minimal model for a nanowire with n edges consists of 2n

coupled chains (n for vertexes and n for sides), but more

detailed representations can be obtained by increasing the num-

ber of chains associated with the sides. A model that takes into

account the details of the internal geometry of the wire [29] will

be used later in the paper to corroborate the results obtained

with this simple tight-binding model. In the numerical calcula-

tions we use minimal tight-binding models consisting of 6 (for

triangular wires) or 8 (for square wires) parallel chains. Note

that the odd chains,  = 1,3,…, correspond to the corners, while

the even chains,  = 2,4,…, represent the sides.

Figure 1: Schematic representation of the chain model for triangular
(left) and square (right) core–shell nanowires. The shell (yellow) is
coarse-grained so that the vertices and the sides are represented by
1D chains (red circles). The arrows indicate the direction of the effec-
tive spin-orbit field  associated with the (longitudinal) Rashba spin-
orbit coupling. In a minimal model each side is represented by one
chain (left); a more detailed representation can be obtained by adding
more chains associated with the sides (right).

Consider now 2n 1D coupled chains proximity-coupled to one

or more s-wave superconductors. The superconducting prox-

imity effect is incorporated through the pairing potential ,

1 ≤  ≤ 2n associated with each chain. Note that, in principle,

the induced pairing potential may be chain-dependent. The low-

energy physics of the hybrid structure is described by the

following Bogoliubov–de Gennes (BdG) Hamiltonian:

(1)

where  is the annihilation operator for an electron with spin

projection σ localized on the lattice site i of the chain  and

 is the corresponding spinor operator. The first

two terms in Equation 1 represent the nearest-neighbor hopping

along the chains, with characteristic energy t, and the inter-

chain coupling, with characteristic energy t′. In the summations

over the chain index  we use the convention 2n + 1 ≡ 1. The

third term of the Hamiltonian (Equation 1) contains a chain-de-

pendent effective potential Veff( ) that incorporates the pres-

ence of various external electrostatic fields (e.g., gate potentials)

and the chemical potential μ. Note that, in general, Veff( )

breaks the n-fold rotation symmetry of the original nanowire.

The term proportional to ε0 accounts for the fact that the side

states have higher energies than the corner states and the param-

eter ε0 > 0 controls the energy gap between the two types of

states. The next term represents the Rashba type spin-orbit cou-

pling (SOC), with longitudinal and transverse components

proportional to α and α′, respectively. The underlying assump-

tion is that the spin-orbit coupling is generated by an effective

potential in the shell region due to the presence of the core [29].

The corresponding direction of the spin-orbit field  for elec-

trons moving along the wire is shown in Figure 1. The next

term in Equation 1, ΓB = gμbB, corresponds to the Zeeman spin

splitting generated by an external magnetic field applied parallel

to the wire (e.g., along the z-axis). The last term describes the

proximity-induced pairing and takes into account the possibili-

ty that pairing potential  be chain-dependent. We assume that

the vertex regions are covered by n different superconductors

separated by gaps over the side regions. The corresponding

proximity-induced pairing potentials are

(2)

where , the phase of the superconductor coupled to the vertex

, is an experimentally-controllable quantity. In the numerical

calculations presented below we use the following values

for the model parameters: t = 5.64 meV, t′ = 1.41 meV (or

t′ = 2.25 meV, when explicitly specified), α = 2.0 meV,

α′ = 0.5 meV, ε0 = 15.0 meV, and Δ = 0.3 meV.

To determine whether a given superconducting phase is topo-

logically trivial or not, we calculate the  topological index

, i.e., the Majorana number [1],

(3)

The trivial and topological superconducting phases are charac-

terized by  = +1 and  = −1, respectively. In Equation 3
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Pf[…] represents the Pfaffian [40], while the antisymmetric

matrix B(k) is the Fourier transform of the Hamiltonian (Equa-

tion 1) in the Majorana basis. The matrix B(k) can be

constructed using the particle–hole symmetry of the BdG

Hamiltonian [8,41],

(4)

where (k) is the Fourier transform of the (single particle)

Hamiltonian corresponding to Equation 1 and  = UtK is the

antiunitary time-reversal operator, with Ut a unitary operator

and K the complex conjugation. Explicitly, we have

(5)

where Λ = 0, π/a are the time-reversal invariant points charac-

terized by the property (−Λ) = (Λ). The antisymmetry of

B(k) at the time-reversal invariant points, BT(Λ) = −B(Λ), is a

direct consequence of Equation 4 and Equation 5. Considering

that for typical parameter values the Pfaffian is always positive

at the boundary of the Brillouin zone, sign[PfB(π)] = +1, we

conclude that the topological phase boundary is determined by a

sign change of PfB(0). Finally, using the general relation be-

tween the Pfaffian of a skew matrix A and its determinant,

[Pf(A)]2 = Det(A), we have Det (0) = [PfB(0)]2. Note that

Det (0) = 0 signals the presence of gapless states. Thus, the

phase boundary, which corresponds to a sign change of the

Pfaffian, is accompanied by the closing of the quasiparticle gap

at k = 0.

Results and Discussion
Nanowire coupled to superconductors with
no relative phase difference
The emergence of topological superconductivity and zero-

energy Majorana bound states in core–shell nanowires coupled

to a single superconductor (i.e., in the absence of supercon-

ducting phase differences) was discussed in [29]. Here, we sum-

marize the main results, as revealed by the simplified tight-

binding model given by Equation 1. First, we consider a

triangular system without a symmetry-breaking potential,

Veff( ) = 0, and no superconducting phase difference,  = 0.

The corresponding topological phase diagram (as function of

the chemical potential and the applied Zeeman field) is shown

in panel (A) of Figure 2. The white regions correspond to

 = +1 (i.e., topologically trivial phases), while the orange

areas represent topologically nontrivial phases with  = −1.

The effect of a symmetry-breaking potential is illustrated in

panel (B) of Figure 2. While the topology of the phase diagram

is the same, the phase boundaries are modified significantly

with respect to panel (A). We note that this result was obtained

by applying a rather modest symmetry breaking potential with

values Veff = (0.67, 0.17, −0.33, −0.33, −0.33, 0.17) meV on the

six chains.

Figure 2: (A) Topological phase diagram for a triangular wire with
Veff( ) = 0 and  = 0. The white areas are topologically trivial and the
orange regions are nontrivial. The 4-star symbols indicate gapless
superconducting phases. (B) Topological phase diagram for a trian-
gular wire with Veff( ) ≠ 0 and  = 0. The values of the effective
potential on the 6 chains are (0.67, 0.17, −0.33, −0.33, −0.33, 0.17)
meV. The evolution of the (minimum) quasiparticle gap along the cuts I
(blue lines) corresponding to μ = −5.4 meV and II (red lines) corre-
sponding to μ = −4.4 meV are shown in Figure 3 and Figure 4, respec-
tively. See also [29].

To get further insight into the nature of the phases shown in

Figure 2, we calculate the minimum quasiparticle energy

Emin(μ,ΓB) along the constant chemical potential cuts I (blue)

and II (dark red) marked on the phase diagrams. This energy

(which corresponds to the minimum quasiparticle gap) is

defined as

(6)

where En(k) are the eigenvalues of the BdG Hamiltonian from

Equation 1. The dependence of Emin on the Zeeman field for

μ = −5.4 meV (i.e., the blue cuts I in Figure 2) is shown in

Figure 3, while the evolution of the minimum gap along the cuts

II (dark red) corresponding to μ = −4.4 meV is shown in

Figure 4.

At zero Zeeman field, ΓB = 0, the system is in a trivial

superconducting phase characterized by a quasiparticle gap
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Figure 3: Dependence of the minimum quasiparticle gap on the
Zeeman field along the blue cuts (I) corresponding to μ = −5.4 meV in
Figure Figure 2. Top: Veff( ) = 0, see Figure 2A. Bottom: Veff( ) ≠ 0,
see Figure 2B. The white/orange regions correspond to the trivial/
nontrivial phases shown in Figure 2. Note the gapless supercon-
ducting phase marked be the 4-star symbol (top panel). See also [29].

Figure 4: Dependence of the minimum quasiparticle gap on the
Zeeman field along the dark red cuts (II) corresponding to
μ = −4.4 meV in Figure 2. Top: Veff( ) = 0, see Figure 2A. Bottom:
Veff( ) ≠ 0, see Figure 2B. The white/orange regions correspond to the
trivial/nontrivial phases shown in Figure 2. Note the gapless supercon-
ducting phase marked be the 4-star symbol (top panel). See also [29].

Δ = 0.3 meV (see Figure 3 and Figure 4) given by the value of

the induced pairing potential. With increasing ΓB, the quasipar-

ticle gap reduces and eventually closes at a certain critical

Zeeman energy. In the absence of a symmetry breaking poten-

tial, the system with μ = −5.4 meV (see cut (I-A) in Figure 2)

remains gapless throughout the first (i.e., low-field) orange

region, which means that the system becomes a gapless super-

conductor. Another gapless superconducting phase corresponds

to the intermediate white region in panel (II-A) of Figure 4, i.e.,

for Zeeman fields between approximately 0.55 meV and

0.85 meV. These gapless phases are marked by a 4-star symbol

in the phase diagram (see Figure 2A) and in Figure 3(I-A) and

Figure 4(II-A). We note that inside the gapless superconducting

phases the gap closes at k ≠ 0. Of course, at the phase bound-

aries the gap always closes at k = 0. Furthermore, by increasing

the Zeeman energy above 0.7 meV in panel (I-A) of Figure 3 or

above 0.85 meV in panel (II-A) of Figure 4, the system evolves

into topological phase with a finite gap.

Upon breaking the three-fold rotation symmetry of the original

triangular wire, the gapless superconducting phases become

gapped. Also notice in panel (II-B) that the low-field topolog-

ical phase corresponding to μ = −4.4 meV is now characterized

by a sizable quasiparticle gap, indicating a regime which may

be more favorable for robust zero-energy Majorana modes. We

note that the robust low-field topological phase in panel (II-B)

corresponds to a single pair of Majorana modes (i.e., one MZM

at each end of the wire) hosted by chain 1 (with the highest

value of Veff, while the narrow low-field topological phase in

panel (I-B) corresponds to a pair of Majorana modes shared by

chains 2 and 3 (the chains with the lowest value of the

potential). Note that the expression “hosted by chain 1” (or

chains 2 and 3) actually means that most of spectral weight as-

sociated with the Majorana wave function is localized on the

corresponding chain(s) (also see below, Figure 11 and

Figure 13). The wide trivial region above ΓB ≈ 0.4 meV in panel

(I-B) corresponds to a finite system with two pairs of Majorana

bound states (on chains 2 and 3). We also note that the low-field

phase boundaries converge to a single boundary in the limit of

isolated chains, i.e., when the inter-chain hopping energy is

much smaller than the hopping along the chains, t′/t → 0. In this

case three Majorana pairs would form independently at the ends

of each chain, and coexist at zero energy, without “talking” to

each other. Physically, the limit t′/t → 0 corresponds an infi-

nitely-thin shell. For finite values of t′/t (corresponding to finite

shell thicknesses), the coupling between chains lifts the degen-

eracy, such that at most one Majorana state can have zero

energy, while the other two will acquire finite energy.

The existence of gapless superconducting phases in systems

with rotation symmetry is generic, i.e., it holds for n > 3. We

emphasize that gapless phases cannot host stable Majorana

modes and, therefore, they are not suitable for studying Majo-

rana physics. Applying a symmetry-braking potential

Veff( ) ≠ 0 opens a finite gap throughout the entire phase

diagram, except, of course, the phase boundaries, where the

quasiparticle gap vanishes at k = 0. To better illustrate this

point, we calculate the topological phase diagram for a square

wire with Veff( ) ≠ 0 and the minimum gap along a representa-

tive cut through the phase diagram. The results are shown in
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Figure 5. Note that all topologically trivial and nontrivial phases

are gapped. However, the gaps are rather small indicating the

fact that topological superconductivity (and the corresponding

Majorana modes) are not very robust.

Figure 5: (A) Topological phase diagram for a square wire with
Veff( ) ≠ 0 and  = 0. The white areas are topologically trivial and the
orange regions are nontrivial. The values of the effective potential on
the 8 chains are (0.5, 0, −0.5, −0.5, −0.5, 0, 0.5, 0.5) meV and the
inter-chain hopping is t′ = 2.25 meV. (B) Evolution of the minimum
quasiparticle gap along the horizontal cut Γ = 0.35 meV shown in the
top panel.

An important difference between the phase diagram shown in

Figure 5 and that in Figure 2 is that for the square wire we have

used a larger value of the inter-chain hopping, t′ = 2.25 meV.

Enhancing the coupling between chains widens the low-field

topological regions (which would practically vanish in the limit

t′/t → 0). Finally, we emphasize that although a finite system

with parameters corresponding to a topologically nontrivial

phase will support one pair of MZMs (i.e., one Majorana mode

at each end of the wire), generically each Majorana mode is

hosted by multiple chains (rather than a single chain). For ex-

ample, in a configuration corresponding to Figure 5, the low-

field topological phases with μ< 3.7 meV can support MZMs

hosted by chains 3 and 5 (with minimum values of Veff( )),

while for μ > 3.7 meV the MZMs are hosted by chains 1 and 7

(corresponding to the maximum values of Veff( )).

Wires coupled with multiple superconductors:
the stabilizing role of the phase difference
A critical question that we want to investigate concerns the

effect of a nonzero superconducting phase difference in a wire

coupled to multiple parent superconductors. A non-zero phase

Figure 6: (A) Topological phase diagram for a triangular wire with
Veff( ) ≠ 0 and 1 = 0, 3 = π/2, 5 = −π/2. The white and orange
phases are topologically trivial and nontrivial, respectively. The effec-
tive potential is the same as in Figure 2B. (B) Dependence of the
minimum quasiparticle gap on the Zeeman field along the blue cut (I)
in panel (A). (C) Dependence of the minimum quasiparticle gap on the
Zeeman field along the dark red cut (II) in panel (A). Note the in-
creased stability of the low-field topological phase (see for comparison
Figure 2B) and the fact that the minimum critical field  ≈ 0.15 meV is
lower than the pairing potential for corner chains, Δ = 0.3 meV.

difference was shown to stabilize the topological phase in a

Josephson junction across a 2D electron gas with Rashba spin-

orbit coupling and in-plane magnetic field [42] and in a topo-

logical insulator nanoribbon coupled with two superconductors

[43]. Here, for concreteness, we consider a triangular core–shell

nanowire modeled by six chains, as described above, which are

coupled to three separate superconductors that induce pairing

potentials characterized by 1 = 0, 3 = π/2, and 5 = −π/2. The

other parameters are the same as in Figure 2B, i.e., the case

Veff ≠ 0 discussed above. The corresponding phase diagram is

shown in Figure 6. Remarkably, the “crossing points” that char-

acterize the phase diagram in Figure 2 disappear and, upon in-

creasing the Zeeman field, we have an alternance of trivial and

nontrivial phases for all values of the chemical potential. More

importantly, the low-field topological phase becomes stable for

a wide range of chemical potentials, i.e., it is characterized by a
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significant quasiparticle gap, as shown in panels (B) and (C). In

addition, the lowest critical field  ≈ 0.15 meV is about half

the value of the pairing potential (i.e., Δ/2). This is in sharp

contrast with the case of hybrid systems involving a single

superconductor, or multiple superconductors having the same

phase,  = const., where the minimum critical field is  = Δ.

A comparison between the results in Figure 2 and those in

Figure 6 suggests that the superconducting phase could be

used as a knob for tuning the system across a topological quan-

tum phase transition. For example, if μ = −5.4 meV and

ΓB = 0.25 meV the system evolves as a function of the super-

conducting phase differences from a topologically-trivial state

when  = 0 to a topological superconductor when 1 = 0 and

3 = − 5 = π/2. We emphasize that the simplified tight-binding

model can only provide a qualitative picture of the low-energy

physics of proximitized core–shell wires. For quantitative

predictions regarding the dependence of the low-energy physics

on the effective bias potential Veff and the superconducting

phases  a more detailed modeling of the hybrid structure

(possibly, at the microscopic level) is necessary.

To corroborate our findings regarding the effect of a phase

difference, we consider the square wire corresponding to the

phase diagram shown in Figure 5 coupled to four separate

superconductors that induce pairing potentials characterized by

1 = π/2, 3 = −π/2, 5 = π/2, and 7 = −π/2. The correspond-

ing phase diagram is shown in Figure 7. The qualitative effect

of having finite phase differences is the same as in the case of

the triangular wire, while quantitatively it is more significant as

a results of a stronger inter-chain coupling t′. The topology of

the phase diagram is similar to that shown in Figure 6. Howev-

er, the low-field topological phase now occupies a significant

region of the parameter space and the minimum critical field

 is practically zero. Furthermore, the topological gap is sub-

stantial, as shown in the lower panel of Figure 7, indicating a

robust topological superconducting phase.

Majorana modes in finite core–shell
nanowires
As a consistency check for the results discussed above, which

are based on a translation-invariant model (i.e., infinite wire),

and to gain further insight into the low-energy physics of the

hybrid structure, we continue now with the case of wires of

finite length. For concreteness, we consider a triangular wire of

length L = 2.25 μm in the parameter regimes corresponding to

the panels labeled by “I” and “II” in Figure 3, Figure 4, and

Figure 6. The dependence of the low-energy spectrum on the

Zeeman field for μ = −5.4 meV, i.e., corresponding to the (I)

panels, is shown in Figure 8. Note that when Veff = 0 and  = 0

(top panel) the first transition is from a topologically-trivial

Figure 7: (A) Topological phase diagram for a square wire with
Veff( ) ≠ 0 and 1 = π/2, 3 = −π/2, 5 = π/2, and 7 = −π/2. The
white areas are topologically trivial and the orange regions are
nontrivial. The values of Veff( ) and the inter-chain hopping t′ are the
same as in Figure 5. (B) Evolution of the minimum quasiparticle gap
along the horizontal cut Γ = 0.35 meV shown in the top panel. Note the
significant expansion of the low-field topological phase (see for com-
parison Figure 5), the large topological gap, and the low values of the
critical field.

Figure 8: Dependence of the low-energy spectrum on the Zeeman
field for a finite triangular wire of length L = 2.25 μm and chemical
potential μ = −5.4 meV. The parameters used in the top, middle, and
bottom panels correspond to Figure 3(I-A), Figure 3(I-B), and
Figure 6B, respectively.
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phase to a gapless superconductor, as already discussed in the

context of Figure 3. The high-field topological phase

(ΓB > 0.7 meV) is characterized by a zero-energy Majorana

mode separated by a finite gap from finite energy excitations.

Applying a symmetry-breaking potential Veff (middle panel)

generates a low-field topological phase characterized by a small

bulk gap and a weakly stable, energy-split Majorana mode.

However, the stability of this topological phase can be signifi-

cantly enhanced by creating phase differences between the

parent superconductors (bottom panel). Note that in the middle

and bottom panels the second trivial phase (ΓB larger than about

0.35 meV and 0.45 meV, respectively) is characterized by sub-

gap states that can be viewed as pairs of overlapping, energy

split Majorana bound states (at each end of the wire). This result

suggests that coupling the nanowire to multiple parent super-

conductors and controlling their relative phases represents a

powerful scheme for enhancing the robustness of the topolog-

ical phase and tuning the system across a topological quantum

phase transition.

The low-energy spectra for μ = −4.4 meV, i.e., those corre-

sponding to the (II) panels in Figure 4 and Figure 6, are shown

in Figure 9. In the top panel, note the presence of a gapless

superconducting phase, which is consistent with our conclu-

sions based on the results shown in Figure 4. Also note that the

high-field topological phase (ΓB > 0.85 meV) supports two

finite energy sub-gap modes, in addition to the zero-energy

Majorana mode. Again, we can interpret these modes as pairs of

overlapping Majoranas. We conclude that in this phase the

hybrid system has three Majorana bound states at each end of

the wire, two Majorana modes acquiring finite energy and one

remaining gapless, consistent with a  topological classifica-

tion. Applying a symmetry-breaking potential (middle panel)

enhances significantly the stability of the low-field topological

phase and generates a second trivial phase (ΓB > 0.9 meV) that

is gapped in the bulk, consistent with Figure 4. Remarkably,

this trivial phase supports a pair of zero-energy Majorana

modes at each end of the wire, which correspond to the mid-gap

states visible in the middle panel of Figure 9. This indicates the

presence of an additional “hidden” symmetry in the system,

which makes it an element of the BDI symmetry class [44].

This symmetry is broken in the presence of a superconducting

phase difference (bottom panel), when the sub-gap modes

acquire finite energy.

Symmetry and gapless superconducting
phases
The existence of the gapless superconducting phases (indicated

by the star in the top panels of Figure 2 and Figure 3) is a

consequence of the threefold rotation symmetry of the trian-

gular wire with Veff( ) = 0 and identical superconductors.

Figure 9: Dependence of the low-energy spectrum on the Zeeman
field for a finite triangular wire of length L = 2.25 μm and chemical
potential μ = −4.4 meV. The parameters used in the top, middle, and
bottom panels correspond to Figure 4(II-A), Figure 4(II-B), and
Figure 6C, respectively.

