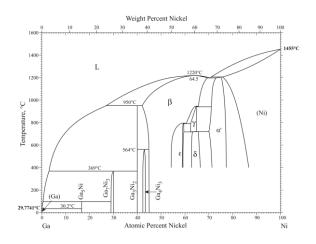
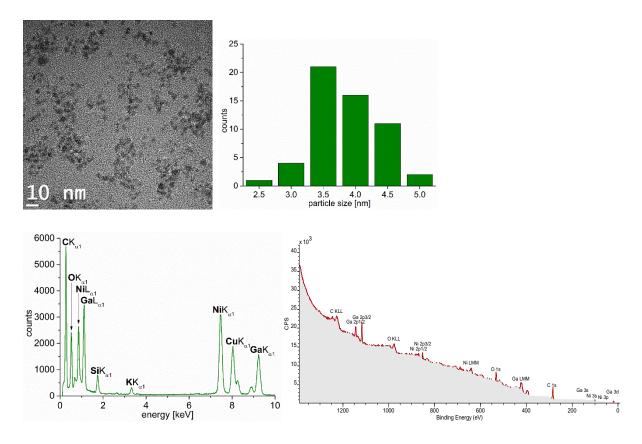


Supporting Information