Breaking this symmetry automatically opens a (bulk) gap in the

spectrum. To illustrate this property we consider the system of

finite length L = 2.25 nm, with the other parameters correspond-

ing to Figure 2A, with chemical potential μ = −5.4 meV (i.e.,

the blue vertical line there), and Veff( ) = 0, and we focus on

the gapless phase 0.36 < ΓB < 0.58 meV. The low-energy spec-

trum is shown in Figure 10A, which is in fact a zoom into the

top panel of Figure 8. We consider now a small symmetry-

breaking potential, with the same proportions as in Figure 2B,

Figure 3(I-B), and middle panel of Figure 8, but now ten

times weaker, i.e., Veff = V0(2, 0.5, −1, −1, −1, 0.5) with

V0 = 33.3 μeV. The potential opens a bulk gap that hosts a mid-

gap Majorana mode, as shown in Figure 10B. To emphasize

that the opening of a bulk gap is the result of breaking the three-

fold rotation symmetry, we also consider a system with vanish-

ing effective potential, Veff( ) = 0, in which we break the

symmetry by coupling the wire to parent superconductors

having different bulk gaps, so that the proximity-induced

pairing potentials for the edges are Δ1 = 0.375 meV,

Δ3 = 0.300 meV, and Δ5 = 0.300 meV. Here we do not consider

any relative phase between the superconductors. Again, a small

bulk gap opens in the (bulk) spectrum and a (nearly-zero) Majo-

rana mode emerges as a mid-gap state, as can be seen

Figure 10C.
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Figure 10: Low-energy spectra as a function of the Zeeman field for a finite triangular wire of length L = 2.25 μm and chemical potential
μ = −5.4 meV. (A) Gapless superconducting phase in a system with threefold rotation symmetry, like in Figure 2A and Figure 3(I-A). (B) Applying a
symmetry-breaking Veff, ten times waker than in Figure 2B, a small bulk gap develops, like in Figure 3(I-B), that hosts a mid-gap Majorana mode. (C)
Symmetry broken by coupling the wire to different superconductors inducing edge pairing potentials Δ1 = 0.375 meV, Δ3 = 0.3 meV, and Δ5 = 0.3
meV. The filled (orange) region 0.36 < ΓB < 0.58 meV represents the topological superconducting phase (of an infinite wire) in the presence of an
infinitesimally-small symmetry-breaking perturbation.

Another important general property of the Majorana modes

illustrated in Figure 10, panels (B) and (C), is the presence of

energy splitting oscillations [25,45]. In general, the energy split-

ting is caused by a finite overlap of the Majorana modes local-

ized at the opposite ends of the wire. The amplitude of the oscil-

lations depends on the Majorana localization length ξ [25],

which increases as the topological gap decreases, diverging in

the gapless limit. This behavior is illustrated in Figure 11. The

top panel represents the lowest-energy state corresponding to a

gapless system with threefold rotation symmetry (i.e., Veff = 0),

which could be seen as a linear combination of Majorana modes

with an infinite characteristic lenghscale, ξ → ∞. Introducing a

symmetry-breaking perturbation (Veff ≠ 0) opens a (bulk) topo-

logical gap that increases with increasing the effective potential.

In addition, in a finite system a midgap state emerges,

consisting of two (partially) overlapping Majorana modes local-

ized at the opposite ends of the wire. As clearly shown in

Figure 11, the characteristic length scale ξ of the Majorana

modes decreases as the amplitude V0 of the symmetry-breaking

potential increases (i.e., as the topological gap increases).

We note that, from the perspective of quantum computation, the

zero-energy Majorana modes have to be i) well separated

spatially (to minimize the overlap and, consequently, the energy

splitting δE) and ii) well separated in energy from all other low-

energy states (by a certain minimum quasiparticle gap ΔE). The

first condition ensures that the Majorana modes have non-

Abelian properties, while the second guarantees that the parity

of the low-energy Majorana sub-space is fixed (the presence of

other low-energy states would allow excitations from the Majo-

rana sub-space, which would change its parity and destroy any

quantum information stored in the Majorana system). If these

conditions are satisfied, the Majorana modes span a nearly-zero

Figure 11: Position dependence of the lowest energy wave function
corresponding to a finite triangular wire of length L = 2.25 μm, chemi-
cal potential μ = −5.4 meV, Zeeman field ΓB = 0.45 meV, and
symmetry-breaking effective potential with amplitude V0 (see
Figure 10B). The thick (red) line represents the probability distribution
|Ψ1(x)|2 along the edge  = 1, while the filled (blue) line represents the
probability distribution along the edges  = 3,5. With increasing the
amplitude of the symmetry-breaking potential the (bulk) topological gap
increases, which leads to the reduction of the characteristic length ξ of
the Majorana modes localized at the opposite ends of the wire.

energy subspace that can be used for storing and processing

quantum information. The characteristic timescale τ for quan-

tum operations has to satisfy the condition  Of

course, the impossibility of satisfying this condition is manifest

in regimes characterized by small topological gaps, as δE and

ΔE become comparable in the gapless superconductor limit.
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Figure 12: (A) Position dependence of the normalized disorder poten-
tial along the edge  = 3 of a triangular wire for a specific disorder real-
ization. The disorder profiles along the edges  = 1,5 (not shown) are
different, but characterized by similar qualitative features. In particular,
the characteristic length scale for the potential variations is δd = 60 nm.
(B) Dependence of the low-energy spectrum on the amplitude Vmax of
the disorder potential for the disorder realization shown in panel (A).
(C) Low-energy spectrum averaged over 50 different disorder realiza-
tions as a function of Vmax. The parameters of the system are: wire
length L = 2.25 μm, chemical potential μ = −5.4 meV, effective poten-
tial Veff = (0.67, 0.17, −0.33, −0.33, −0.33, 0.17) meV, supercon-
ducting phases 1 = 0, 3 = π/2, 5 = −π/2 and Zeeman field
ΓB = 0.35 meV.

Effects of disorder
Another element that can compromise the topological protec-

tion of the Majorana subspace is the presence of disorder.

Generically, disorder induces low-energy sub-gap states, thus

reducing ΔE[46-50]. The effect of potential disorder on a topo-

logical phase realized in a triangular wire is illustrated in

Figure 12. Panel (A) shows the position dependence (along the

wire) of a typical disorder potential Vdis(x) considered in the

calculation. Next, we calculate the low-energy spectrum in the

presence of a disorder potential with a fixed profile but a

varying amplitude Vmax (see Figure 12B). As the disorder

strength increases, several low-energy states converge toward

zero-energy, so that the quasiparticle gap ΔE practically

collapses when the amplitude of the effective disorder potential

is larger than Vmax≈ 1 meV. To demonstrate that this is not an

accidental property of a specific disorder realization, we also

calculated the spectrum averaged over multiple disorder realiza-

tions (see Figure 12C). The qualitative features discussed above

are manifestly present. We note that “critical” disorder strength

associated with the collapse of the quasiparticle gap depends on

the characteristic length scale of the disorder potential, as well

as the topological gap of the clean system, larger gaps implying

an increased robustness against disorder.

The final point that we want to address concerns the structure of

the disorder-induced low-energy states. Specifically, we calcu-

late the spatial profiles of the three lowest-energy states marked

by red dots in Figure 12B. The results are shown in Figure 13.

We note that the Majorana modes (n = 1) are well localized near

the opposite ends of the wire and have most of the spectral

weight on the edges  = 3,5 as a result of applying a bias poten-

tial Veff( ). The disorder-induced states (n = 2,3) are localized

inside the wire and have most of their spectral weight on the

same edges,  = 3,5. We conclude that the presence of disorder

induces low-energy localized states than can destroy the topo-

logical protection of the Majorana subspace. We note that

within a topological quantum computation scheme based on

qubits characterized by a finite charging energy [51,52], interac-

tion-mediated transitions between the Majorana modes and

disorder-induced localized states are possible even when the

spatial overlap of the two types of states is exponentially small.

Such transitions, which create low-energy quasiparticles, could

completely compromise the topological protection of the quan-

tum computation scheme.

Figure 13: Spatial profiles of the three lowest energy states corre-
sponding to the red dots in Figure 12B. The thick (red) line represents
the profile along the edge  = 1, while the filled lines represent the
profiles along the edge  = 3 (blue/light blue filling) and  = 5 (dark
red/yellow filling).

Geometrical model of a prismatic shell
In this section we analyze the results of a finer-grained model of

triangular and square prismatic shells, based on a geometrical
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description [29]. First the two-dimensional Hamiltonian of a

single electron confined on the polygonal cross section is

discretized on a grid defined in polar coordinates and diagonal-

ized numerically [37,53]. The resulting low-energy eigenstates,

corresponding to corner localization, are further used as a basis

to find the eigenstates of the BdG Hamiltonian, assuming plane

waves in direction longitudinal to the prism. The basis includes

the spin and the isospin. The variable Zeeman energy is gener-

ated by a uniform magnetic field B longitudinal to the wire. In

addition we consider a relatively weak electric field E trans-

verse to the wire as a technical tool to break the symmetry of

the polygon, indicated by the red arrows in Figure 14. This field

is equivalent with the chain dependent potential Veff( ) intro-

duced before. First, a perfectly symmetric shell is experimental-

ly unrealistic from fabrication. Second, as already mentioned, in

a regular experimental setup external gates and other contacts

may affect the wire symmetries. Third, a generic electric field

can be seen as a tunable parameter that can change the topolog-

ical phase diagram.

Figure 14: A schematic cross section of the hybrid semiconductor-
superconductor experimental device incorporating a core–shell wire.
The core is shown in grey and the shell in yellow. The blue blocks
represent the superconductor metals attached to the wire. The lower
superconductors can have phases ±θ relatively to the upper one
considered with zero phase. The red arrows indicate the electric field
included in our geometrical model. (A) In the triangular case it is
parallel to one side of the triangle. (B) In the square case it can be
either perpendicular or parallel to the superconductors.

We characterize the lateral size of the wire with the radius R of

a circle surrounding the shell, and with the shell thickness d. In

the present calculations we use R = 50 nm for both geometries,

but d = 12.5 nm for the triangular shell and d = 8 nm for the

square shell. These values are comparable to the dimensions of

the realistic core–shell nanowires mentioned in the experimen-

tal papers [32-36]. The material parameters of the shell are

chosen as for InSb. For these geometric parameters and with

meff = 0.014 the energy separation between the corner and side

states is about 41 and 38 meV for the triangular and square

case, respectively, meaning that for these parameters the low

energy physics can be very well described by the corner states.

Therefore we can use a Rashba SOC model similar to that of the

planar electron gas, but on a cylindrical surface of radius R, i.e.,

transformed from Cartesian to polar coordinates [54]. Since the

sides of the triangular shell are unpopulated this model is quali-

tatively reasonable, and can lead to Majorana states. As

mentioned before a more elaborated microscopic description of

the SOC is beyond the scope of the present paper, and here we

simply adopt in the numerical calculations the coupling con-

stant of bulk InSb, of 50 meV/nm.

For a symmetric triangle the corner states have equal probabili-

ty distribution at each corner [37], whereas in the presence of a

weak electric field E, here corresponding to 0.22 mV across the

radius R, they separate. The wave functions still have some

exponential tails along the sides of the polygon, which are

equivalent to the inter-chain hopping introduced earlier. The

phase diagram shown in Figure 15A is obtained with a real

valued superconductor gap Δ = 0.5 meV, and can be compared

with Figure 2B (where all  = 0). The fragmentation of the

phase boundaries in three dark lines reflects the presence of the

three corners (edges) of the prismatic wire. The boundaries ap-

proach each other when the aspect ratio of the triangle (d/R)

decreases, which results in reduced overlap of the wave func-

tions of the corner states [29].

The colors used indicate the minimum gap of the BdG spec-

trum at any wave vector k, on a logarithmic scale, so the repre-

sentation is complementary to the two-color scheme of

Figure 2B (or A). Here the topological phases can be identified

by the number of crossings of the dark lines. Along these lines

the gap closes at k = 0. Starting from any point outside the

boundaries one enters into a topological Majorana phase after

the first intercept of a dark line, then into the trivial phase after

the second intercept, and again into the topological phase after

the third intercept.

Next, in Figure 15B, we show the phase diagram obtained with

a complex valued superconductor gap, of constant modulus and

variable phases, which are zero at one corner and ±π/6 at the

other corners (i.e., θ = π/6 in Figure 14A). We obtain a splitting

(or anticrossing) of the phase boundaries at the former crossing

point, similar to that shown in Figure 6A, although now more

pronounced than in the chain model.

By further increasing the relative (angular) phase θ to ±π/2 the

boundaries of the quantum phase transitions become nearly

parallel, Figure 15C. This result can be interpreted as an in-

creased interaction between the corner states in the presence of

the phase shift θ of the superconductors. Another consequence

of this phase shift is that the absolute gap of the BdG spectrum

decreases in some topological regions, as indicated by the

diffuse reddish regions, suggesting that some topological states
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Figure 15: Phase boundaries for the triangular wire in the corner-state
domain. The color code describes the minimum gap of the BdG spec-
tra for all wave vectors. The character of each phase can be identified
by counting the boundary crossings along a vertical line, starting at
zero magnetic field, i.e., topological or trivial for an odd or an even
number of crossings, respectively. Along these boundaries the gap
closes at k = 0. Starting from any point outside the (A) All supercon-
ductor phases are equal to zero. (B) Phases are: 0 at one corner and
±π/6 at the other corners, i.e., θ = π/6 in Figure 14A. (C) The same
phase distribution, with θ = π/2.

may become gapless. This tendency is consistent with the

results of the multiple chain model, compare Figure 4B with

Figure 6C.

As with the coupled-chains model, we also tested the effect of

using two superconductors with different gaps, for example by

reducing the gap parameter Δ of one or two superconductors by

one half, and using no relative phase, θ = 0. The resulting phase

diagrams were qualitatively like those shown in Figure 15B,C,

although with lower energy gaps in the topological phases. This

indicates no particular gain by creating an asymmetry in this

way, compared to using the superconductors with the large gap

and creating the asymmetry via the relative phase θ.

Figure 16: Phase boundaries for the square wire in the corner-state
domain. The color code describes the minimum gap of the BdG spec-
tra for all wave vectors. The topological or trivial character of the
phases can be identified by the number of boundary crossings, as de-
scribed in the caption of Figure 15. (A) The superconductor phases
equal to zero. (B) The superconductor phases are zero and θ = π/2,
and the electric field perpendicular to the superconductors, see
Figure 14B. (C) Again θ = π/2, but with the electric field parallel to the
superconductors.

Finally, in Figure 16 we show the phase diagrams obtained with

the geometric model for the square shell profile. Here, in the

geometrical model, we use a particular setup for the square ge-

ometry, with only two superconductors. Unlike in the coupled-

chains model, in this case the superconductors are also

connected to the states localized on the sides of the polygon, if

those states would be populated, but this is not the case for the

chemical potentials used for Figure 16. First we note that we

obtain four phase boundaries, according to the presence of four

corner states. As for the triangular geometry the trivial or topo-

logical character of the phases is associated with odd or even

number of boundary crossings, respectively, when starting from

the outer regions. Therefore the central zone of the phase

diagrams is now topologically trivial. In Figure 16A we show
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the results with θ = 0, i.e., no phase shift between the supercon-

ductors (Figure 14B). The electric field corresponds now to

60 mV per radius, and obviously the results do not depend on

the two orientation considered here if θ = 0.

Remarkably, with a finite phase shift, here θ = π/2, the phase

diagrams are different when the electric field is perpendicular,

Figure 16B, or parallel to the superconductors, Figure 16C, re-

spectively. In the perpendicular case the phase frontiers are

mostly changed in the central region, whereas in the parallel

case they are more affected in the low field part. In the first case

the corner states with phase θ are separated energetically from

those with zero phase, but they still interact when they are all

grouped within or close to the superconductor gap. In the

second case the states with the same superconductivity phase

are separated, and the frontiers tend to become parallel.

Conclusion
In this work we have studied the phase diagram of core–shell

nanowires coupled with multiple parent superconductors using

a simplified tight-binding parallel-chain model. We found

that applying a potential that breaks the (intrinsic) rotation

symmetry of the wire does not modify the topology of the phase

diagram, but removes the gapless superconducting phases that

populate certain regions of the phase diagram and partially

stabilizes the topological superconducting phase. Remarkably,

finite phase differences between the parent superconductors

have dramatic effects. First, the topology of the phase diagram

is modified. In particular the “crossing points” that characterize

the phase diagram in the presence of a uniform supercon-

ducting phase disappear and, upon increasing the Zeeman field,

we have an alternance of trivial and nontrivial phases for all

values of the chemical potential. More importantly, the low-

field topological phase becomes stable for a wide range of

chemical potentials and the minimum critical field  can have

arbitrarily low values. We conclude that by controlling the rela-

tive phases of the parent superconductors coupled to the wire

one can stabilize the topological superconducting phase that

hosts the zero-energy Majorana modes and one can obtain a

powerful additional experimental knob for exploring a rich

phase diagram and observing potentially interesting low-energy

physics. Given the potential experimental significance of these

conclusions, we believe that a more detailed and systematic in-

vestigation of these effects, which is beyond the goal of the

present work, would be warranted.

In particular, the effect of electrostatic interactions on the prop-

erties of the normal electronic states in core–shell nanowires

can be important. The effect of interactions should be calcu-

lated using a Schrödinger–Poisson scheme, e.g., like in [55], to

take into account both the interface potential between the core

and the shell, and the presence of the carrier density in the shell.

In addition, for Majorana devices, one should incorporate the

effects due to the presence of a parent superconductor, includ-

ing the work function difference between the superconductor

and the semiconductor, as well as the effects generated by gate-

induced electric fields. An efficient method for implementing

the Schrödinger–Poisson scheme in calculations using realistic

three-dimensional models of hybrid devices has been recently

proposed in [56]. We emphasize that, due to the corner and side

localization, the electron–electron interactions have nontrivial

effects [57], which can modify the proximity-induced supercon-

ductor gap and the phase diagram of the Majorana states [58-

65]. The calculation of the effective potential profile is also

essential for estimating the SOC in the nanowire. Therefore, ac-

counting for the electrostatic effects represents a key step

toward a quantitative theory of Majorana physics in core–shell

nanowires.
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Abstract
Background: A Majorana bound state is a superconducting quasiparticle that is the superposition of particle and hole with equal

amplitude. We propose a verification of this amplitude equality by analyzing the spatial Rabi oscillations of the quantum states of a

quantum dot that is tunneling-coupled to the Majorana bound states.

Results: We find two resonant Rabi driving energies that correspond to the energy splitting due to the coupling of two spatially

separated Majorana bound states. The resulting Rabi oscillating frequencies from these two different resonant driving energies are

identical for the Majorana bound states, while different for ordinary Andreev bound states. We further study a double-quantum-dot

setup and find a nonlocal quantum correlation between them that is mediated by two Majorana bound states. This nonlocal correla-

tion has the signature of additional resonant driving energies.

Conclusion: Our method can be used to distinguish between Majorana bound states and Andreev bound states. It also gives a

precise measurement of the energy splitting between two Majorana bound states.

1527

Introduction
Majorana bound states are exotic non-Abelian quasiparticles in

topological superconductors [1-26]. The study of Majorana

bound states has attracted tremendous interest recently because

they constitute topological parity qubits. These qubits are

defined by the degenerate ground states of topological super-

conductors, and therefore are protected by the superconducting

energy gap [4,15]. They have a long coherence time and are

resistant to local decoherence sources [2,15,18,19]. Most impor-

tantly, the topological qubits can be topologically manipulated

by braiding the Majorana bound states [4,15,17]. These topo-

logical braiding operations set the foundation for topological

quantum computation [4,15], despite the fact that they are insuf-

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
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ficient to construct universal quantum gates for the topological

qubit [15,17,19,20].

A unique feature of the Majorana bound states is the self-conju-

gateness. In the language of second quantization, a self-conju-

gate quasiparticle means that the superposition of the electron

creation operators and electron annihilation operators are equal

[2,15,16]. This equality is the essential difference between the

Majorana bound states and the ordinary Andreev bound states.

Another unique feature of Majorana bound states is the expo-

nential protection [17-19], which states that the splitting energy

between two Majorana bound states exponentially decays as the

distance between them increases. The experimental verification

of these two properties helps the identification of Majorana

bound states in real systems.

Majorana bound states have been theoretically proposed in

several systems [5,6,9,13,20], while the experiments concen-

trate on semiconductors with spin–orbit coupling and the super-

conducting gap that is induced by the superconducting prox-

imity effect [19,21,24,25]. One promising candidate is the

hybrid system of a spin–orbit-coupling nanowire and a conven-

tional superconductor. Robust zero-bias conductance peak was

first reported in this system, which originates from the self-

conjugate nature of Majorana bound states and therefore was

wildly recognized as a signature. An exotic fractional Josephson

effect was also studied in the nanowire Josephson junctions,

where novel Shapiro steps and Josephson radiations have been

reported. Recently, the Coulomb blockade spectroscopy was

exploited on finite-size nanowire segments that form nanowire

islands with two Majorana bound states possibly existing at the

two ends of the island. The splitting energy between two Majo-

rana bound states is found to be decreasing exponentially when

the length of the island increases [24]. This exponential protec-

tion of zero-energy Majorana bound states stirs new excitement

in pursuing Majorana bound states.

Quantum dot has been proved to be a good probe to study the

Majorana bound states [3,7,27-38]. The quantum dots are zero-

dimensional systems that have controllable discrete energy

levels. The Rabi oscillation, a fundamental quantum phenome-

non in two-level quantum systems, may occur between the

states of the quantum dot when the quantum dot is periodically

modulated. In particular, the spatial Rabi oscillation between

two quantum dots has been proven to be useful for single-elec-

tron pumping. An attractive idea is to exploit the spatial Rabi

oscillation between the quantum dots and the Majorana bound

states [29] and to investigate the self-conjugateness and expo-

nential protection of Majorana bound states. In recent experi-

ments, a hybrid structure of a quantum dot and a one-dimen-

sional topological superconductor nanowire has been realized

[36]. This system attracts theoretical interest [7,37]. In this

context, it is interesting to study the spatial Rabi oscillation be-

tween the quantum dot and the topological nanowire.

In this work, we study the spatial Rabi oscillations between

quantum dots and a Majorana island. This system involves two

Majorana bound states that have an exponentially protected

small splitting energy. As shown in Figure 1a, one of the Majo-

rana bound states is coupled to the quantum dot with a single

electron tunneling through a potential barrier. The barrier is pro-

duced by a voltage gate, which is implemented between the

quantum dot and the Majorana island. If an ac voltage is applied

to the gate, the tunneling strength between the quantum dot and

the Majorana bound states will be driven periodically [39]. We

show that there are two resonant driving energies that induce

coherent spatial Rabi oscillations between the quantum dot and

the island. The difference between the two driving energies is

proportional to the exponentially protected splitting energy be-

tween two Majorana bound states. More importantly, the Rabi

frequencies connected to the two different resonant driving

energies are identical, which is a result of the self-conjugate-

ness of the Majorana bound states. For comparison, we show

the results when the Majorana bound state is replaced by an

Andreev bound state as shown in Figure 1b. We find that the

two Rabi frequencies at the different resonant driving energies

are now different. We also investigate the setup with two quan-

tum dots at each side of the island and calculate the resonant

driving energies for spatial Rabi oscillation. We show that the

two quantum dots exhibit nonlocal correlations when coupled

with Majorana bound states while the two dots have no correla-

tion when coupled with Andreev bound states, since two Majo-

rana bound states can form one single fermionic level while two

Andreev bound states are two distinct fermionic levels.

Figure 1: Schematics of a quantum dot tunneling-coupled to a nano-
wire island with (a) Majorana bound states, and (b) an Andreev bound
state. The Andreev bound state has a small excitation energy δ, which
is similar to the splitting energy between two Majorana bound states.
The effective coupling between the quantum dot and the Andreev
bound state has different electron and hole components Tμ and Tν,
due to the different electron and hole wave functions of the Andreev
bound state. In contrary, the effective coupling between the quantum
dot and the Majorana bound state has identical electron and hole com-
ponent T, due to the self-conjugateness of the Majorana bound states.
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Results and Discussion
Model
The hybrid system schematically illustrated in Figure 1 consists

of two parts, a quantum dot and a nanowire island, where Majo-

rana or Andreev bound states are present at the ends of the

island. Let us first consider the model for the quantum dot.

Realistic topological superconducting systems usually involve a

large Zeeman field, which in principle should break the spin

degeneracy and split the two spin-dependent levels with the

Zeeman energy. Therefore, it is reasonable to consider only

one-spin direction. Meanwhile, we consider a large Coulomb

blockade regime for the quantum dot, which corresponds to a

large Coulomb interaction. For this regime, additional electron

hopping to the quantum dot requires a large Coulomb energy,

which effectively reduces the quantum dot to only one relevant

energy level. The Hamiltonian of a minimal model for the quan-

tum dot is [3,7,27,38],

(1)

where ε is the excitation energy for the single energy level of

the quantum dot and d† represents the creation operator on the

energy level.

The Majorana island consists of a one-dimensional topological

superconductor such as a nanowire–superconductor hybrid

structure and a ferromagnetic chain, with zero-energy Majo-

rana bound states at the ends of the system. The wave functions

of the two Majorana bound states overlap with each other, in-

ducing an energy splitting that exponentially decays as the

length of the island increases. The low-energy physics of the

island can be described by an effective Hamiltonian [2,3],

(2)

where and γM and γM′ represent the two Majorana bound states,

and δ represents the exponentially protected splitting energy.

The quantum dot is coupled to one of the Majorana bound states

by electron tunneling through a potential barrier between the

dot and the Majorana island. This coupling can be described by

a tunneling Hamiltonian,

(3)

where T is the tunneling strength that is taken as a real number

for simplicity. Here we consider an oscillating tunneling

strength T = T0 + 2T1cosωt, with T0 being the static tunneling

strength, T1 the oscillating tunneling strength, and ω the oscil-

lating frequency for the tunneling strength. It can be produced

by an ac gate voltage controlling the tunneling barrier [39].

When the driving frequency is at resonance, this oscillating

tunneling strength can induce a Rabi oscillation on the quantum

dot.

We write out the matrix form for the total Hamiltonian

HM = Hd + Hδ + HT. We first define a new fermionic operator

f† = (γM − iγM′)/2, which leads to

(4)

Then we take the four eigenstates of the fermionic operators

, , , and  as the basis states of the

Hilbert space, and express the Hamiltonian in this basis explic-

itly,

(5)

This matrix is block diagonal due to the parity conservation of

the total system. We notice that the upper left and the lower

right 2 × 2 blocks have the same off-diagonal elements but dif-

ferent diagonal elements.

Now we consider the scenario that the nanowire island has an

Andreev bound state at the end instead of Majorana bound

states. From the mean-field Bogoliubov–de Gennes approach,

the general form for Andreev bound states is the quantum

superposition of electron and hole wave function, which in the

second quantization form writes as,

(6)

where c†(r) is the creation operator for the electron, μ and ν are

the electron and hole wave functions. For the sake simplicity

they are real numbers and the factor of 1/2 for describing super-

conducting quasiparticles is absorbed into μ and ν. We assume

the simplest wave function of delta equations since the Andreev

bound state is extremely localized at the end of the wire. Then

the Andreev operators can be written as . With

this in mind, we can now study the Hamiltonian of the system

of a quantum dot and an Andreev bound state. It can be written

as HA = Hd + HTa + Ha where the Hamiltonian for the Andreev

bound state, Ha, is
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(7)

with δ = δ′(|μ|2 − |ν|2). Due to the particle–hole symmetry of the

superconducting system, we can always obtain another Andreev

bound state by defining a new operator . This leads to

the excitation energy −δ, which accounts for the negative

energy excitations observed in experiments [17,37]. The tunnel-

ing Hamiltonian between the Andreev bound state and the

quantum dot is,

(8)

where we define Tμ = μT and Tν = νT. Now we can establish a

basis for HA with eigenstates , ,  and ,

and rewrite in the matrix form,

(9)

It looks similar to Equation 5 but with one critical difference:

The off-diagonal terms in the upper left block and the lower

right block are now different because they contain electron and

hole wave functions, which are different for Andreev bound

states. We note that the Andreev bound state may have equiva-

lent particle and hole components (u↑ = v↑) for some spin direc-

tions. For this case, the matrices in Equation 5 and Equation 9

are identical if the energy level of the quantum dot is in the

same direction. However, the spin direction of the quantum

level on the dot can be reversed by inverting the Zeeman field.

Then the matrix for the Andreev bound state contains the elec-

tron and hole wave functions in the reverse spin direction and

must be different.

Spatial Rabi oscillations
Now we are ready to consider the spacial Rabi oscillations

where an electron oscillates between the quantum dot and the

bound states. For this purpose we solve the Schrödinger equa-

tion . The Hamiltonian is periodic in time,

therefore the equation is not exactly solvable. To obtain the

Rabi oscillations, we need to study the transition probability

from one state to the other under this time periodic Hamil-

tonian. We take advantage of the Floquet theory, which

states that the solution of the Schrödinger equation for any time-

periodic Hamiltonian must satisfy Ψ(t) = ψ(t) e−iDt, with

ψ(t) = ψ(t + (2π/ω) a time-periodic function that has a Fourier

transformation . Let us first consider the

scenario of Majorana bound states where we can obtain a series

of secular equations by inserting the ansatz solution back into

the Schrödinger equation,

(10)

where l = 0, ±1, and the Fourier transformed components of the

Hamiltonian Hl are

(11)

Now the problem of solving a time-dependent Schrödinger

equation is transformed to a problem of solving a set of time-in-

dependent secular equations [40]. Since ψn is a vector with two

components, special care is needed when trying to solve the

secular equations. They should be rewritten as

with α,β = 0, 1, 2, 3. Then, the secular equations can be viewed

as the eigenproblem for the infinite dimensional Floquet Hamil-

tonian [40],

(12)

In this Floquet formalism, the transition probability between

any two states is written as

(13)
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which could be calculated once we solve the eigenproblem for

the Floquet Hamiltonian.

In the Floquet Hamiltonian, the off-diagonal elements are be-

tween the nearest blocks. For the zero-order perturbation, we

first consider the transition between  and . Two

cases are studied: α = 0 with β = 1 and α = 2 with β = 3. Then

we can extract a 4 × 4 matrix,

(14)

which of course can be divided into two relevant 2 × 2 matrices,

(15)

We can also include the second-order perturbation, which

slightly alters the diagonal elements of the 2 × 2 matrix,

(16)

where

and

Now the transition probability is clear. Starting from an initial

state

we would have a Rabi oscillation for

(17)

with

or for

(18)

with

Clearly, there are Rabi oscillations at with two resonant driving

energies at

However, for both resonant driving energies, the Rabi

frequency is the same ωr = ωr′ = T1. This is not a coincidence,

but is a result of the self-conjugateness of the Majorana bound

states.

Now we consider the scenario of Andreev bound states. With

the same Floquet approach, we can obtain the effective Floquet

Hamiltonians,

(19)



Beilstein J. Nanotechnol. 2018, 9, 1527–1535.

1532

where

and

when we set T0 = 0. Clearly, we also have two resonant driving

energies. However, now we have different Rabi frequencies for

these two resonant driving energies, ωr = νT1 and −ωr′ = μT1,

which are given by solving the Floquet Hamiltonians in Equa-

tion 19. The difference between the Rabi frequencies comes

from different particle and hole wave functions, μ and ν, for the

Andreev bound states.

We present numerical simulations for the hybrid system in

Figure 2. First, we show the largest oscillation amplitude on the

quantum dot as a function of the driving energy ω in Figure 2a,

where the scenario for Majorana bound states and for Andreev

bound states present the same result. The two peaks represent

the two resonant driving energies. For the Majorana bound

state, the energy difference between these two peaks is propor-

tional to the splitting energy between the two Majorana bound

states at the ends of the island. Since the measurement of Rabi

oscillation is much more accurate than transport measurements,

the resonant driving energy provides a precise method to

measure the exponential decay of the splitting energy. The Rabi

oscillations of the occupation state of the quantum dot for Majo-

rana and Andreev bound states are presented in Figure 2b. We

find that the Rabi frequencies of the Majorana bound state are

identical as predicted by the analytic results based on the

Floquet theory. For comparison, we also present the Rabi

frequencies for the Andreev bound state. The Rabi frequencies

are different, reflecting the inequality of the electron and hole

components for the Andreev bound state.

The results presented in Figure 2 are the central results of our

work. We emphasize that these theoretical results can be

measured with existing experimental techniques. Our calcula-

tion gives the Rabi oscillations of the occupation states of the

quantum dot, which can be measured by probing the electron

occupation on the quantum dot. The measurement of the elec-

tron occupation state of the quantum dot has been achieved with

the single-electron transistor [27,41], which is a routine tech-

nique in the study of charge qubits based on quantum dots [42].

Finally, we note that our results are based on the minimal

models for the quantum dot, the Majorana bound state and the

Figure 2: Numerical simulations of the Rabi oscillations. (a) The
maximum Rabi oscillation amplitude measured by the occupation prob-
ability of the quantum dot, as a function of the driving energy, where
the two peaks marks the resonant driving energies. (b) The Rabi oscil-
lation for the two resonant driving energies for the Majorana bound
state (upper panel) and the Andreev bound state (lower panel). We
see that the Rabi frequencies are identical for the Majorana bound
state while they are different for the Andreev bound state. Parameters
are taken as ε ≡ J, T0 = 0, δ = 0.1J, T1 = 0.01J, δ = 0.2J, μT1 = 0.008J
and νT1 = 0.006J with the initial state .

Andreev bound state. It is certainly helpful to consider more

sophisticated models for the quantum dot by including the

Zeeman energy and Coulomb energy explicitly, and more real-

istic models for the Majorana bound state and Andreev bound

state by exploiting the Bogoliubov–de Gennes Hamiltonian.

However, these works are beyond the scope of our current work

and belong to our plan of future works.

Correlation between quantum dots through
Majorana islands
Now we investigate the setup with two quantum dots on the two

sides of a nanowire island, as shown in Figure 3. In this setup,

nonlocal entanglement between quantum dots mediated by

Majorana bound states has been discussed [28]. It seems logical

to consider how this nonlocal entanglement influences the Rabi

oscillations. First, each quantum dot certainly has Rabi oscilla-

tions with a Majorana bound state or an Andreev bound state at

each end. However, we will show a more interesting correla-

tion between quantum dots mediated by two Majorana bound

states. This correlation does not occur for the Andreev bound

state. Let us first establish the Hamiltonian for the proposed

setup. The two quantum dots have the Hamiltonian

(20)
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where ε1,2 are the energy for quantum dot levels, and  are

the creation operators on the quantum dot levels.

Figure 3: Schematics of two quantum dots coupling with the nanowire
island with (a) two Majorana bound states and (b) two Andreev bound
states. The two Majorana bound states form a single energy level,
while the Andreev bound states form two energy levels.

The Hamiltonian for the Majorana bound states is the same as

in the previous section, which could be described by a fermi-

onic operator f† = (γM − iγM′)/2. The two quantum dots are

coupled with the Majorana bound states through the tunneling

Hamiltonian

(21)

where T1,2 are the tunneling strength between the left and the

right pair of quantum dot and Majorana bound state in the form

of T1,2 = 2T′1,2cosω1,2t. We can explicitly write down the total

Hamiltonian in the matrix form by defining basis functions

, ,  ,  ,  ,  ,  

and , where  is the vacuum state. We arrive at an

8 × 8 matrix that is block diagonal because the total fermionic

parity of the system is conserved. For simplify, we take the

even total parity, and get a 4 × 4 matrix,

(22)

Now let us look at the quantum dots coupling with two Andreev

bound states at the end of the nanowire island. Since Andreev

bound states are eigenstates of superconductors, there are, in

principle, four energy levels in the entire system. The Hamil-

tonian of the system cam be written as

(23)

where i represents the left/right side of each operator with

Tiμ = μTi, Tiν = νTi. For this case, the system can be divided into

Figure 4: The maximum occupation probability of the left quantum dot
for (a) Majorana bound states and (b) Andreev bound states. Panels
(c) and (d) give the detailed oscillation as a function of the time at two
specific parameters marked as circles on (a).

left and right segments, which are uncoupled from each other.

For simplicity, we take the even parity of both sides, where the

basis states are chosen as , ,  and

. Then the Hamiltonian can be reformed to a four by

four matrix:

(24)

We find that this matrix is very similar to the matrix of quan-

tum dots and Majorana bound states. However, there is the key

distinction that the left quantum dot and the right quantum dot

should be entirely uncoupled. We note that this matrix is differ-

ent from the one shown in Equation 22 even if μ = ν, since the

two Andreev bound states correspond to two superconducting

quasiparticles with a 4 × 4 Hilbert subspace, while the two

Majorana bound states gives a single superconducting quasipar-

ticle with a 2 × 2 Hilbert subspace.

We numerically simulate the oscillations for the Majorana

bound states scenario and illustrate the maximum oscillation

amplitude for the occupation state of the left quantum dot in

Figure 4a. We find three lines of resonant driving energy.

The two vertical lines represent the resonant Rabi oscillation at

ω1 = ε1 ± 2δ, with a typical result shown in Figure 4c. They are

identical to the case of the single quantum dot and represents

the Rabi oscillation between the left quantum dot and the two

Majorana bound states, while leaving the right quantum dot
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uninvolved. There is one extra line that represents the resonant

Rabi driving energy at ω1 + ω2 = ε1 + ε2. This resonant energy

involves both quantum dots, and therefore would be coming

from the nonlocal entanglement of the quantum dots. We

present a typical Rabi oscillation in Figure 4d. It is the higher-

order oscillations between the states  and , namely a

charge oscillation between the left and right quantum dots. This

is a nonlocal coherent charge transfer process between the

quantum dots mediated by the two Majorana bound states. For

comparison, we illustrate the results for quantum dot occupa-

tion mediated through Andreev bound states. We find that the

Rabi oscillations at ω1 ≈ ε1 ± δ still exist, however, the higher-

order oscillations disappear. This can be explained by the fact

that left and the right part of the setup are uncoupled. The extra

resonant driving energy for Majorana bound states is a result of

the nonlocal quantum dot correlation and can be used as a

signature for Majorana bound states.

Conclusion
We studied the spatial Rabi oscillation between quantum dots

and Majorana bound states in a topological superconducting

island. We demonstrate that the coupling energy between Majo-

rana bound states can be detected by investigating the resonant

driving energy for the Rabi oscillation. We also show that the

Rabi oscillating frequency carries the information of the elec-

tron and hole components, therefore can be used to differen-

tiate Majorana bound states and Andreev bound states. At the

two resonant driving energies, we find identical Rabi frequen-

cies for Majorana bound states and different Rabi frequencies

for Andreev bound states. We further study the case of two

quantum dots coupled through the island and show that the

Majorana bound states are able to create correlated higher-order

Rabi oscillations on the quantum dots.
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Abstract
We show conceptually that the edge of a two-dimensional topological insulator can be used to construct a solid-state Stern–Gerlach

spin splitter. By threading such a Stern–Gerlach apparatus with a magnetic flux, Aharanov–Bohm-like interference effects are intro-

duced. Using ferromagnetic leads, the setup can be used to both measure magnetic flux and as a spintronics switch. With normal

metallic leads a switchable spintronics NOT-gate can be implemented. Furthermore, we show that a sequence of such devices can

be used to construct a single-qubit SU(2)-gate, one of the two gates required for a universal quantum computer. The field sensi-

tivity, or switching field, b, is related to the characteristic size of the device, r, through b = h/(2πqr2), with q being the unit of elec-

tric charge.

1558

Introduction
Two famous examples of the fundamental difference between

quantum mechanical and classical particles are provided

through the Stern–Gerlach (SG) experiment [1] and the

Aharanov–Bohm (AB) effect [2]. The SG experiment demon-

strates the peculiar behavior of the quantum mechanical spin,

teaching us that for any chosen axis the spin can be pointing

either up or down. Even more nonintuitive, the spin can also be

in a superposition of these two states, and thereby split in a SG

apparatus to travel along different paths [1]. The AB effect, on

the other hand, shows that the introduction of a magnetic vector

potential has important effects on the phase of the wave func-

tion. This is not merely a mathematical formality, but has

measurable consequences in interference measurements. When

a particle travels along two different paths that enclose a mag-

netic flux, it picks up different phases along the two paths, even

though the paths do not pass through the magnetic flux [2].

A topological insulator is a material with insulating bulk, but

with topologically protected helical edge states. Here we show

that it is possible to construct a solid state SG apparatus, or spin

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:kristofer.bjornson@physics.uu.se
https://doi.org/10.3762%2Fbjnano.9.147
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splitter, using the edge states in a two-dimensional topological

insulator (2D TI) [3-13]. The device consists of a small hole

drilled in the 2D TI, contacted by two leads. By threading a

magnetic flux through the hole an AB-like effect gives rise to

important interference effects, which allows for precise manipu-

lation of spin currents, as has already been noted in [14]. While

the ordinary AB effect arises because of interference in a single

complex number, the effects achieved here relies on modifying

the relative phase between the up and down components of the

spin. Thus, the effects we describe here can be classified as a

SU(2)-AB effects, while the ordinary situation corresponds to a

U(1)-AB effect.

While the AB effect recently has attracted some attention in 3D

TI [15-19], we here outline the concept for several concrete and

different applications of the SU(2)-AB effect in a 2D TI. More

specifically, we find that if using ferromagnetic leads, the

device can be used for sensitive measurements of magnetic field

strengths. The same setup can also be used to implement a spin-

tronic switch. Instead using normal metallic leads, we show that

a switchable spintronics NOT-gate can be constructed. Finally,

we also demonstrate how a sequential setup of normal-lead

solid-state SG spin splitters can be used to construct a single-

qubit SU(2)-gate, one of two gates required to construct a

universal quantum computer [20]. This also demonstrates the

full extent to which the effect is best thought of as a generaliza-

tion of the AB effect from U(1)-AB to SU(2)-AB.

Results
Setup
Consider the conceptual setup in Figure 1. The circular channel

around the hole forms an edge of the 2D TI and therefore hosts

helical edge states. We assume for simplicity that the spin-po-

larization axis is perpendicular to the plane of the TI. The

Hamiltonian describing the two counter-propagating edge chan-

nels is then simply given by

where arrows indicate the spin direction. In the ground state no

net current is carried from one side to the other. Since the

system is symmetric under a rotation of π around the z-axis or-

thogonal to the TI, even persistent currents are prevented. How-

ever, if a voltage is applied across the circuit, electrons can start

to flow from one side to the other, say from the left to the right.

This current will be proportional to the transfer matrix of the

states that are occupied at the left side, but unoccupied on the

right. We therefore begin by calculating this transfer matrix.

Figure 1: A hole drilled in a 2D TI creates two edge channels (orange).
Leads (grey) are attached on each side of the hole, and a bias voltage
is applied across the circuit. The transport properties of the device can
be altered by threading a magnetic flux (blue arrow) through the hole,
as well as by choosing either ferromagnetic or normal leads. The circu-
lar shape is not essential, but is used to simplify calculations.

When considering processes that transfers electrons from the

left to the right, we can, because of the helicity of the edge

states, restrict ourselves to up-spins along the upper edge, and

down-spins along the lower edge. Further, we introduce the co-

ordinate x1 = r(2π − θ) and x2 = rθ along the upper and lower

edges, respectively. The eigenvalue equations along the two

edges are then

and the corresponding eigenstates can be written as

We now thread a magnetic flux of magnetic field strength

B through the hole. To describe this we choose the vector

potential , which translates into 

and  in the new (x1, x2)-coordinates. The addition of

this vector potential acts on the phase of the eigenstates accord-

ing to

where q is the unit of electric charge. It is therefore clear

that the transfer matrix that describes the transport of spins from
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the left side, x1 = x2 = 0, to the right side, x1 = x2 = rπ, is given

by

(1)

We here note that under a gauge transformation A→A + A′,

where A′ satisfies , the transfer matrix trans-

forms as

We have confirmed that this additional phase drops out of all

physical quantities below, proving the gauge invariance of our

results, and we can therefore set A′ = 0. Similarly, the overall

phase in the above equation will drop out of all physical quanti-

ties. This also justifies us in not having specified the chemical

potential. Because, as long as the spectrum is described by the

same edge Hamiltonian, the only role of the chemical potential

is to determine around which momentum pf the relevant excita-

tions are located.

Transfer between lead and edge channels
The total transfer matrix for the system will not only depend on

the transfer matrix that describes the motion around the hole,

but also on the matrices that describe the transfer processes be-

tween the leads and the circular edge. We will here assume that

this process preserves phase coherence between the states in the

leads and the TI edge states, and that it is described by a single

tunneling parameter t, which we for now set to t = 1 to indicate

perfect transmission between lead and edge. That is, the trans-

mission is described by the identity matrix, and therefore con-

tributes trivially to the total transfer matrix. However, we will in

what follows be interested in tilting the TI by an angle φ rela-

tive to the quantization axis of the leads. It is therefore neces-

sary to also let the total transfer matrix encode a change of basis

between the leads and the TI. For this purpose we define two

sets of coordinate axes, the laboratory axes x,y,z, and the TI

axes x′,y′,z′. We choose to describe the electrons in the leads

with the coordinates in the laboratory frame, while the edge

states in the TI are described by the primed coordinates. It is

clear that Equation 1 refers to the transfer of states in the primed

basis. In particular, we choose the x,x′-axes along the direction

of motion of the electrons through the circuit, while the z,z′-axes

are chosen such that they coincide when φ = 0 and z′ is always

perpendicular to the TI. Explicitly, the x,y,z- and x′,y′,z′-coordi-

nates are related through

Using that spins transform according to

and simultaneously performing a gauge transformation

G = diag(1, i) to simplify the expressions below, the change of

basis from the x,y,z-basis to the x′,y′,z′-basis for the spins is

given by

(2)

We have here used L and R to denote the transformations from

the unprimed to the primed coordinates, and the primed to the

unprimed coordinates, respectively. The symbols L and R are

chosen since they are applied at the left and right end of the

system, respectively. With these definitions we are now ready

to write down the complete transfer matrix for the system

Here we have made explicit the dependence of T on the parame-

ters B and r on Equation 1, and of φ on Equation 2. The main

advantage of introducing the L and R matrices is that they allow

us to work in the laboratory frame alone. To calculate the prob-

ability that an incoming spin σ in the left lead is transferred to a

spin λ in the right lead, we now simply need to calculate the

square of the corresponding matrix element

Measuring magnetic flux
As a first example of a concrete application, we consider a

system with fully spin-polarized ferromagnetic leads only con-

taining electrons with spin-up. Further, the SG spin splitter is

assumed to be oriented at an angle φ = π/2, which forces the in-

coming spins to split equally into both channels. Because the

leads only conduct spin-up electrons, the only relevant matrix



Beilstein J. Nanotechnol. 2018, 9, 1558–1563.

1561

Figure 2: Three solid-state SG spin splitters in series, with the middle device at an angle π/2 relative to the other two.

element for the scattering matrix is

The conductance is therefore given by

(3)

It is clear that the very strong dependence of the current on the

magnetic flux Br2π makes this setup ideal for measuring mag-

netic field strength, as a potential alternative to supercon-

ducting quantum interference devices (SQUIDs). The measure-

ment resolution is directly set by the radius of the hole in the TI.

This is of special interest because it provides a potential route

for high-resolution magnetic field measurements even at room

temperatures [21,22].

Logic spintronics gates
Next we note that the configuration in the previous section can

also be used as a spintronics switch, with voltage used to

encode 0 and 1. The two leads can be used as source and drain,

while the magnetic field is used as the gate. From Equation 3 it

is clear that a magnetic field strength  corre-

sponds to “on” and “off” states for n even and odd, respectively,

and we therefore define the magnetic switching quantum

(4)

An alternative way to encode 1 and 0 is to use the currents of

up- and down-spins, respectively. This requires normal leads

through which both up- and down-spins can be transported. We

therefore consider the same configuration, but now evaluate all

four components of the transfer matrix T(B, r, π/2):

Similarly to the expressions above, the square of the transfer

matrices gives the transfer probability of the spin-polarized

currents. In particular, the off-diagonal matrix elements

 converts between up and down spin currents.

Therefore, the device relates the ingoing and outgoing spin

currents to each other through

Considering once again the special case , with n

being an integer, the currents transforms according to

This means that the device can be switched between a normal

lead and a NOT-gate, simply by changing B by the switching

quantum in Equation 4.

Quantum computer gate
Having seen how a TI SG apparatus can be used to construct

classical logic gates for spintronics, we finally turn to possible

applications in quantum computing. It has been shown that a

universal quantum computer can be built using only two-qubit

CNOT-gates and single-qubit SU(2)-gates [20]. We here show
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that a SG TI spin-splitter provides a route for implementing the

latter of these two gates.

For this purpose we consider three sequential spin-splitters

connected by normal leads. The three devices are oriented as in

Figure 2, with the middle device oriented at an angle φ2 = π/2,

while the first and the last spin splitter are at an angle

φ1 = φ3 = 0. The total transfer matrix for the complete system is

then given by

When evaluated, this expression can be written as

(5)

where

The six physical parameters Bi, ri are more than sufficient to

make the four parameters α, β1, β2 and β3 independent of each

other. Moreover, when all these four parameters can be chosen

independently, it is possible to express any U(2)-matrix using

Equation 5 [20]. Thus, it is possible to implement any unitary

single-qubit gate, and in particular any SU(2)-gate, through the

use of three sequential solid-state SG spin splitters. In fact, the

overall U(1)-phase provided by the parameter α can be ignored

for reasons similar to those for which the U(1)-phase provided

by the gauge transformation A→A + A′ can be ignored. This

phase would only be relevant if the incoming electron is further

split up into one part passing through the device, and one part

moving through another path joining only at the far right

outgoing lead.

In light of these results it is useful to think of the devices dis-

cussed here as exhibiting an SU(2)-AB effect. While the ordi-

nary AB effect arises as a consequence of interference in a

single U(1)-phase, these devices rely on a generalized SU(2)-

interference effect in the relative phase and amplitude of the up-

and down-components of the spin. To be able to create an arbi-

trary SU(2)-transformation, a sequence of three devices is

needed, while an individual spin splitter gives rise to a subset of

such SU(2)-transformations. Finally, we note that in this calcu-

lation we have omitted transfer matrices describing the propaga-

tion through the leads. We are justified in doing so because

these would be proportional to the identity matrix and therefore

only contribute to the irrelevant α phase.

Discussion
We would like to end with a few comments on some of the

assumptions made when deriving the above results. First of all,

the tunneling parameter t, which otherwise would have multi-

plied the L and R matrices was set to t = 1. It is clear that the

zero-th order correction to deviations from t = 1 is to include the

factor t2 in front of all transmission coefficients, which shows

up as t4 in the conductivity. The higher-order corrections would

come from particles that are reflected and travel an additional

time around the loop. While such terms can introduce correc-

tions to the interference pattern for intermediate field strengths,

they would not affect the result at multiples of the switching

quantum in Equation 4. The reason for this is that additional

circuits around the loop will only affect the relative phase be-

tween the up- and down-spins by multiples of 2π. Such interfer-

ence effect could also play a role for t = 1 when ferromagnetic

leads are used, because the down spins at the right edge will be

completely reflected. In a standard Landauer treatment such re-

flected terms would have been taken into account through

reflection matrices in addition to the transmission matrix we

have derived, as was for example done in [14]. However, a 2D

TI is very special in this regard, because the reflected spins

travel back along the opposite edge from which it traveled

toward the exit lead. Since we are only interested in forward

propagation of up spins along one edge, and down spins along

the other, it is possible to add additional floating ferromagnetic

leads with opposite spin polarization to the forward propa-

gating modes to the two edges. This allows for reflected spins to

escape without affecting the forward propagating spins and

thereby we can suppress higher-order corrections.

We also mention that although the setup in Figure 2 might seem

difficult to realize in practice, the focus of this work is to

provide a conceptual setup and an explanation of the phenome-

non itself. In fact, the only reason the middle spin splitter is

tilted at an angle π/2 is to make its edge states have their spin-

polarization perpendicular to those of the other two. In practice

it would therefore be possible to have all three devices in the

same plane, if it is constructed out of two different types of 2D

TIs with perpendicular spin-polarization axes.

Conclusion
We have shown that the helical edge states of a 2D TI can be

utilized to construct a solid-state SG spin splitter that when

threaded by a magnetic flux gives rise to a generalized SU(2)-
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AB interference effect. With two ferromagnetic leads, the

device can be used to accurately measure magnetic flux, as well

as be used as a magnetic field gated spintronics switch. Instead

by using normal leads, a switchable spintronics NOT-gate can

be implemented, or when using three devices connected in se-

quence, a SU(2)-gate for quantum computing is achieved.
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Abstract
We present a theoretical analysis of the equilibrium Josephson current-phase relation in hybrid devices made of conventional

s-wave spin-singlet superconductors (S) and topological superconductor (TS) wires featuring Majorana end states. Using Green’s

function techniques, the topological superconductor is alternatively described by the low-energy continuum limit of a Kitaev chain

or by a more microscopic spinful nanowire model. We show that for the simplest S–TS tunnel junction, only the s-wave pairing

correlations in a spinful TS nanowire model can generate a Josephson effect. The critical current is much smaller in the topological

regime and exhibits a kink-like dependence on the Zeeman field along the wire. When a correlated quantum dot (QD) in the mag-

netic regime is present in the junction region, however, the Josephson current becomes finite also in the deep topological phase as

shown for the cotunneling regime and by a mean-field analysis. Remarkably, we find that the S–QD–TS setup can support φ0-junc-

tion behavior, where a finite supercurrent flows at vanishing phase difference. Finally, we also address a multi-terminal S–TS–S ge-

ometry, where the TS wire acts as tunable parity switch on the Andreev bound states in a superconducting atomic contact.

1659

Introduction
The physics of topological superconductors (TSs) is being

vigorously explored at present. After Kitaev [1] showed that a

one-dimensional (1D) spinless fermionic lattice model with

nearest-neighbor p-wave pairing (‘Kitaev chain’) features a

topologically nontrivial phase with Majorana bound states

(MBSs) at open boundaries, references [2,3] have pointed out

that the physics of the Kitaev chain could be realized in

spin–orbit coupled nanowires with a magnetic Zeeman field and

in the proximity to a nearby s-wave superconductor. The spinful

nanowire model of references [2,3] indeed features p-wave

pairing correlations for appropriately chosen model parameters.

In addition, it also contains s-wave pairing correlations which

become gradually smaller as one moves into the deep topolog-

ical regime. Topologically nontrivial hybrid semiconductor

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
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nanowire devices are of considerable interest in the context of

quantum information processing [4-12], and they may also be

designed in two-dimensional layouts by means of gate lithogra-

phy techniques. Over the last few years, several experiments

employing such platforms have provided mounting evidence for

MBSs, e.g., from zero-bias conductance peaks in N–TS junc-

tions (where N stands for a normal-conducting lead) and via

signatures of the 4π-periodic Josephson effect in TS–TS junc-

tions [13-25]. Related MBS phenomena have been reported for

other material platforms as well [26-30], and most of the results

reported below also apply to those settings. Available materials

are often of sufficiently high quality to meet the conditions for

ballistic transport, and we will therefore neglect disorder

effects.

In view of the large amount of published theoretical works on

the Josephson effect in such systems, let us first motivate the

present study. (For a more detailed discussion and references,

see below.) Our manuscript addresses the supercurrent flowing

in Josephson junctions with a magnetic impurity. By consid-

ering Josephson junctions between a topological supercon-

ductor and a non-topological superconductor, we naturally

extend previous works on Josephson junctions with a magnetic

impurity between two conventional superconductors, as well as

other works on Josephson junctions between topological and

non-topological superconductors but without a magnetic impu-

rity. In the simplest description, Josephson junctions between

topological and non-topological supeconductors carry no super-

current. Instead, a supercurrent can flow only with certain devi-

ations from the idealized model description. The presence of a

magnetic impurity in the junction is one of these deviations, and

this effect allows for novel signatures for the topological transi-

tion via the so-called φ0-behavior and/or through the kink-like

dependence of the critical current on a Zeeman field driving the

transition. We consider two different geometries in various

regimes, e.g., the cotunneling regime where a controlled pertur-

bation theory is possible, and a mean-field description of the

stronger-coupling regime. We study both idealized Hamilto-

nians (allowing for analytical progress) as well as more real-

istic models for the superconductors.

To be more specific, we address the equilibrium current–phase

relation (CPR) in different setups involving both conventional

s-wave BCS superconductors (‘S’ leads) and TS wires, see

Figure 1 for a schematic illustration. In general, the CPR is

closely related to the Andreev bound state (ABS) spectrum of

the system. For S–TS junctions with the TS wire deep in the

topological phase such that it can be modeled by a Kitaev chain,

the supercurrent vanishes identically [31]. This supercurrent

blockade can be traced back to the different (s/p-wave) pairing

symmetries for the S/TS leads, together with the fact that MBSs

have a definite spin polarization. For an early study of

Josephson currents between superconductors with different

(p/d) pairing symmetries, see also [32]. A related phenomenon

concerns Multiple Andreev Reflection (MAR) features in

nonequilibrium superconducting quantum transport at subgap

voltages [33-36]. Indeed, it has been established that MAR pro-

cesses are absent in S–TS junctions (with the TS wire in the

deep topological regime) such that only quasiparticle transport

above the gap is possible [37-44].

Figure 1: Schematic setups studied in this paper. a) S–QD–TS geom-
etry: S denotes a conventional s-wave BCS superconductor with order
parameter , and TS represents a topologically nontrivial super-
conducting wire with MBSs (shown as stars) and proximity-induced
order parameter . The interface contains a quantum dot (QD)
corresponding to an Anderson impurity, connected to the S/TS leads
by tunnel amplitudes λS/TS (light red). The QD is also exposed to a
local Zeeman field B. b) S–TS–S geometry: Two conventional super-
conductors (S1 and S2) with the same gap Δ and a TS wire with prox-
imity gap Δp form a trijunction. The order parameter phase of S1 (S2),

1 = /2 ( 2 = − /2), is taken relative to the phase of the TS wire, and
tunnel couplings λ1/2 connect S1/S2 to the TS wire. When the TS wire
is decoupled (λ1,2 = 0), the S–S junction becomes a standard SAC with
transparency  determined by the tunnel amplitude t0, see
Equation 42.

There are several ways to circumvent this supercurrent blockade

in S–TS junctions. (i) One possibility has been described in

[43]. For a trijunction formed by two TS wires and one S lead,

crossed Andreev reflections allow for the nonlocal splitting of

Cooper pairs in the S electrode involving both TS wires (or the

reverse process). In this way, an equilibrium supercurrent will

be generated unless the MBS spin polarization axes of both TS

wires are precisely aligned. (ii) Even for a simple S–TS junc-

tion, a finite Josephson current is expected when the TS wire is

modeled as spinful nanowire. This effect is due to the residual

s-wave pairing character of the spinful TS model [2,3]. Interest-

ingly, upon changing a control parameter, e.g., the bulk Zeeman

field, which drives the TS wire across the topological phase
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transition, we find that the critical current exhibits a kink-like

feature that is mainly caused by a suppression of the Andreev

state contribution in the topological phase. (iii) Yet another pos-

sibility is offered by junctions containing a magnetic impurity

in a local magnetic field. We here analyze the S–QD–TS setup

in Figure 1a in some detail, where a quantum dot (QD) is

present within the S–TS junction region. The QD is modeled as

an Anderson impurity [36], which is equivalent to a spin-1/2

quantum impurity over a wide parameter regime. Once spin

mixing is induced by the magnetic impurity and the local mag-

netic field, we predict that a finite Josephson current flows even

in the deep topological limit. In particular, in the cotunneling

regime, we find an anomalous Josephson effect with finite

supercurrent at vanishing phase difference (φ0-junction behav-

ior) [45-47], see also [48-51]. The 2π-periodic CPR found in

S–QD–TS junctions could thereby provide independent evi-

dence for MBSs via the anomalous Josephson effect. In addi-

tion, we compute the CPR within the mean-field approximation

in order to go beyond perturbation theory in the tunnel

couplings connecting the QD to the superconducting leads. Our

mean-field analysis shows that the φ0-junction behavior is a

generic feature for S–QD–TS devices in the topological regime

which is not limited to the cotunneling regime.

In the final part of the paper, we turn to the three-terminal

S–TS–S setup shown in Figure 1b, where the S–S junction by

itself (with the TS wire decoupled) represents a standard super-

conducting atomic contact (SAC) with variable transparency of

the weak link. Recent experiments have demonstrated that the

many-body ABS configurations of a SAC can be probed and

manipulated to high accuracy by microwave spectroscopy [52-

54]. When the TS wire is coupled to the S–S junction, see

Figure 1b, the Majorana end state acts as a parity switch on the

ABS system of the SAC. This effect allows for additional func-

tionalities in Andreev spectroscopy. We note that similar ideas

have also been explored for TS–N–TS systems [55].

Results and Discussion
S–QD–TS junction
Model
Let us start with the case of an S–QD–TS junction, where an

interacting spin-degenerate single-level quantum dot (QD) is

sandwiched between a conventional s-wave superconductor (S)

and a topological superconductor (TS). This geometry is shown

in Figure 1a. The corresponding topologically trivial S–QD–S

problem has been studied in great detail over the past decades

both theoretically [56-63] and experimentally [64-69]. A main

motivation for those studies came from the fact that the QD can

be driven into the magnetic regime where it represents a spin-

1/2 impurity subject to Kondo screening by the leads. The

Kondo effect then competes against the superconducting bulk

gap and one encounters local quantum phase transitions. By

now, good agreement between experiment and theory has been

established. Rather than studying the fate of the Kondo effect in

the S–QD–TS setting of Figure 1a, we here pursue two more

modest goals. First, we shall discuss the cotunneling regime in

detail, where one can employ perturbation theory in the

dot–lead couplings. This regime exhibits π-junction behavior in

the S–QD–S case [56]. Second, in order to go beyond the cotun-

neling regime, we have performed a mean-field analysis similar

in spirit to earlier work for S–QD–S devices [57,58].

The Hamiltonian for the setup in Figure 1a is given by

(1)

where HS/TS and HQD describe the semi-infinite S/TS leads and

the isolated dot in between, respectively, and Htun refers to the

tunnel contacts. We often use units with e =  = kB = 1, and β =

1/T denotes inverse temperature. The QD is modeled as an

Anderson impurity [36], i.e., a single spin-degenerate level of

energy ε0 with repulsive on-site interaction energy U > 0,

(2)

where the QD occupation numbers are nσ =  dσ = 0,1, with

dot fermion operators dσ and  for spin σ. Using standard

Pauli matrices σx,y,z, we define

(3)

such that S/2 is a spin-1/2 operator. In the setup of Figure 1a,

we also take into account an external Zeeman field B = (Bx, By,

Bz) acting on the QD spin, where the units in Equation 2 include

gyromagnetic and Bohr magneton factors. The spinful nano-

wire proposal for TS wires [2,3] also requires a sufficiently

strong bulk Zeeman field oriented along the wire in order to

realize the topologically nontrivial phase, but for concreteness,

we here imagine the field B as independent local field coupled

only to the QD spin. One could use, e.g., a ferromagnetic grain

near the QD to generate it. This field here plays a crucial role

because for B = 0, the S+QD part is spin rotation [SU(2)]

invariant and the arguments of [31] then rule out a supercurrent

for TS wires in the deep topological regime. We show below

that unless B is inadvertently aligned with the MBS spin polari-

zation axis, spin mixing will indeed generate a supercurrent.

The S/TS leads are coupled to the QD via a tunneling Hamil-

tonian [70],
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(4)

where ψσ and ψ are boundary fermion fields representing the S

lead and the effectively spinless TS lead, respectively. For the S

lead, we assume the usual BCS model [62], where the operator

ψσ annihilates an electron with spin σ at the junction. The TS

wire will, for the moment, be described by the low-energy

Hamiltonian of a Kitaev chain in the deep topological phase

with chemical potential μ = 0 [1,5]. The corresponding fermion

operator ψ at the junction includes both the MBS contribution

and above-gap quasiparticles [40]. Without loss of generality,

we choose the unit vector  as the MBS spin polarization

direction and take real-valued tunnel amplitudes λS/TS, see

Figure 1a, using a gauge where the superconducting phase

difference  appears via the QD–TS tunneling term. These

tunnel amplitudes contain density-of-states factors for the

respective leads. The operator expression for the current

flowing through the system is then given by

(5)

We do not specify HS/TS in Equation 1 explicitly since within

the imaginary-time (τ) boundary Green’s function (bGF)

formalism [40] employed here, we only need to know the bGFs.

For the S lead with gap value Δ, the bGF has the Nambu matrix

form [40]

(6)

where the expectation value  refers to an isolated S lead, 

denotes time ordering, ω runs over fermionic Matsubara

frequencies, i.e., ω = 2π(n + 1/2)/β with integer n, and we define

Pauli (unity) matrices τx,y,z (τ0) in particle–hole space corre-

sponding to the Nambu spinor ΨS. Similarly, for a TS lead with

proximity-induced gap Δp, the low-energy limit of a Kitaev

chain yields the bGF [40]

(7)

The matrices τ0,x here act in the Nambu space defined by the

spinor ΨTS. Later on we will address how our results change

when the TS wire is modeled as spinful nanowire [2,3], where

the corresponding bGF has been specified in [43]. We empha-

size that the bGF (Equation 7) captures the effects of both the

MBS (via the 1/ω term) and of the above-gap continuum quasi-

particles (via the square root) [40,71].

In most of the following discussion, we will assume that U is

the dominant energy scale, with the single-particle level located

at ε0 ≈ − U/2. In that case, low-energy states with energy well

below U are restricted to the single occupancy sector,

(8)

and the QD degrees of freedom become equivalent to the spin-

1/2 operator S/2 in Equation 3. In this regime, the QD acts like

a magnetic impurity embedded in the S–TS junction. Using a

Schrieffer–Wolff transformation to project the full Hamiltonian

to the Hilbert subspace satisfying Equation 8, H → Heff, one

arrives at the effective low-energy Hamiltonian

(9)

with the interaction term

(10)

where S± = Sx ± iSy and δn =  − 1. Moreover,

 is the anticommutator of the composite bound-

ary fields

(11)

We note that Λ is real-valued and does not depend on . Due to

the constraint (Equation 8) on the dot occupation, the last two

terms in Equation 10 do not contribute to the system dynamics

and we obtain

(12)
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A formally exact expression for the partition function is then

given by

(13)

where  with  in Equation 9 and the

trace extends only over the Hilbert subspace corresponding to

Equation 8. We can equivalently write Equation 13 in the form

(14)

where F is the free energy. The Josephson current then follows

as I =(2e/ ) ∂ F, see Equation 5.

Cotunneling regime
We now address the CPR in the elastic cotunneling regime,

(15)

where perturbation theory in Hint is justified. We thus wish to

compute the free energy F( ) from Equation 14 to lowest

nontrivial order. With W0 = , the standard cumulant

expansion gives

(16)

By virtue of Wick’s theorem, time-ordered correlation func-

tions of the boundary operators (Equation 11) are now

expressed in terms of S/TS bGF matrix elements, see

Equation 6 and Equation 7,

(17)

and similarly

(18)

Next we observe that  As a consequence, the

-independent terms W0 and  in Equation 16 do not contrib-

ute to the Josephson current. The leading contribution is then of

second order in Hint,

(19)

with  in Equation 12 and the small dimensionless parame-

ter

(20)

From Equation 6 and Equation 7, the bGF matrix elements

needed in Equation 19 follow as

(21)

Now |g12(τ)| is exponentially small unless Δ|τ| < 1. In particular,

g12(τ) → −δ(τ) for Δ → ∞. Moreover, for B  Δ with B ≡ |B|,

the magnetic impurity (S) dynamics will be slow on time scales

of the order of 1/Δ. We may therefore approximate the

spin–spin correlators in Equation 19 by their respective equal-

time expressions,

(22)

Inserting Equation 21 and Equation 22 into the expression for

the supercurrent in Equation 19, the time integrations can be

carried out analytically.

We obtain the CPR in the cotunneling regime as

(23)
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with κ in Equation 20. We note that while I( ) is formally inde-

pendent of Δ, the value of Δ must be sufficiently large to justify

the steps leading to Equation 23. Remarkably, Equation 23

predicts anomalous supercurrents for the S–QD–TS setup, i.e., a

finite Josephson current for vanishing phase difference (  = 0)

[45,46,72]. One can equivalently view this effect as a φ0-shift in

the CPR, I( ) = Ic sin(  + φ0). An observation of this φ0-junc-

tion behavior could then provide additional evidence for MBSs

(see also [47]), where Equation 23 shows that the local magnet-

ic field is required to have a finite By-component with 

defining the MBS spin polarization direction. In particular, if B

is aligned with , the supercurrent in Equation 23 vanishes

identically since s-wave Cooper pairs cannot tunnel from the S

lead into the TS wire in the absence of spin flips [31]. Other-

wise, the CPR is 2π-periodic and sensitive to the MBS through

the peculiar dependence on the relative orientation between the

MBS spin polarization ( ) and the local Zeeman field B on the

QD. The fact that By ≠ 0 (rather than Bx ≠ 0) is necessary to

have φ0 ≠ 0 can be traced back to our choice of real-valued

tunnel couplings. For tunable tunnel phases, also the field direc-

tion where one has φ0 = 0 will vary accordingly.

Noting that the anomalous Josephson effect has recently been

observed in S–QD–S devices [73], we expect that similar exper-

imental techniques will allow to access the CPR (Equation 23).

We mention in passing that previous work has also pointed out

that experiments employing QDs between N (instead of S) leads

and TS wires can probe nonlocal effects due to MBSs

[12,16,74-78]. In our case, e.g., by variation of the field direc-

tion in the xy-plane, Equation 23 predicts a tunable anomalous

supercurrent. We conclude that in the cotunneling regime, the

π-junction behavior of S–QD–S devices is replaced by the more

exotic physics of φ0-junctions in the S–QD–TS setting.

Mean-field approximation
Next we present a mean-field analysis of the Hamiltonian

(Equation 1) which allows us to go beyond the perturbative

cotunneling regime. For the corresponding S–QD–S case, see

[58,79]. We note that a full solution of this interacting many-

body problem requires a detailed numerical analysis using, e.g.,

the numerical renormalization group [60,61] or quantum Monte

Carlo simulations [59,63], which is beyond the scope of the

present work. We start by defining the GF of the QD,

(24)

Note that this notation introduces double counting, which

implies that only half of the levels are physically independent.

Of course, the results below take this issue into account.

With the above Nambu bi-spinor basis, the mean-field Hamil-

tonian has the 4 × 4 matrix representation

(25)

The mean-field parameters appearing in Equation 25 follow by

solving the self-consistency equations

(26)

where the mean-field approximation readily yields

(27)

The self-energies ΣS/TS(ω) due to the coupling of the QD to the

S/TS leads have the matrix representation

(28)

and

(29)

with the hybridization parameters ΓS/TS = . The bGFs

g(ω) and G(ω) have been defined in Equation 6 and Equation 7,

respectively. Once a self-consistent solution to Equation 26 has

been determined, which in general requires numerics, the

Josephson current is obtained from Equation 5 as
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Figure 2: Phase dependence of the subgap spectrum of an S–QD–TS junction in the noninteracting case, U = 0. The TS wire is modeled from the
low-energy limit of a Kitaev chain, and we use the parameters By = 0, Bx = Bz = B/ , ε0 = 0, Δp = Δ, and ΓS = ΓTS = Γ. From blue to yellow, the color
code indicates increasing values of the spectral density. The left (right) panel is for Γ = 0.045Δ and B = 0.1Δ (Γ = B = 0.5Δ). Solid curves were ob-
tained by numerical evaluation of Equation 30. Dashed curves give the analytical prediction (Equation 32). In the right panel, the energies resulting
from Equation 32 have been rescaled by the factor 1 + Γ/Δ.

(30)

In what follows, we study a setup with Δp = Δ and consider the

zero-temperature limit.

In order to compare our self-consistent mean-field results to the

noninteracting case, let us briefly summarize analytical expres-

sions for the U = 0 ABS spectrum in the atomic limit defined by

ΓS,TS  Δ. First we notice that at low energy scales, the self-

energy Σ = ΣS + ΣTS, see Equation 28 and Equation 29, simpli-

fies to

(31)

The ABS spectrum of the S–QD–TS junction then follows by

solving a determinantal equation,  One finds a

zero-energy pole which is related to the MBS and results from

the 1/ω dependence of ΣTS(ω). In addition, we get finite-energy

subgap poles for

(32)

with the notation

(33)

In Figure 2, numerically exact results for the U = 0 ABS spec-

trum are compared to the analytical prediction (Equation 32).

We first notice that, as expected, Equation 32 accurately fits the

numerical results in the atomic limit, see the left panel in

Figure 2. Deviations can be observed for larger values of ΓS,TS/

Δ. However, as shown in the right panel of Figure 2, rather

good agreement is again obtained by rescaling Equation 32 with

a constant factor of the order of (1 + ΓS,TS/Δ). For finite By, we

find (data not shown) that the phase-dependent ABS spectrum

is shifted with respect to  = 0. In fact, since the phase depen-

dence of the subgap states comes from the term  in

the atomic limit, see Equation 25 and Equation 33, By can be

fully accounted for in this limit by simply shifting  →  + φ0.

We thereby recover the φ0-junction behavior discussed before

for the cotunneling regime, see Equation 23.

We next turn to self-consistent mean-field results for the phase-

dependent ABS spectrum at finite U. Figure 3 shows the spec-

trum for the electron–hole symmetric case ε0 = −U/2, with other

parameters as in the right panel of Figure 2. For moderate inter-

action strength, e.g., taking U = Δ (left panel), we find that com-
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Figure 3: Phase-dependent ABS spectrum from mean-field theory for S–QD–TS junctions as in Figure 2 but with U > 0 and ε0 = −U/2. We put Δp = Δ,
By = 0, and ΓS = ΓTS = Γ. The color code is as in Figure 2. The left panel is for U = Δ, Γ = 0.5Δ, and Bx = Bz = B/  with B = 0.5Δ [cf. the right panel
of Figure 2]. The right panel is for U = 10Δ, Γ = 4.5Δ, Bx = 15Δ, and Bz = 0.

pared to the U = 0 case in Figure 2, interactions push together

pairs of Andreev bands, e.g., the pair corresponding to  in

Equation 30. On the other hand, for stronger interactions, e.g.,

U = 10Δ (right panel), the outer ABSs leak into the continuum

spectrum and only the inner Andreev states remain inside the

superconducting gap. The ABS spectrum shown in Figure 3 is

similar to what is observed in mean-field calculations for

S–QD–S systems with broken spin symmetry and in the mag-

netic regime of the QD, where one finds up to four ABSs for

U < Δ while the outer ABSs merge with the continuum for

U > Δ [79]. Interestingly, the inner ABS contribution to the free

energy for U = 10Δ is minimal for  = π, see right panel of

Figure 3, and we therefore expect π-junction behavior for By = 0

also in the regime with U  Δ and B  Δ. We notice, howev-

er, that changing the sign of Bx would result in zero junction be-

havior. We interpret the inner ABSs for U  Δ as Shiba states

with the phase dependence generated by the coupling to the

MBS. Without the latter coupling, the Shiba state has -inde-

pendent energy slightly below Δ determined by the scattering

phase shift difference between both spin polarizations [80].

As illustrated in Figure 4, the CPR computed numerically from

Equation 30 for different values of ΓS,TS/Δ, where Bx has been

inverted with respect to its value in Figure 3, results in zero

junction behavior. This behavior is expected from Equation 23

in the cotunneling regime, and Figure 4 shows that it also

persists for ΓS,TS  Δ. In contrast to Equation 23, however, the

CPR for ΓS,TS  Δ differs from a purely sinusoidal behavior,

see Figure 4. Moreover, for By ≠ 0, we again encounter φ0-junc-

tion behavior, cf. the inset of Figure 4, in accordance with the

perturbative result in Equation 23. Our mean-field results

suggest that φ0-junction behavior is very robust and extends

also into other parameter regimes as long as the condition

By ≠ 0 is met.

Figure 4: Main panel: Mean-field results for the CPR of S–QD–TS
junctions with different Γ/Δ values, where we assume Δp = Δ, U = 10Δ,
ε0 = −U/2, ΓS = ΓTS = Γ, B = 15Δ, and Bz = 0. Main panel: For Bx = −B
and By = 0. Inset: Same but for By = −Bx = B/ , where φ0-junction
behavior occurs.

Next, Figure 5 shows mean-field results for the critical current,

|I( )|, as function of the local magnetic field Bx

and otherwise the same parameters as in Figure 4. The main

panel in Figure 5 shows that Ic increases linearly with

Bx for small Bx < Δ, then exhibits a maximum around Bx ≈ Γ,

and subsequently decreases again to small values for

Bx  max{ΓS,TS,Δ}. On the other hand, for a fixed absolute
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value B of the magnetic field and By = 0, the critical current also

exhibits a maximum as a function of the angle θB between B

and the MBS spin polarization axis ( ). This effect is illus-

trated in the inset of Figure 5. As expected, the Josephson cur-

rent vanishes for θB → 0, where the supercurrent blockade argu-

ment of [31] implies Ic = 0, and reaches its maximal value for

θB = π/2.

Figure 5: Main panel: Mean-field results for the critical current Ic vs
local magnetic field scale Bx in S–QD–TS junctions. Parameters are as
in the main panel of Figure 4, i.e., U = 10Δ, ε0 = −U/2, and By,z = 0.
From left to right, different curves are for Γ/Δ = 4.5, 8, 10 and 12.5.
Inset: Ic vs angle θB, where B = B (sinθB,0,cosθB) with B = 15Δ.

Spinful nanowire model for the TS
Model
Before turning to the S–TS–S setup in Figure 1b, we address the

question of how the above results for S–QD–TS junctions

change when using the spinful nanowire model of [2,3] instead

of the low-energy limit of a Kitaev chain, see Equation 7. In

fact, we will first describe the Josephson current for the elemen-

tary case of an S–TS junction using the spinful nanowire model.

Surprisingly, to the best of our knowledge, this case has not yet

been addressed in the literature.

In spatially discretized form, the spinful nanowire model for TS

wires reads [2,3,43]

(34)

where the lattice fermion operators cjσ for given site j with spin

polarizations σ = ↑,↓ are combined to the four-spinor operator

The Pauli matrices τx,y,z (and unity τ0) again act in Nambu

space, while Pauli matrices σx,y,z and σ0 refer to spin. In

the figures shown below, we choose the model parameters in

Equation 34 as discussed in [43]. The lattice spacing is set to

a = 10 nm, which results in a nearest-neighbor hopping

t = 2/(2m*a2) = 20 meV and the spin–orbit coupling strength

α = 4 meV for InAs nanowires. The proximity-induced pairing

gap is again denoted by Δp, the chemical potential is μ, and the

bulk Zeeman energy scale Vx is determined by a magnetic field

applied along the wire. Under the condition

(35)

the topologically nontrivial phase is realized [2,3]. As we

discuss below, the physics of the S–QD–TS junction sensi-

tively depends on both the bulk Zeeman field Vx and on the

local magnetic field B acting on the QD, where one can either

identify both magnetic fields or treat B as independent field. In

any case, the bGF (ω) for the model in Equation 34, which

now replaces the Kitaev chain result G(ω) in Equation 7, needs

to be computed numerically. The bGF  has been described in

detail in [43], where also a straightforward numerical scheme

for calculating (ω) has been devised. With the replacement

G→ , we can then take over the expressions for the Josephson

current discussed before. Below we study these expressions in

the zero-temperature limit.

S–TS junction
Let us first address the CPR for the S–TS junction case. The

Josephson current can be computed using the bGF expression

for tunnel junctions in [40], which is a simplified version of the

above expressions for the S–QD–TS case. The spin-conserving

tunnel coupling λ defines a transmission probability (trans-

parency)  of the normal junction [40,43]. Close to the topo-

logical transition, the transparency is well approximated by

(36)
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where t = 20 meV is the hopping parameter in Equation 34. We

then study the CPR and the resulting critical current Ic as a

function of  for both the topologically trivial (Vx < ) and

the nontrivial (Vx > ) regime, see Equation 35.

In Figure 6, we show the Vx dependence of the critical current Ic

for the symmetric case Δ = Δp. In particular, it is of interest to

determine how Ic changes as one moves through the phase tran-

sition in Equation 35. First, we observe that Ic is strongly

suppressed in the topological phase in comparison to the topo-

logically trivial phase. In fact, Ic slowly decreases as one moves

into the deep topological phase by increasing Vx. This observa-

tion is in accordance with the expected supercurrent blockade in

the deep topological limit [31]: Ic = 0 for the corresponding

Kitaev chain case since p-wave pairing correlations on the TS

side are incompatible with s-wave correlations on the S side.

However, a residual finite supercurrent can be observed even

for rather large values of Vx. We attribute this effect to the

remaining s-wave pairing correlations contained in the spinful

nanowire model (Equation 34). Second, Figure 6 shows kink-

like features in the Ic(Vx) curve near the topological transition,

Vx ≈ . The inset of Figure 6 demonstrates that this feature

comes from a rapid decrease of the ABS contribution while the

continuum contribution remains smooth. This observation sug-

gests that continuum contributions in this setup mainly origi-

nate from s-wave pairing correlations which are not particular-

ly sensitive to the topological transition.

Figure 6: Main panel: Critical current Ic vs Zeeman energy Vx for an
S–TS junction using the spinful TS nanowire model (Equation 34) for
Δp = Δ = 0.2 meV, μ = 5 meV, and different transparencies  calcu-
lated from Equation 36. All other parameters are specified in the main
text. Inset: Decomposition of Ic for  = 1 into ABS (dotted-dashed)
and continuum (dashed) contributions.

In Figure 7, we show the CPR for the S–TS junction with

 = 1 in Figure 6, where different curves correspond to differ-

ent Zeeman couplings Vx near the critical value. We find that in

many parameter regions, in particular for  < 1, the CPR is to

high accuracy given by a conventional 2π-periodic Josephson

relation, I( ) = Ic sin . In the topologically trivial phase, small

deviations from the sinusoidal law can be detected, but once

one enters the topological phase, these deviations become

extremely small.

Figure 7: CPR for the S–TS junction with  = 1 in Figure 6, for differ-
ent bulk Zeeman fields Vx (in meV) near the critical value

 = 5.004 meV.

S–QD–TS junction with spinful TS wire: Mean-field
theory
Apart from providing a direct link to experimental control pa-

rameters, another advantage of using the spinful nanowire

model of [2,3] for modeling the TS wire is that the angle be-

tween the local Zeeman field B and the MBS spin polarization

does not have to be introduced as phenomenological parameter

but instead results from the calculation [43]. It is thus interest-

ing to study the Josephson current in S–QD–TS junctions where

the TS wire is described by the spinful nanowire model. For this

purpose, we now revisit the mean-field scheme for S–QD–TS

junctions using the bGF (ω) for the spinful nanowire model

(Equation 34). In particular, with the replacement G→ , we

solve the self-consistency equations (Equation 26) and thereby

obtain the mean-field parameters in Equation 25. The resulting

QD GF, Gd(ω) in Equation 27, then determines the Josephson

current in Equation 30. Below we present self-consistent mean-

field results obtained from this scheme. In view of the huge pa-

rameter space of this problem, we here only discuss a few key

observations. A full discussion of the phase diagram and the

corresponding physics will be given elsewhere.

The main panel of Figure 8 shows the critical current Ic vs

the bulk Zeeman energy Vx for several values of the

chemical potential μ, where the respective critical value  in
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Equation 35 for the topological phase transition also changes

with μ. The results in Figure 8 assume that the local magnetic

field B acting on the QD coincides with the bulk Zeeman field

Vx in the TS wire, i.e., B = (Vx,0,0). For the rather large values

of ΓS,TS taken in Figure 8, the Ic vs Vx curves again exhibit a

kink-like feature near the topological transition, Vx ≈ . This

behavior is very similar to what happens in S–TS junctions with

large transparency , cf. Figure 6. As demonstrated in the inset

of Figure 8, the physical reason for the kink feature can be

traced back to a sudden drop of the ABS contribution to Ic when

entering the topological phase Vx > . In the latter phase, Ic

becomes strongly suppressed in close analogy to the S–TS junc-

tion case shown in Figure 6.

Figure 8: Main panel: Critical current Ic vs Zeeman energy Vx for
S–QD–TS junctions from mean-field theory using the spinful TS nano-
wire model (Equation 34). Results are shown for several values of the
chemical potential μ (in meV), where we assume U = 10Δ, ε0 = −U/2,
Δp = Δ = 0.2 meV, ΓS = 2ΓTS = 9Δ, and B = (Vx,0,0). Inset: Detailed
view of the transition region Vx ≈  for μ = 4 meV, including a decom-
position of Ic into the ABS (dotted-dashed) and the continuum (dashed)
contribution.

In Figure 8, both the QD and the TS wire were subject to the

same magnetic Zeeman field. If the direction and/or the size of

the local magnetic field B applied to the QD can be varied inde-

pendently from the bulk magnetic field Vx  applied to the TS

wire, one can arrive at rather different conclusions. To illustrate

this statement, Figure 9 shows the Ic vs Bz dependence for

B = (0,0,Bz) perpendicular to the bulk field, with Vx >  such

that the TS wire is in the topological phase. In this case,

Figure 9 shows that Ic exhibits a maximum close to Bz ~ Γ. This

behavior is reminiscent of what we observed above in Figure 5,

using the low-energy limit of a Kitaev chain for the bGF of the

TS wire. Remarkably, the critical current can here reach values

close to the unitary limit, Ic ~ eΔ/ . We note that since Bz does

not drive a phase transition, no kink-like features appear for the

Ic(Bz) curves shown in Figure 9. Finally, the inset of Figure 9

shows that for B perpendicular to Vx , where Vx >  for the

parameters chosen in Figure 9, the ABSs provide the dominant

contribution to the current in this regime.

Figure 9: Main panel: Mean-field results for Ic vs Bz in S–QD–TS junc-
tions for several values of ΓS = ΓTS = Γ (in meV) and μ = 4 meV. The
bulk Zeeman field Vx = 5 meV along  (where Vx >  for our param-
eters) is applied to the spinful TS wire, while the QD is subject to the
local magnetic field B = Bz . All other parameters are as in Figure 8.
Inset: Decomposition of Ic into ABS (dotted-dashed) and continuum
(dashed) contributions for Γ = 1.6 meV.

S–TS–S junctions: Switching the parity of a
superconducting atomic contact
Model
We now proceed to the three-terminal S–TS–S setup shown in

Figure 1b. The CPR found in the related TS–S–TS trijunction

case has been discussed in detail in [43], see also [44]. Among

other findings, a main conclusion of [43] for the TS–S–TS ge-

ometry was that the CPR can reveal information about the spin

canting angle between the MBS spin polarization axes in both

TS wires. In what follows, we study the superficially similar yet

rather different case of an S–TS–S junction. Throughout this

section, we model the TS wire via the low-energy theory of a

spinless Kitaev chain, where the bGF G(ω) in Equation 7

applies.

One can view the setup in Figure 1b as a conventional super-

conducting atomic contact (SAC) with a TS wire tunnel-

coupled to the S–S junction. Over the past few years, impres-

sive experimental progress [52-54] has demonstrated that the

ABS level system in a SAC [81] can be accurately probed and
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manipulated by coherent or incoherent microwave spectrosco-

py techniques. We show below that an additional TS wire, cf.

Figure 1b, acts as tunable parity switch on the many-body ABS

levels of the SAC. As we have discussed above, the supercur-

rent flowing directly between a given S lead and the TS wire is

expected to be strongly suppressed. However, through the

hybridization with the MBS, Andreev level configurations with

even and odd fermion parity are connected. This effect has

profound and potentially useful consequences for Andreev

spectroscopy.

An alternative view of the setup in Figure 1b is to imagine an

S–TS junction, where S1 plays the role of the S lead and the

spinful TS wire is effectively composed from a spinless

(Kitaev) TS wire and the S2 superconductor. The p- and s-wave

pairing correlations in the spinful TS wire are thereby spatially

separated. Since the s- and p-wave bands represent normal

modes, they are not directly coupled to each other in this

scenario, i.e., we have to put λ2 = 0. We discuss this analogy in

more detail later on.

We consider a conventional single-channel SAC (gap Δ)

coupled via a point contact to a TS wire (gap Δp), cf. Figure 1b.

The superconducting phase difference across the SAC is

denoted by  where  is the phase difference be-

tween the respective S arm (j = 1,2) and the TS wire. In prac-

tice, the SAC can be embedded into a superconducting ring for

magnetic flux tuning of . To allow for analytical progress, we

here assume that Δp is so large that continuum quasiparticle ex-

citations in the TS wire can be neglected. In that case, only the

MBS at the junction has to be kept when modeling the TS wire.

However, we will also hint at how one can treat the general

case.

For the two S leads, boundary fermion fields are contained in

Nambu spinors as in Equation 6,

(37)

where their bGF follows with the Nambu matrix g(ω) in Equa-

tion 6 as

(38)

We again use Pauli matrices τx,y,z and unity τ0 in Nambu space.

The dimensionless parameters b1,2 describe the Zeeman field

component along the MBS spin polarization axis, see below.

Since above-gap quasiparticles in the TS wire are neglected

here, the TS wire is represented by the Majorana operator

γ = γ†, with γ2 = 1/2, which anticommutes with all other

fermions. We may represent γ by an auxiliary fermion f↑, where

the index reminds us that the MBS spin polarization points

along ,

(39)

The other Majorana mode γ′ =  which is

localized at the opposite end of the TS wire, is assumed to have

negligible hybridization with the ΨS,j spinors and with γ.

Writing the Euclidean action as S = S0 + Stun, we have an

uncoupled action contribution,

(40)

The leads are connected by a time-local tunnel action corre-

sponding to the tunnel Hamiltonian

(41)

Without loss of generality, we assume that the tunnel ampli-

tudes t0 and λ1,2, see Figure 1b, are real-valued and that they

include density-of-state factors again. The parameter t0 (with

0 ≤ t0 ≤ 1) determines the transparency  of the SAC in the

normal-conducting state [36], cf. Equation 36,

(42)

Note that in Equation 41 we have again assumed spin-

conserving tunneling, where only spin-↑ fermions in the SAC

are tunnel-coupled to the Majorana fermion γ, cf. Equation 4.

At this stage, it is convenient to trace out the ΨS,2 spinor field.

As a result, the SAC is described in terms of only one spinor

field, Ψ ≡ ΨS,1, which however is still coupled to the Majorana

field γ. After some algebra, we obtain the effective action
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(43)

where the operator P↑ = (τ0 + τz)/2 projects a Nambu spinor to

its spin-↑ component. Moreover, we have defined an effective

GF in Nambu space with frequency components

(44)

and the TS lead has been represented by the Majorana–Nambu

spinor

(45)

We note in passing that Equation 43 could at this point be

generalized to include continuum states in the TS wire. To that

end, one has to (i) replace Φ → (ψ, ψ†)T, where ψ is the bound-

ary fermion of the effectively spinless TS wire, and (ii) replace

δ(τ − τ′)∂τ′ → G−1(τ − τ′) with G in Equation 7. Including bulk

TS quasiparticles becomes necessary for small values of the

proximity gap, Δp  Δ, and/or when studying nonequilibrium

applications within a Keldysh version of our formalism.

In any case, after neglecting the above-gap TS continuum quasi-

particles, the partition function follows with Seff in Equation 43

in the functional integral representation

(46)

As before, the Josephson current through S lead no. j then

follows from the free energy via

The supercurrent flowing through the TS wire is then given by

(47)

as dictated by current conservation.

Atomic limit
In order to get insight into the basic physics, we now analyze in

detail the atomic limit, where Δ represents the largest energy

scale of interest and hence the dynamics is confined to the

subgap region. In this case, we can approximate .

After the rescaling

in Equation 43, we arrive at an effective action, Seff → Sat, valid

in the atomic limit,

(48)

where  is the reflection amplitude of the SAC, see

Equation 42. We recall that , see Equation 37.

Moreover, we define the auxiliary parameters

(49)

The parameters b1,2 in Equation 38 thus effectively generate the

Zeeman scale Bz in Equation 49.

As a consequence of the atomic limit approximation, the action

Sat in Equation 48 is equivalently expressed in terms of the

effective Hamiltonian

(50)

where we define

(51)
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For a SAC decoupled from the TS wire and taken at zero field

(Bz = 0), the ABS energy follows from Equation 50 in the stan-

dard form [62]

(52)

We emphasize that Hat neglects TS continuum quasiparticles as

well as all types of quasiparticle poisoning processes. Let us

briefly pause in order to make two remarks. First, we note that

the Majorana field

see Equation 39, couples to both spin modes ψσ in Equation 50.

The coupling λ↓ between γ and the spin-↓ field in the SAC, ψ↓,

is generated by crossed Andreev reflection processes, where a

Cooper pair in lead S2 splits according to ,

plus the conjugate process. Second, we observe that Hat is

invariant under a particle–hole transformation, amounting to the

replacements  and , along with Bz → − Bz

and  → 2π − .

We next notice that with nσ =  = 0,1 and nf =  = 0,1,

the total fermion parity of the junction,

(53)

is a conserved quantity, [ , Hat]− = 0. Below we restrict our

analysis to the even-parity sector  = +1, but analogous

results hold for the odd-parity case. The corresponding Hilbert

subspace is spanned by four states,

(54)

where (n↑, n↓, nf)  {(0,0,0), (1,1,0), (1,0,1), (0,1,1)} and  is

the vacuum state. In this basis, the Hamiltonian (Equation 50)

has the matrix representation

(55)

The even-parity ground state energy,  = min(ε), follows as

the smallest root of the quartic equation

(56)

In order to obtain simple results, let us now consider the special

case λ2 = 0, where the TS wire is directly coupled to lead S1

only, see Figure 1b. In that case, we also have λ↓= 0, see Equa-

tion 49, and Equation 56 implies the four eigenenergies ±ε±

with

(57)

with , see Equation 49. The ground-state

energy is thus given by  = −ε+. Since EG depends on the

phases  only via the Andreev level energy EA( ) in Equa-

tion 52, the Josephson current through the SAC is given by

(58)

Note that Equation 47 then implies that no supercurrent flows

into the TS wire.

Next we observe that in the absence of the TS probe (λ1 = 0),

the even and odd fermion parity sectors of the SAC,

, are decoupled, see Equation 55, and

Equation 57 yields  = −max(EA, |Bz|). Importantly, the

Josephson current is therefore fully blocked if the ground state

is in the  = −1 sector, i.e., for |Bz| > EA( ). For λ1 ≠ 0,

however,  is not conserved anymore. This implies that

the MBS can act as parity switch between the two Andreev

sectors with parity  = ±1. Near the level crossing point at

EA ≈ |Bz |, i.e., assuming  we

obtain

(59)

which implies a nonvanishing supercurrent through the SAC

even in the field-dominated regime, |Bz| > EA. The MBS there-

fore acts as a parity switch and leaves a trace in the CPR by

lifting the supercurrent blockade.
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Another interpretation
Interestingly, for λ2 =  = 0, the S–TS–S setup in Figure 1b

could also be viewed as a toy model for an S–TS junction,

where the TS part corresponds to a spinful model. In that

analogy, the Nambu spinor ΨS,1 stands for the S lead while the

spinful TS wire is represented by (i) the Nambu spinor ΨS,2

which is responsible for the residual s-wave pairing correla-

tions, and (ii) by the MF γ (or, more generally, by the Kitaev-

chain spinless boundary fermion ψ) which encodes p-wave

pairing correlations. Moreover, t0 and λ1 should now be under-

stood as spin-conserving phenomenological tunnel couplings

acting in the s–s and s–p wave channels, respectively. The

phase difference across this effective S–TS junction is  = 

and the net S–TS tunnel coupling is given by .

Putting λ1 = 0 in the topologically trivial phase of the TS wire,

the Josephson current carried by Andreev states in the s–s

channel is blocked when the ground state is in the odd parity

sector of the SAC. For λ1 ≠ 0, the MBS-mediated switching be-

tween odd and even parity sectors will now be activated and

thereby lift the supercurrent blockade.

Conventional midgap level
A similar behavior as predicted above for the MBS-induced

parity switch between  = ±1 sectors could also be ex-

pected from a conventional fermionic subgap state tunnel-

coupled to the SAC. Such a subgap state may be represented,

e.g., by a single-level quantum dot in the Coulomb blockade

regime. In particular, for a midgap (zero-energy) level with the

fermion operator d, the Hamiltonian Hat in Equation 50 has to

be replaced with

(60)

In the even total parity basis (Equation 54), the matrix represen-

tation of the Hamiltonian is then instead of Equation 55 given

by

(61)

Assuming |λ↑| = |λ↓| ≡ λ, Equation 56 then yields the eigenener-

gies ±ε± with

(62)

Remarkably, the ABS spectra in Equation 62 and Equation 57

are rather similar for . However, the MBS

will automatically be located at zero energy and thus represents

a generic situation.

Conclusion
We close this paper by summarizing our main findings. We

have studied the Josephson effect in different setups involving

both conventional s-wave BCS superconductors (S leads) and

topologically nontrivial 1D p-wave superconductors (TS leads)

with Majorana end states. The TS wires have been described

either by a spinless theory applicable in the deep topological

regime, which has the advantage of allowing for analytical

progress but makes it difficult to establish contact to experimen-

tal control parameters, or by a spinful nanowire model as sug-

gested in [2,3]. We have employed a unified imaginary-time

Green’s function approach to analyze the equilibrium proper-

ties of such devices, but a Keldysh generalization is straightfor-

ward and allows one to study also nonequilibrium applications.

For S–TS tunnel junctions, we find that in the topological phase

of the TS wire, the supercurrent is mainly carried by above-gap

continuum contributions. We confirm the expected supercur-

rent blockade [31] in the deep topological regime (where the

spinless theory is fully valid and thus no residual s-wave pairing

exists), while for realistic parameters, a small but finite critical

current is found. To good approximation, the Josephson current

obeys the usual 2π-periodic sinusoidal current–phase relation.

The dependence of the critical current on the bulk Zeeman field

driving the TS wire through the topological phase transition

shows a kink-like feature at the critical value, which is caused

by a sudden drop of the Andreev state contribution.

The supercurrent blockade in the deep topological phase could

be lifted by adding a magnetic impurity to the junction, also

allowing for the presence of a local magnetic field B. Such a

magnetic impurity arises from a spin-degenerate quantum dot

(QD), and we have studied the corresponding S–QD–TS prob-

lem for both the spinless and the spinful TS wire model. Based

on analytical results valid in the cotunneling regime as well as

numerical results within the mean-field approximation, we

predict φ0-junction behavior (anomalous Josephson effect) for

the current–phase relation when the TS wire is in the topolog-

ical phase.
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As a final example for devices combining conventional and

topological superconductors, we have shown that S–TS–S

devices allow for a Majorana-induced parity switch between

Andreev state sectors with different parity in a superconducting

atomic contact. This observation could be useful for future

microwave spectroscopy experiments of Andreev qubits in such

contacts.
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Abstract
The classification of topological states of matter in terms of unitary symmetries and dimensionality predicts the existence of

nontrivial topological states even in zero-dimensional systems, i.e., systems with a discrete energy spectrum. Here, we show that a

quantum dot coupled with two superconducting leads can realize a nontrivial zero-dimensional topological superconductor with

broken time-reversal symmetry, which corresponds to the finite size limit of the one-dimensional topological superconductor.

Topological phase transitions corresponds to a change of the fermion parity, and to the presence of zero-energy modes and disconti-

nuities in the current–phase relation at zero temperature. These fermion parity transitions therefore can be revealed by the current

discontinuities or by a measure of the critical current at low temperatures.

1705

Introduction
Since the discovery of the quantum Hall effect [1,2] and the the-

oretical prediction of Majorana bound states in triplet supercon-

ductors [3], a whole new class of novel electronic phases has

been theoretically described and experimentally realized,

namely, the class of topologically nontrivial states of matter

[4-7]. Topological states of matter can be classified in terms of

the antiunitary symmetries and dimensionality of the Hamil-

tonian [7-10]. Analogously to the periodic table of chemical ele-

ments in chemistry, this classification has been a general guide

to the discovery of novel topological phases in solid-state

physics. Moreover, it predicts the existence of nontrivial topo-

logical states even in zero dimensions, i.e., in a system with

discrete energy spectrum.

A very important class of topological states of matter are topo-

logical superconductors: These materials support Majorana

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:pasquale.marra@riken.jp
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zero-energy modes at the edges of the system [11-13], which

have been proposed as the building block of topological quan-

tum devices [14-20]. The simplest realization of a topological

superconductor is the well-known Kitaev chain [3], which can

be implemented in a one-dimensional system proximized by a

conventional superconductor in the presence of a magnetic field

and spin–orbit coupling [21-25]. Moreover, topological super-

conductors exhibit very distinct features in their transport prop-

erties and in particular in their Josephson current [26-49].

In a recent work [50], we have studied the short-size limit of a

one-dimensional (1D) topological superconductor with broken

time-reversal and chiral symmetries. In this limit, the system

turns zero-dimensional (0D), i.e., its energy spectrum is a finite

set of discrete energy levels. This 0D superconductor exhibits

topological phase transitions that correspond to variations of the

fermion parity and to the occurrence of zero-energy modes that

are a linear combination of particle and hole states [50]. These

fermion parity transitions can be revealed by discontinuities in

the Josephson current–phase relation (CPR) in the zero-temper-

ature limit.

Here we describe the simplest realization of such a 0D topolog-

ical superconductor, i.e., a quantum dot [51-54] coupled with

two superconducting leads in a magnetic Zeeman field, forming

a superconductor–quantum dot–superconductor (SC–QD–SC)

Josephson junction. Zero-energy modes and the corresponding

CPR discontinuities and ground-state parity crossings [55-61]

have been recognized as precursors of Majorana modes in the

long-wire limit [27,50], and of Floquet–Majorana modes real-

ized in driven quantum dots [62,63]. We will analytically derive

and discuss the spectrum and the Josephson current of the dot,

which agrees with the universal prediction for zero-dimen-

sional systems described in our previous work [50]. This allows

us to reinterpret in terms of topological states the different

regimes of the dot, which are already discussed in the literature

[34,64-68]. We will analyze in detail the relation between the

topological properties of the groundstate, the zero-energy

modes, and the corresponding CPR discontinuities. We will

show that, in this system, a topologically nontrivial state can be

induced by a finite Zeeman field that breaks the time-reversal

symmetry, even without a finite spin–orbit coupling. The result-

ing topological transitions coincide with a change of the

fermion parity (topological invariant) and can be identified by

discontinuities in the CPR and by a measure of the critical cur-

rent at low temperatures.

Results and Discussion
Effective model
We consider a semiconducting quantum dot in a magnetic field

B and coupled with two superconducting leads, as shown in

Figure 1. We assume that the only effect of the magnetic field is

the lifting of the spin degeneracy via the Zeeman effect, and we

neglect orbital effects of the field. Moreover, we assume that

the level spacing of the dot is larger than the Zeeman energy B

and larger than the Coulomb interaction U within the dot.

Therefore we neglect the contribution of higher energy levels

and take into account only the levels ε ± B of the Kramers

doublet closest to the Fermi energy. Here, ε is the energy level

of the dot in absence of Zeeman field, which can be modified

by controlling the gate voltage. This system can be described by

a superconducting Anderson impurity model

(1)

where the dot Hamiltonian is given by

(2)

where  and d↑, d↓ are the creation and annihilation opera-

tors of the electrons in the dot,  and  the

number operators, ε ± B the two-energy levels of the dot,

and U the onsite Coulomb repulsion. We assume hereafter that

e =  = 1.

Figure 1: An SC–QD–SC Josephson junction realized by a two-level
quantum dot in a magnetic field B and electric gate ε coupled with two
superconducting leads. The two energy levels are respectively ε ± B.
The dot is coupled to the superconducting leads via tunneling junc-
tions with transparency t. The Josephson current Iφ through the dot
depends on the gauge-invariant phase difference φ between the two
superconducting leads.

The Hamiltonians of the two superconducting leads i = L, R are

given by
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(3)

where ,  and  are the creation and annihi-

lation operators of electrons in the superconducting lead i = L, R

and with momentum k,  is the bare electron dispersion with

respect to the Fermi level εF = 0, Δ the magnitude of the super-

conducting gap, and φi the phase of the superconducting gap in

the two leads, respectively. Here we assumed a standard BCS

s-wave pairing and the same bare electron dispersion in the two

superconducting leads. In the following we furthermore assume

that the bare electron dispersion varies in the interval [−D,D]

and that the density of states is ρ0 = 1/(2D) with 2D the total

bandwidth.

The tunneling between the dot and the leads is described by the

tunnel Hamiltonians, which read

(4)

where t = tL = tR is the transparency of the dot–lead tunneling.

We assume that the junction is symmetric and that the tunnel-

ing amplitudes do not depend on the electron momenta (wide

band limit approximation).

In the limit of a large superconducting gap, i.e., when the gap

is larger than the characteristic frequencies of the quantum dot,

the degrees of freedom of the leads can be effectively inte-

grated out [34,64-68]. In absence of interactions (U = 0) the

system can be described by an effective Hamiltonian that reads

[34,64,65,67,68]

(5)

where φ = φR − φL is the gauge-invariant phase difference be-

tween the two leads, and where

(6)

is the effective local superconducting pairing induced by the

leads on the dot [64,65]. The Hamiltonian (Equation 5) can be

written in the Bogoliubov–de Gennes formalism as

(7)

where  and  are the

Nambu spinors describing the electron–hole pairs in the dot.

Notice that our definition of Nambu spinor differs from [64,65],

but it will allow us to define the topological invariant using the

same formalism used in 1D superconductors.

The spectrum of this effective Hamiltonian is a set of four

single-particle states corresponding to two pairs of particle–hole

symmetric Andreev levels ±E↑ and ±E↓ with

(8)

(9)

with

which correspond to the eigenstates described by the operators

 defined by the Bogoliubov transformation

(10)

(11)

where

(12)

(13)

The Bogoliubov factors satisfy the properties u2 + v2 = 1,

u2 − v2 = ε/Eφ, and uv = Γ|cos(φ/2)|/(2Eφ).
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Now we generalize the Hamiltonian (Equation 7) to the case of

finite interaction U > 0. A tedious but elementary calculation

gives (n↑ − 1/2)(n↓ − 1/2) =  where

 and  are the number operators corre-

sponding to the eigenstates of the effective Hamiltonian. There-

fore the Hamiltonian in the presence of Coulomb interaction U

> 0 can be written in diagonal form as

(14)

up to a numerical phase-independent constant.

The Hamiltonian eigenstates comprise the vacuum , the two

single-particle states  and , and the two-particle state

 with energies

(15)

(16)

(17)

(18)

Each of these particle states corresponds to a hole state by parti-

cle–hole symmetry. The groundstate energy of the supercon-

ducting condensate is given by the sum of the single-particle

energy levels [69], which yield in this case

(19)

whereas the Josephson current at zero temperature is defined as

Iφ = −∂φEGS(φ). Notice that for small couplings U/2 < |ε|,|Γ|,

the only effect of the interaction is to shift the energy of the

single-particle levels. For this reason, if the conductance from

the dot to the superconductor is relatively large (high dot–lead

transparency) and one can consider the effect of interactions as

a small perturbation. Therefore, the ground-state properties,

such as the topological invariant and the Josephson current at

zero temperature, are not affected in the case where U/2 < ε and

U/2 < Γ, as long as the particle–hole gap remains open and the

Andreev levels do not cross.

In absence of interactions U = 0, the only possible ground states

are those with energies

(20)

which correspond, respectively, to the cases where the two

single-particle levels E↑ and E↓ have the same sign or opposite

sign. We will show that the ground state with energy 2Eφ is

topologically trivial and has a finite Josephson current, whereas

the ground state with energy 2B is topologically nontrivial and

has a Josephson current that vanishes at zero temperature.

The phase diagram of this system has been already discussed in

the literature [34,64-68]. Since we consider here only the weak

interacting case, we will not discuss the 0–π transition driven by

the presence of strong interaction. A more thorough discussion

of the role of interactions on the 0D topological transition and

on the ensuing π-phase will be addressed in a following

research paper. Therefore, we will discuss hereafter only quan-

tum phase transition in the regime of weak interactions in

systems which can be described by Equation 7 or Equation 14

for U = 0. Our findings cannot be applied to 0–π transitions and

to other kinds of quantum phase transitions that may be eventu-

ally present in this system, beyond the topological one we dis-

cussed.

The particle–hole gap and gapless points
The particle–hole gap, i.e., the difference between the particle

and hole levels closest to the Fermi level, closes if |B| = Eφ.

If one defines the two threshold fields Bmin = |ε | and

, one can verify that the spectrum is gapped

for both small |B| < Bmin and large |B| > Bmax Zeeman fields.

For intermediate fields Bmin < |B| < Bmax, the energy gap closes

at specific values of the gauge-invariant phase φ = ±φ* where

(21)

where |λ| < 1 if Bmin < |B| < Bmax. We will show that these

gapless points define a topological phase transition in the

system that corresponds to the appearance of discontinuous

drops in the CPR of the junction.

Figure 2 shows the single-particle energy spectrum of the

system, i.e., the four particle–hole symmetric Andreev levels

±E↓ and ±E↑, as a function of the gauge-invariant phase differ-
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Figure 2: Energy spectrum of a two-level quantum dot coupled with two superconducting leads (SC–QD–SC junction), consisting of a set of four
Andreev levels, i.e., two single-particle levels ±E↑ (blue curves) and ±E↓ (red curves), as a function of the gauge-invariant phase difference φ be-
tween the two superconducting leads. We take ε = 2Γ/3 and U = 0. The three panels correspond to different values of the Zeeman field: (a) small
fields |B| < Bmin, (b) intermediate fields Bmin < |B| < Bmax, with the particle–hole gap closing at the gapless points ±φ* (see Equation 21), and (c) large
fields |B| > Bmax.

ence φ. As one can see, the energy spectrum is gapped for small

|B| < Bmin and large |B| > Bmax Zeeman fields, respectively, in-

dependently from the phase difference φ. At intermediate fields

Bmin < |B| < Bmax, the particle–hole gap closes at the gapless

points ±φ* that satisfy Equation 21. One can verify that the

effect of a small Coulomb interaction U/2 < |ε|, |Γ| is a shift of

the threshold fields Bmin and Bmax and of the value of the

phases ±φ* where the gap closes.

Topological invariant
This simple 0D two-level system can realize a topologically

nontrivial state that breaks time-reversal symmetry while

preserving particle–hole symmetry. This topologically

nontrivial state can be seen as the 0D limit of a 1D topological

superconductor, and as the minimal model for the system

described in [50]. In fact, for finite Zeeman energies (B ≠ 0)

and superconducting pairing (Γ > 0), the system is in the

Altland–Zirnbauer [7-10] symmetry class D (particle–hole

symmetry, broken time-reversal and chiral symmetries). This

class is characterized in 0D by a  topological invariant that is

defined in the non-interacting case U = 0 as the fermion parity

of the ground state [50,70] , i.e., as the sign

of the Pfaffian of the Hamiltonian in Majorana representation

(τx is the first Pauli matrix in the particle–hole space). The

fermion parity labels the topological inequivalent ground states

as a function of the gauge-invariant phase φ, i.e., the trivial state

P = 1 (even parity) and nontrivial state P = −1 (odd parity). The

fermion parity of the 0D topological quantum dot described by

Hamiltonian (Equation 7) can be evaluated analytically. The

square of the Pfaffian of a matrix is equal to the determinant,

which is equal to the product of its eigenvalues, and therefore

one has  =  = det(Heff) =  due to

particle–hole symmetry. A direct calculation of the Pfaffian

indeed shows that  and therefore

(22)

where we used the definition of λ given in Equation 21. This

equation is a special case of Equation 2 of [50]. Notice that if

B = 0 the time-reversal symmetry is unbroken and the ground

state is trivial  as expected. As anticipated, the

ground state with energy 2Eφ is topologically trivial, since in

this case E↑E↓ > 0, whereas the ground state with energy 2B is

topologically nontrivial, since in this case one has E↑E↓ < 0.

Therefore, the inversion of the lowest-energy Andreev level

corresponds to a topological transition to the nontrivial state.

The fermion parity defines the topological phase space of the

system, and is completely determined by the gauge-invariant

phase φ and by the adimensional quantity λ, as shown in

Figure 3. Moreover, since P = sgn[E↑E↓], the condition Pφ ≡ 0

corresponds to the gapless points φ = ±φ* where zero-energy

modes occur (solid line in Figure 3).

At small Zeeman fields |B| < Bmin (i.e., λ > 1), the system is in

the topologically trivial state with even fermion parity P = 1 for

any value of the phase φ. At large fields |B| > Bmax instead (i.e.,

λ < −1), the system realizes the topologically nontrivial state

with odd fermion parity P = −1 for any value of the phase φ.

However, for intermediate Bmin < |B| < Bmax (i.e., |λ| < 1)

topological transitions occur at the gapless points ±φ* (see

Equation 21). In this case the system realizes the trivial or in the

nontrivial state (even or odd parity), respectively, for |φ| < φ*

and |φ| > φ* in the interval , as one can see in

Figure 3. The two gapless points ±φ* therefore correspond to a

quantum phase transition where the fermion parity of the

ground state changes from trivial to nontrivial. Note that for

|B| = Bmin and for |B| = Bmax (i.e., |λ| = 1) no topological transi-

tion occurs, and the system is, respectively, in the trivial or
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Figure 3: Topological phase space of a 0D topological supercon-
ductor realized by a quantum dot coupled with two superconducting
leads (SC–QD–SC junction). The system realizes, respectively, a
trivial state P = 1 for small Zeeman fields |B| < Bmin (i.e., λ > 1), and a
nontrivial state P = −1 for large fields |B| > Bmax (i.e., λ < −1). The
Josephson current vanishes in the nontrivial state. Topological transi-
tions coincides with the occurrence of zero-energy modes at
±φ* = ±arccos(−λ) (solid line) for intermediate fields Bmin < |B| < Bmax
(i.e., |λ| < 1). In this case the system is in its trivial P = 1 and nontrivial
P = −1 state respectively for  within the interval .

nontrivial gapped state with the exceptions of the single gapless

point φ* = π or φ* = 0, respectively.

The particle–hole gap can also close in absence of a Zeeman

field if ε = 0. For B = ε = 0 (which gives λ = 1) the gap closes at

φ* = π. In this case the time-reversal symmetry is unbroken, and

the system is gapped and topologically trivial for any value of

the phase φ ≠ π.

The topological phase space derived in the case of a supercon-

ducting quantum dot is universal for the class of zero-dimen-

sional superconductors. It coincides in fact with the topological

phase space in Figure 2a of [50], where it was derived in the

more general case of a zero-dimensional quantum system

(short-size regime) with an arbitrary number of energy modes.

The topological phases can be defined also in the case of small

Coulomb interactions as long as the particle–hole gap remains

open. In this case in fact the topological invariant cannot

change, since the phase with small interaction U > 0 can be

transformed with the non-interacting phase U = 0 by a smooth

transformation without closing the gap.

It is important to note that in the 0D case (differently from the

1D case) topological states can be realized without spin–orbit

coupling. This is because topological states in the symmetry

class D are enforced by the presence of the superconducting

coupling (particle–hole symmetry) and the Zeeman field (which

breaks the time-reversal symmetry). The gap opening, in this

case, is guaranteed in general by the gap induced by finite size

effects or eventually by interactions.

Josephson current–phase discontinuities
In our previous work [50], we have found the general relation

between the topological invariant of a 0D topological supercon-

ductor and the discontinuities of the Josephson current–phase

relation (CPR). The topological phase transition between the

trivial (P = 1, even fermion parity) and the nontrivial state

(P = −1, odd fermion parity) corresponds to the emergence of a

discontinuity in the Josephson CPR at zero temperature. In this

case, the current is proportional to the phase-derivative of the

total energy of the superconducting condensate [69,71], which

is given by the sum of the positive energy levels |E↑| + |E↓|.

Hence, the Josephson current is equal to −2∂φEφ in the trivial

groundstate with energy EGS(φ) = 2Eφ, whereas it vanishes in

the nontrivial groundstate with energy EGS(φ) = 2B (see Equa-

tion 20). The CPR at zero temperature is therefore given by

(23)

In the topologically trivial state (P = 1) at low fields |B| < Bmin,

the two energy levels E↑ and E↓ contribute equally to the

Josephson current and one has Iφ = −2∂φEφ. However, when the

fermion parity changes, one of the energy level crosses the par-

ticle–hole gap, and its contribution to the current changes its

sign.

Therefore, in the topologically nontrivial state (P = −1) at high

fields |B| > Bmax the Josephson current in Equation 23 vanishes

since the contributions from the two energy levels E↑ and E↓

cancel each other. Moreover, as one can see from Equation 23,

for intermediate fields Bmin < |B| < Bmax, (i.e., |λ| < 1) the

CPR exhibits a discontinuity between the trivial state with

I = ±2Γ2sinφ*/[4Eφ*] to the nontrivial one with I = 0 at the

gapless points ±φ* which is equal to

(24)

which is a special case of Equation 3 of [50]. The discontinuity

is a consequence of the crossing at zero-energy of the lowest-

energy level with linear phase dispersion. The discontinuity in

Equation 24 can be also calculated directly using Equation 3 of

[50], which can be rewritten as
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Figure 4: (a) Josephson CPR of the SC–QD–SC junction for different choices of the Zeeman field B in the limit T→0 (Equation 23) in units of the criti-
cal current of the trivial branch. We take ε = 2Γ/3. Depending on the Zeeman field, different regimes are realized: At small fields |B| < Bmin (i.e, λ > 1,
dotted line) the current is smoothly oscillating as a function of the phase φ and the system is topologically trivial (P = 1). At large fields |B| > Bmax (i.e.,
λ < −1, not shown) the current vanishes and the system is topologically nontrivial (P = −1). At intermediate fields Bmin < |B| < Bmax (i.e., |λ| < 1, solid
lines), discontinuous drops appear at the transition points between the trivial and nontrivial topological states. Current discontinuities correspond to
the variations of the fermion parity and to the presence of zero energy modes. (b) Critical current of the SC–QD–SC junction as a function of the
Zeeman field at zero temperature (solid line) with ε = 2Γ/3. (c) Critical current of the SC–QD–SC junction as a function of the electric gate ε at zero
temperature (solid line) with B = 4Γ/3. In both cases, the critical current drops from a finite value in the trivial state (P = 1 and λ > 1) to zero in the
nontrivial state (P = −1 and λ < −1). In the transition regions Bmin < B < Bmax (b) and < |ε| < |B| (c), the trivial and nontrivial states alternate at
different phases φ. As one can see, when the system approaches its nontrivial state P = −1, the critical current coincides with the magnitude of the
discontinuous drop ΔI (green dots) given in Equation 24.

(25)

where  is the pseudodeterminant of the Hamiltonian

(the product of nonzero eigenvalues). The square root of the

pseudodeterminant is in this case just the product of the

positive eigenvalues (due to particle–hole symmetry). Since

the system has only two non-negative single-particle energy

levels |E↑| = |B + Eφ*| and |E↓| = |B − Eφ*|, and one of these two

energy levels vanishes at gapless points ±φ* since in this case

|B| = |Eφ*|, the denominator of Equation 25 is equal to the

nonzero positive energy level given by |B| + |Eφ*| = 2|B|, which

yields , which leads via Equation 25 to

Equation 24.

Figure 4a shows the CPR of the SC–QD–SC junction for differ-

ent choices of the Zeeman field B at zero temperature, calcu-

lated directly from Equation 23. At low fields |B| < Bmin (i.e.,

λ > 1) the system is topologically trivial (P = 1) and the CPR is

smoothly oscillating without any discontinuity. At large fields

|B| > Bmax (i.e., λ < −1), the system is topologically nontrivial

(P = −1) and the Josephson current vanishes due to the oppo-

site contribution of the two Andreev levels. At intermediate

fields Bmin < |B| < Bmax instead (i.e., |λ| < 1), discontinuities

appear at the transition points between the trivial and nontrivial

topological states (gapless points ±φ*). The emergence of a

discontinuous drop coincides with a change of the fermion

parity and to the presence of zero-energy states closing the par-

ticle–hole gap. Since the energy levels of the system depends

smoothly on the phase φ, gapless points are the only points

where the CPR can be discontinuous. At finite temperatures,

CPR discontinuities are smoothed out by the effect of thermal

fluctuations. However, such discontinuities can be revealed,

e.g., by the presence of spikes in the phase-derivative of the

CPR at low temperatures [50].

Hence, if time-reversal symmetry is broken (B ≠ 0), current

discontinuities correspond to the presence of zero-energy modes

and to a change in the topological invariant. These signatures

are topologically robust against small perturbations, such as

disorder. This means that these discontinuities and the associat-

ed zero-energy modes cannot be removed by the presence of,

e.g., disorder or interactions, if these perturbations are small

compared to the effective local pairing Γ and Zeeman energy B.

The only effect of these small perturbations is in fact to produce

a shift of the gapless point φ*→  where the

topological transition and zero-energy modes occurs. Disconti-

nuities in the Josephson CPR are still present in the interacting

case [65] at zero temperature. As shown in [50], the correspon-

dence between CPR discontinuities and fermion parity transi-

tions relies only on the presence of a broken time-reversal

symmetry that removes the spin degeneracy and on the fact that

in this case the closing of the particle–hole gap correspond to a

change of the topological invariant.

On the other hand, if time-reversal symmetry is unbroken, cur-

rent discontinuities are still present if B = ε = 0 (where λ = 1). In

this case, the CPR exhibits a single discontinuous drop ΔI = Γ/2

at the gapless point φ* = π, according to Equation 24. This case

reproduces the well-known current–phase discontinuity of a
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quantum point contact [71]. However, in this case the disconti-

nuity does not correspond to a topological transition.

The presence of a small Coulomb interaction does not affect the

Josephson current at zero temperature in the trivial and non-

trivial branches of the CPR, since the energy shift U/2 of the

Andreev levels do not depend on the phase φ.

Critical current
The topological transition can be probed also by a measure of

the critical current of the junction. The critical current is defined

as the maximum current of the junction up to the phase Ic = max

Iφ. In the trivial state at low fields |B| < Bmin (i.e., λ > 1) the

critical current is finite. Since the CPR is continuous in this

case, the maximum of the current coincides with the local

maximum of the current where its phase-derivative vanishes

∂φIφ = 0. In the limits ε→0 and ε→±Γ for example, the current

reaches its maximum at  or at , which gives criti-

cal currents of Ic = Γ/2 and , respec-

tively. In the nontrivial state at large fields |B| > Bmax instead

(λ < −1) the current vanishes and one has Ic = 0. However, at

intermediate fields Bmin < |B| < Bmax (i.e., |λ| < 1) trivial and

nontrivial states alternate in the interval , and the

CPR has discontinuities. Because the CPR is not continuous,

the maximum of the current may coincide either with the local

maximum  of the current where ∂φIφ = 0, or with the current

at the discontinuity Iφ* = ΔI. More precisely, the critical current

coincides with the maximum between these two values

. The case Ic = |ΔI| occurs, for instance,

when the system approaches its nontrivial state at large fields

|B|→Bmax. Therefore for fields |B| ≤ Bmax the critical current

coincides with the current discontinuity Ic = ΔI. This regime can

be obtained either by a measure of the critical current by

varying the magnetic field, or by varying, e.g., the energy level

ε in a constant field B.

Figure 4b shows the critical current of the junction as a func-

tion of the Zeeman field. As one can see, the critical current is

finite in the trivial P = 1 state when |B| < Bmin (i.e., λ > 1), and

drops to zero in the nontrivial P = −1 state when |B| > Bmax

(i.e., λ < −1) state. The drop of the critical current is smooth in

the intermediate region where Bmin < |B| < Bmax (i.e., |λ| < 1).

Analogously, Figure 4c shows the critical current of the

junction as a function of the electric gate ε at constant field B.

The smooth transition is obtained for intermediate values

 < ε < |B| the Zeeman field varies in the range

Bmin < |B| < Bmax, where we remind that Bmin = |ε| and

Bmax = . In the intermediate region, when the system

approaches its nontrivial state, the critical current coincides with

the magnitude of the discontinuous drop Ic = |ΔI| (dots in the

figures). Hence, a measure of the critical current at low temper-

ature can be used to indirectly probe the magnitude of the

discontinuous drop and the existence of topological phase tran-

sitions and zero-energy modes even when a direct measure of

the CPR is not accessible [72]. It is reasonable to speculate that

the current discontinuities may indicate a topological transition

also in the interacting case.

Conclusion
We have shown that a quantum dot coupled with two supercon-

ducting leads can realize a 0D topological superconductor with

broken time-reversal symmetry. In this system, topological

phase transitions between trivial and nontrivial states corre-

spond to discontinuities in the Josephson CPR at low tempera-

tures and to the presence of zero-energy modes. This simple

model, which can be treated analytically, fully confirms the

results obtained in a more general model in [50].

The topological phase transitions and the ensuing current

discontinuities are robust, in the sense that cannot be removed

by small perturbations. A direct measure of the CPR [71,73-75]

or of the Josephson radiation [38,76,77] at low temperatures can

reveal the presence of such discontinuities. Moreover, the pres-

ence of the topological transition can be probed indirectly by a

measure of the critical current of the junction as a function of

the Zeeman field or gate voltage.
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Abstract
Majorana modes emerge in non-trivial topological phases at the edges of specific materials such as proximitized semiconducting

nanowires under an external magnetic field. Ideally, they are non-local states that are charge-neutral superpositions of electrons and

holes. However, in nanowires of realistic length their wave functions overlap and acquire a finite charge that makes them suscep-

tible to interactions, specifically with the image charges that arise in the electrostatic environment. Considering a realistic three-

dimensional model of the dielectric surroundings, here we show that, under certain circumstances, these interactions lead to a

suppression of the Majorana oscillations predicted by simpler theoretical models, and to the formation of low-energy quantum-dot

states that interact with the Majorana modes. Both features are observed in recent experiments on the detection of Majoranas and

could thus help to properly characterize them.
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Introduction
Semiconducting nanowires with strong spin–orbit interaction,

such as InAs or InSb, are becoming ideal systems for the artifi-

cial generation of topological superconductivity [1-3]. In addi-

tion to its fundamental interest, such nanowires that may host

Majorana bound states (MBSs) at their ends or interfaces [4,5]

constitute promising platforms for Majorana-based quantum

computing devices [6-9]. Progress in fabrication techniques has

allowed to induce a hard superconducting gap in InAs [10] or

InSb [11] nanowires with epitaxially deposited Al layer. More-

over, last-generation devices exhibit a very low degree of

disorder, which allows them to almost reach the ballistic limit

[12-14].

In spite of these advances, the experimental signatures of MBSs

in the nanowire devices deviate significantly in several aspects

from the theoretical predictions of minimal models. This is the

case, for instance, regarding the behavior of the subgap conduc-

tance through the proximitized nanowire, which has been

https://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:elsa.prada@uam.es
https://doi.org/10.3762%2Fbjnano.9.203


Beilstein J. Nanotechnol. 2018, 9, 2171–2180.

2172

addressed in several experiments [10,12-19]. In a long wire (the

length of which is much greater than the induced coherence

length) the presence of MBSs manifests itself in the appearance

of a zero-bias conductance peak the width of which is con-

trolled by the normal-state conductance [20]. However, for

typical wire lengths explored in actual experiments, which are

of the order of a few micrometers, it is expected that the overlap

between MBSs located at both ends of the wire gives rise to

conventional Andreev bound states that deviate from zero

energy, leading to an oscillatory pattern in the low-bias conduc-

tance as a function of Zeeman field, chemical potential or wire

length [21-23]. Conspicuously, in most of the available experi-

mental data the emergence of a robust zero-bias conductance

peak is observed above some critical Zeeman field without the

expected oscillatory pattern [12,19,24,25]. Several mechanisms

have been proposed to account for the reduction or lack of

oscillations, such as smooth confinement [21,26-28], strong

spin–orbit coupling [29], position-dependent pairing [30],

orbital magnetic effects [31], Coulomb repulsion among the

carriers in the nanowire [22], or the presence of the normal

drain lead connected to the hybrid wire [32].

Another source of Majorana oscillation suppression was put

forward by some of us in a recent work [33]. The key realiza-

tion is that MBSs in a finite-length wire posses a finite charge,

typically distributed uniformly along the wire [34], which can

be susceptible to electrostatic interactions with the surrounding

medium. We considered the case of a grounded parent super-

conductor, thus avoiding the effect of a charging energy associ-

ated to the Cooper pairs, and showed that, in such case, a

residual effect of interactions may arise from the image charges

induced in the electrostatic environment of the nanowire. Using

a simple model for the induced potential we concluded that, in

typical experimental setups, interactions would lead to pinning

of the MBSs to zero energy around parity crossings and, thus, to

more robust zero-bias conductance peaks than predicted by the

non-interacting models.

The aim of the present work is to test the validity of the predic-

tions of [33] for the case of more realistic calculations of the in-

duced electrostatic potential, taking into account the actual

three-dimensional (3D) geometry as well as the effect of nearby

metallic leads. We consider the geometry depicted in Figure 1a,

where a nanowire of rectangular cross section lies on an insu-

lating substrate (typically SiO2) and is contacted to a thin super-

conducting (SC) layer on one of its faces and to two bulk

normal leads at both ends, separated by thin insulating barriers.

In Figure 1a we indicate the characteristic dielectric constants of

each region, which are relevant for the calculation of the

induced potential through Poisson’s equation (discussed

below). Our aim is to solve this equation together with the

Bogoliubov–de Gennes equation for determining self-consis-

tently the charge density ρ(x) along the nanowire. For this

purpose we derive a generalized method of image charges that

allows us to calculate the induced potential under rather general

conditions, taking into account a 3D electrostatic environment

as the one shown in Figure 1a.

Figure 1: (a) Schematic representation of the setup analyzed in the
present work. A nanowire of rectangular cross section (green) lying on
an insulating substrate (grey) and in contact to a thin metallic layer in
one of its faces (light blue), corresponding to the parent supercon-
ductor, and two normal metal leads at its ends (orange) separated by
tunnel barriers (brown). Typical values for the dielectric constants for
each region are indicated. (b) Low-energy spectrum as a function of
the chemical potential μ for a wire of thickness W = 100 nm and
length L = 1 μm. Other parameters are the spin–orbit coupling
α = 20 nm·meV, the induced pairing energy Δ = 0.3 meV and the
Zeeman energy VZ = 2 meV. Electrostatic environment-induced zero-
energy pinned regions between Majorana oscillations are indicated in
red. Quantum-dot levels (in blue), occurring at the edges of the wire
due to the interaction with the bulk contacts, anticross with Majorana
levels and remove their zero-energy pinning.

We find two main effects coming from this interaction, which

are exemplified in Figure 1b. One is, as stated before, the

suppression of Majorana oscillations around parity crossings

(zero-energy crossings where the total fermion parity of the

wire changes), both as a function of the Zeeman energy VZ and

the chemical potential μ of the wire. This effect is produced

because, at each parity crossing, a finite Majorana charge QM

enters the wire from the reservoir in an abrupt fashion. If the

electrostatic screening is smaller inside the wire than in the

reservoirs, a repulsive interaction is produced between the in-

coming charge and its images, preventing its entrance. This
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translates into finite regions in parameter space (in red in

Figure 1b) where Majorana modes are pinned to zero energy

within a finite range of VZ or μ proportional to the Majorana

charge QM and the strength of the interaction. This was already

shown in [33] but for a simplified dielectric profile where the

presence of the superconducting shell had been ignored. We

here include it and find that the size of the pinned regions

decreases but the pinning effect is still present under certain

conditions that we discuss in detail below. Moreover, we

explain the incompressible behavior of the electron liquid

within these pinned regions in terms of the Majorana wave

functions and their charge.

Another important effect of the electrostatic environment unex-

plored before is the creation of deep potential wells at the ends

of the wire close to the bulk metallic electrodes. These wells,

obtained explicitly here through the self-consistent calculation,

are similar to the confinement potentials typical of quantum

dots. Localized quantum dot-like energy levels in these regions

disperse with magnetic field (or chemical potential) and appear

below the induced gap in the wire spectrum (in blue in

Figure 1b). In the topological regime, dot-like levels interact

with Majorana states, anticrossing them when they approach

zero energy. Similar phenomena were observed in some experi-

ments [14,19], and have been likely found on other occasions

but discarded by experimentalists looking for the simpler

picture. Interestingly, it has been shown that the shape of these

anticrossings can be used to quantify the degree of non-locality

of the Majorana wave functions [35,36], a prediction that has

been experimentally demonstrated recently [25]. Here, we show

that if the interaction between dots and Majorana levels occurs

in a pinning region, Majorana levels are forced to depart from

zero energy, revealing the existence of a finite wave function

overlap between them in spite of their zero energy. We analyze

this behavior again in terms of the wave functions of Majorana

state and dot and their charge.

The paper is organized as follows: in the following section we

provide insight into the theoretical model used to treat interac-

tions. In the next section we analyze the case in which the influ-

ence of the bulk normal leads can be neglected, recovering the

pinning effect found in [33] for a repulsive electrostatic envi-

ronment. However, we focus here on the electrostatic environ-

ment effects on the Majorana wave function, rather than on its

spectral properties. In the next section we study the effect of in-

cluding the bulk normal leads of Figure 1a, finding that they

give rise to the formation of quantum dot-like bound states. We

further analyze the interplay of such states with the MBSs.

Finally, we present the conclusions of our work. The robust-

ness of the pinning effect is analyzed in detail in Section 4 of

Supporting Information File 1.

Model and Theoretical Approach
We model the electronic states along the proximitized Rashba

nanowire of length L using the following single-channel Hamil-

tonian [4,5]

(1)

where  is a Nambu bi-spinor, ψ↑,↓(x) are

electron annihilation operators, and σ and τ are the Pauli

matrices in spin and Nambu space, respectively. The model is

defined by setting the parameters m*, μ, α, VZ and Δ, corre-

sponding to the effective mass, the chemical potential, the

spin–orbit coupling, the Zeeman energy caused by an external

magnetic field, and the induced SC pairing potential, respective-

ly.

In Equation 1, we also include the electrostatic potential 

felt by charges in the nanowire, which can be decomposed as

, where  is the potential that arises

from the free charges inside the nanowire, while  corre-

sponds to the potential created by bound charges that emerge in

the electrostatic environment. We compute the electrostatic

potential using Poisson’s equation

(2)

where  is the non-homogeneous dielectrical permittivity of

the entire system and  is the quantum and thermal aver-

age of the charge density of the nanowire obtained with Equa-

tion 1. The intrinsic part  of the potential satisfies an

analogous equation with a uniform ε equal to that of the nano-

wire. The geometry depicted in Figure 1a is taken into account

through a piecewise  function where each material is char-

acterized by a different dielectric constant, so that  changes

abruptly at the interfaces. Then, assuming that the charge densi-

ty in the nanowire is located along its symmetry axis (x-axis),

we obtain the electrostatic potential  using the method of

image charges, as explained in detail in Section 1 of Supporting

Information File 1. More precisely,  is given by

where Vb(x,x′) is a kernel determined in order to satisfy the

proper boundary conditions. We find analytical expressions
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for Vb(x,x′). They are simple but rather lengthy and are given in

Supporting Information File 1 for two different cases:

neglecting the effect of the bulk normal leads at the wire ends

and including it. The results for these two cases are analyzed in

the following sections.

The obtained potential  on the nanowire axis should

be  p lugged  back  in to  Equat ion  1 .  The  combined

Poisson–Schrödinger problem must then be iterated until it

achieves self-consistency. As shown in [33], the  part of

the electrostatic solution (i.e., the intrinsic electron–electron

interaction part of the problem), treated at the Hartree–Fock

level, has a negligible effect on the low-energy spectrum in the

topological regime. We may therefore concentrate only on the

self-consistency with . In Section 2 of Supporting Infor-

mation File 1 we explain in detail the self-consistent numerical

method used to compute the electrostatic potential profile as

well as the eigenvalues and eigenvectors of Equation 1. For

completeness, in Section 3 of Supporting Information File 1 we

also show the effect of including the intrinsic interaction from

, proving that its effect is small and that the main contri-

bution stems from .

In the following calculations, we consider the dielectric con-

stants shown in Figure 1a. For the dielectrics materials, i.e., the

wire, the substrate and the surrounding medium, we use typical

values [37] of ε = 17.7, εd = 3.9 and εa ≈ 1, respectively. For the

metallic leads we assume that, because they are bulky, they

screen external electric fields perfectly, i.e., εM→∞). This may

not be the case for the SC shell, the capability of which for

screening external electric fields may be weaker due to its small

thickness and the unavoidable presence of disorder [38]. If this

is the case, it is then characterized by a finite effective dielec-

tric permittivity which depends on the SC shell width as well as

its composition, as we show in Section 1 of Supporting Infor-

mation File 1. Some experiments [39] have reported that for

ultrathin metallic layers (ca. 5–10 nm) it is of the order of

εSC ≈ 100. For these values, as we show in the next section, we

find a repulsive environment, i.e., an environment the effective

permittivity of which is smaller than that of the wire so that the

bound charges that arise at the interfaces have on average the

same sign as the free charges. We consider in Section 4 of Sup-

porting Information File 1 the generality of our results as a

function of the dielectric constant of the SC and the location of

the charge density within the nanowire section. Below, in

Figure 4c we show that, when the charge density is fixed at the

center of the wire, as εSC becomes larger the dielectric environ-

ment turns into an attractive one and the pinning effect is even-

tually lost. This, however, strongly depends on the location of

the charge density. If, as pointed out in [40], it happens to be

close to the SC shell, the screening effect is larger and the

Figure 2: Majorana nanowire subject to interactions from the electro-
static environment (ignoring the influence of the bulk normal leads at
its ends). (a) Schematic of the dispersion relation of the nanowire in
the absence and in the presence of a Zeeman field. (b) Self-consistent
induced potential energy  along the length of the wire for in-
creasing values of the Zeeman splitting. Wire parameters as in
Figure 1b and with μ = 0.5 meV. (c) Energy difference between the
Fermi level and the band bottom at the center of the nanowire, VZ + μ
− (L/2), and (d) total charge Qtot of the nanowire as a function of VZ
for the non-interacting (dashed) and interacting (solid line) cases. Red
curves highlight parameter regions for which there is interaction-in-
duced zero-energy pinning in the spectrum.

pinning is suppressed. Nevertheless, as we analyze below in

Figure 4e, even if εSC→∞, the pinning effect remains when the

wave function is located further away from the SC.

Results and Discussion
Results without bulk normal leads
It is convenient to start by analyzing the simpler case in which

we neglect the effect of the bulk normal leads in the induced

potential . As an example we consider a nanowire of width W

= 100 nm, length L = 1 μm and the following choice of realistic

parameters: m* = 0.015me, α = 20 nm·meV, Δ = 0.3 meV,

μ = 0.5 meV and T = 10 mK. These could correspond, for ex-

ample, to an InSb nanowire in contact to an Al superconducting

shell [14], but similar results are obtained for InAs wire param-

eters [19]. For an infinite wire, a schematic representation of the

energy bands is shown in Figure 2a in the absence and in the

presence of a Zeeman field. At zero temperature, the occupied

states below the Fermi level are those between the horizontal

dashed line and the band bottom. Apart from a small contribu-

tion coming from the spin–orbit energy, the position of the band

bottom is controlled by the chemical potential of the wire μ, the

Zeeman energy VZ and the induced potential energy . The

magnetic field lowers the band bottom, charging the wire,

whereas the induced potential energy, coming from electro-

static repulsion, tends to compensate that trend. In the finite-
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Figure 3: Majorana wave functions in the non-interacting case: Energy levels (a) and the absolute value of the Majorana charge QM (b) as functions
of the Zeeman energy. Panels (c–f) show the wave-function probability profiles of the two lowest-energy states in the Majorana basis at selected
values of the Zeeman field within the topological region. When the splitting is maximum (green circles and yellow triangles) the left and right Majorana
wave-function oscillations are out of phase, whereas when the splitting is zero (orange square) they are in phase.

length wire, the evolution of the induced potential profile along

the nanowire length (x-axis) for different Zeeman fields is

shown in Figure 2b. As can be observed, the induced potential

tends to expel charge from the center of the wire, where it is

positive, while it bends downwards at its ends. On the other

hand, the evolution of the potential with Zeeman field exhibits a

step-like behavior with regions where it increases linearly with

VZ (red curves), screening the magnetic field effects, and

regions where it remains almost constant as VZ increases

(grey curves). This causes the electron fluid to behave in an

incompressible or compressible manner, respectively. This

different behavior can be clearly seen in Figure 2c where the

electrochemical potential at the center of the wire, given by

VZ + μ − (L/2), is plotted as a function of the Zeeman split-

ting, both in the presence and absence of interactions.

The effect of this peculiar evolution of the electrostatic poten-

tial has direct consequences on the spectral properties of the

wire, as we analyze below in Figure 4, but for comparison, let

us first see what happens in the non-interacting case. The spec-

trum of the wire is shown in Figure 3a. There we can observe

the emergence of low-energy subgap states for ,

corresponding roughly to the critical field for the bulk topolog-

ical transition. We also obtain the typical energy oscillations

produced by overlapping Majorana wave functions due to the

finite length of the wire [21-23]. More insight can be obtained

by analyzing the evolution of the total charge of the wire

 as well as the Majorana charge QM, the

absolute value of which is given by

(3)

Here, Q±1 are the charges corresponding to the even/odd

lowest-energy eigenstates ψ±1, and uL,R are the electron compo-

nents of the Majorana wave functions γL = ψ+1 + ψ−1 and

γR = −i(ψ+1 − ψ−1). The total charge increases in general with

magnetic field but, for finite length wires, it does so by jumping

abruptly a quantity equal or smaller than e at each parity

crossing (where the Majorana oscillations cross zero energy and

the electron parity of the wire changes from even to odd or vice

versa), as shown in Figure 2d, dashed curve. This abrupt change

in charge is actually injected into the fermion state created by

the two overlapping Majoranas and is given by |QM| at the

parity crossings. The (oscillatory) evolution of |QM| with the

magnetic field is given in Figure 3b. Strikingly, |QM| is

maximum at the parity crossing, where the energy is zero, and

goes to zero at the oscillation cusps. As the length of the wire

approaches to infinity, QM approaches zero (not shown).

Indeed, the finite value of QM at the parity crossings is a direct

measurement of the Majorana overlap, as shown in [33]. Note

that the Majorana overlap is defined similarly to the right-hand

side of Equation 3, but with the absolute value inside the inte-

gral.

The behavior of the Majorana wave functions is illustrated in

Figure 3c–f. The probability density for the left and right Majo-

rana wave functions exhibits an overall decay towards the
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Figure 4: Same as Figure 3 but for the interacting case (without leads). In the pinned regions the Majorana wave functions remain in-phase as a func-
tion of the Zeeman field and the Majorana charge (b) freezes at its local maximum value (in red), instead of continuing the oscillation as in the non-
interacting case (dashed curve).

center of the wire controlled by the length  and an

oscillatory pattern controlled by λF[41,42]. Moreover, the num-

ber of oscillations that fit in L increases by one with Zeeman

field at each parity crossing. Interestingly, we observe that the

left–right oscillatory patterns are out of phase for the cases

where the splitting of the MBSs is maximum (Figure 3c,e. This

minimizes the left–right wave function overlap and the Majo-

rana charge goes to zero. On the other hand, the oscillations are

in phase (Figure 3d) when the energy splitting is zero, at the

parity crossings, producing a maximum in |QM| and overlap. Al-

though the Majorana wave functions are more strongly located

at the wire edges, we note that the charge density of this fermi-

onic state is uniform across the wire [34] and, thus, it is

uniformly affected by the interaction with the environment

when this is present.

When interactions with the image charges occur, the single-

point parity crossings as a function of VZ in the spectrum are

replaced by extended regions where the subgap states remain

pinned at zero energy, indicated by the red lines in Figure 4a.

The abrupt jumps in Qtot in the non-interacting case are

replaced by a linear increase with increasing values of VZ at

which zero-energy pinning occurs, see Figure 2d. This is a

consequence of the repulsive environment that inhibits the

entrance of charge in the wire where the electron liquid behaves

in an incompressible manner. On the other hand, the Majorana

charge remains basically constant at the pinning plateaus, as

shown in Figure 4b. The finite value of QM in these regions in-

dicates that zero-energy does not imply absence of overlap be-

tween the left and right Majorana states. This is actually a

common misconception that we would like to point out here.

The Majorana overlap, which is a measurement of the degree of

non-locality of the two Majorana wave functions, mostly

depends on the length of the nanowire (and to a lesser extent on

other parameters, such as the induced superconductor gap and

the Rashba coupling), but it is not necessarily correlated to the

Majorana energy splitting. Different mechanisms can reduce

this splitting, such as interactions with the environment as

studied here, smooth potential or gap profiles [21,26-28,30], or

orbital magnetic effects [31], and still leave the Majorana

overlap unaffected. The behavior of the Majorana wave func-

tions in this case is illustrated in Figure 4c–f. In the pinning

regions the Majorana wave functions remain practically frozen

and in phase. This in turn explains why |QM| is maximum in

these regions.

The generality of these results is analyzed in Section 4 of Sup-

porting Information File 1. There we show how the width of the

pinning plateau evolves with VZ when we change the chemical

potential, the dielectric permittivity or the width of the SC shell,

and the aspect ratio of the nanowire section. We find that

pinning remains for any chemical potential, while it vanishes

when the attractive contribution of the SC shell becomes domi-

nant over the dielectric repulsion.

Effect of bulk normal leads
In this section we analyze the effect of including the bulk

normal leads in the calculation of the induced potential .

Figure 5a illustrates the evolution of  with increasing Zeeman

field for the same set of parameters as in the previous section
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but including the normal contacts. While in the central region of

the wire a similar repulsive step-like evolution with VZ is found

(corresponding to compressible/incompressible electron fluid

behavior), significant attractive regions appear at the wire ends

produced by the metallic character (εM→∞) of the adjacent

leads. As we discuss below, these attractive regions give rise to

the formation of quantum-dot (QD)-like bound states that may

interact with the low energy subgap states of the Majorana wire.

Figure 5: Majorana nanowire subject to interactions from the electro-
static environment (including the influence of the bulk normal leads at
its ends). (a) Self-consistent induced potential energy  along the
length of the wire for increasing values of the Zeeman splitting. The
same wire parameters as in Figure 2 were used. Note that the main
effect of the bulk normal leads is to create confining potential wells at
the wire edges. (b) Barrier-like potential energy profile used to mimic
the self-consistent solution. Spectra of the Majorana nanowire as a
function of VZ in the (c) interacting case and in the (d) non-interacting
case but using the potential profile model of (b). (e, f) Evolution of the
total charge Qtot with Zeeman splitting for the two previous cases, re-
spectively. Red color indicates incompressible electron fluid behavior
as before, while blue color indicates QD-like behavior due to the
metallic contacts.

The evolution of the spectral properties and of the total charge

Qtot in this case are shown in Figure 5c and Figure 5e. On one

hand, we observe that the pinning plateaus around each parity

crossing (in red) are still present although with a smaller width.

On the other hand, the main effect of the presence of the attrac-

tive potential regions is the appearance of four additional

energy levels (two per contact, in blue) that approach zero

energy for a value of VZ of about 2.5–3.0 meV. At the same

time we observe a rather abrupt decrease in the total wire charge

(of roughly 2e), see Figure 5e. We can associate these addition-

al levels with QD-like bound states arising in the attractive

regions of the induced potential that anticross with the Majo-

rana levels when their energies are on resonance [35,36,43,44].

To demonstrate the validity of this interpretation we show in

Figure 5d and Figure 5f, respectively, the spectral properties

and the total charge evolution for an isolated wire with a simple

double potential well taken to mimic the effect of the electro-

static environment, shown in Figure 5b. Notice that in this case

we do not attempt a self-consistent calculation but rather

include the Zeeman field as a rigid shift of the two spin bands

(like in the non-interacting case but with an inhomogeneous

potential profile). Although the zero-energy pinning is not

captured by this model, one can clearly observe the presence of

four levels coming down towards zero energy for a value of VZ

of about 2.5–3.0 meV, as in the interacting case. The presence

of these states is a consequence of the renormalization of the

topological phase transition due to the electrostatic potential

(either  or ):

(4)

which is not constant along the wire because  (or )

depend on x. For the shown values of VZ, only the central part

of the wire is in the topological regime ( ), correspond-

ing to an effectively shorter Majorana wire, whereas the outer

parts are trivial ( ), corresponding to two effective QDs

attached to it. Specific details of how QD levels interact with

Majorana nanowire ones can be found in [35,36,43-45].

Further information about the nature of the low-energy states at

VZ≈ 3 meV is provided in Figure 6 where we plot the wave-

function probability profiles (in the Majorana basis) of the low-

energy states around the QD–Majorana levels anticrossing. For

simplicity, we consider only the case of the potential barrier

model. At the anticrossing, the Majorana and dot states merge

and cannot be really told apart, but we will refer to the two

lowest in energy as Majorana levels and to the other two as dot

levels. As can be observed, at the anticrossing the Majorana

levels (green circle) leak into the QD regions leaving the central

(topological) part practically void. Conversely, the two dot-like

states (immediately above in energy, orange squares) penetrate

and delocalize along the wire. When the Zeeman field increases

and the QD and Majorana levels are detuned, the dot states

depart from low energy (pink rhombus) and from the topolog-

ical part of the wire, whereas the usual overlapping behavior of

the MBSs is recovered but with the Majoranas bound to the

effective topological edges (yellow triangle). The absolute value

of the Majorana charge as a function of VZ is shown in
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Figure 6: Evolution with Zeeman field of the spectrum (a) and the absolute value of the Majorana charge QM (b) for the barrier-like potential model of
Figure 5b. Panels (c) and (e) show the wave-function probability profile (in the Majorana basis) of the two lowest-energy states at the VZ values indi-
cated in (a). Panels (d) and (f) show the same but for the second and third energy states (QD-like states). At the QD–Majorana levels anticrossing, the
Majorana wave function leaks into the dot regions leaving the topological region of the wire practically void. This is manifested in |QM| by two consecu-
tive zeros, one per dot level (around VZ = 2.5 meV).

Figure 6b, calculated considering only the two lowest-energy

states (as before). At the anticrossing the Majorana charge oscil-

lation is distorted, see blue region, but the area below the curve

is conserved. The missing charge in Figure 5b does not come

from the Majorana states, but from the dot states. At the anti-

crossing region, the two QD states (one per potential well) that

were occupied (below the Fermi level) move upwards in energy

as the Zeeman field increases and cross the Fermi level,

emptying themselves. This is why in the blue regions of

Figure 5e,f the total charge of the wire does not increase at the

corresponding parity crossing, but instead decreases loosing

effectively twice the charge of an electron e.

Finally, we would like to point out that, when the dot levels

anticross the Majorana levels in a pinning region, the Majorana

states detach from zero energy. This can be seen in Figure 5c

and Figure 1b. The reason is that, although in the pinning

regions the Majorana energy is zero, their wave function

overlap is not. It is actually maximum, as explained when

discussing Figure 4. Each QD acts as a local probe (one couples

to the left topological region of the wire, the other to the right).

If the length of teh wire were large (much bigger than the coher-

ence length), left and right Majoranas would be disconnected

from each other, and a local probe coupled to one of them

would not be able to change its energy or perturb it. This is

actually the core manifestation of their topological protection.

However, when the length of the wire is finite and the Majo-

ranas overlap, each QD couples to both Majoranas at either end

and their energies are modified. The typical shapes of the anti-

crossing were recently analyzed and can be used to quantify the

degree of Majorana non-locality [35,36].

Conclusion
In this work we have studied the low-energy characteristics of

Majorana nanowires while including their interaction with a

realistic 3D electrostatic environment. This is done by solving

self-consistently the Bogoliubov–de Gennes equation together

with the Poisson’s equation. Typically, the total charge of the

wire in equilibrium with the reservoirs increases with magnetic

field (or the chemical potential of the wire). However, if the

electrostatic screening is smaller inside the wire than at the

contacts, a repulsive interaction arises that leads to zero-energy

pinning around parity crossings in the spectrum of the wire.

While the screening due to the parent SC shell tends, in general,

to reduce this pinning effect, we find that it still persists

depending on the quality of the SC layer and the location of the

charge density within the nanowire. The pinning mechanism

could help explain the precise shape of the Majorana oscilla-

tions (or lack thereof) observed in some dI/dV experiments,

which exhibit substantial deviations from the predictions of

simple models for finite length wires.

On the other hand, and more importantly, the self-consistent

solution of the electrostatic potential varies nonhomogeneously

along the wire. It is relatively flat in the central region but, due

to the screening from the left/right metallic contacts, it becomes
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strongly negative at the edges. This creates potential wells that

confine QD-like states at the ends of the wire, which appear in

the spectrum as discrete states within the induced gap that

disperse with Zeeman energy or chemical potential. These QD

levels interact with the Majorana states in a specific way which

is strongly dependent on the Majorana wave function, and par-

ticularly on its degree of spatial non-locality. The pinning

mechanism and the coupling to QD-like states compete against

each other, so that the pinned zero-energy plateaus may become

lifted at resonance with the dot states, thus revealing their elec-

trostatic origin (as opposed to true wave function non-locality).

Supporting Information
Supporting Information File 1
Calculational details.

[https://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-9-203-S1.pdf]
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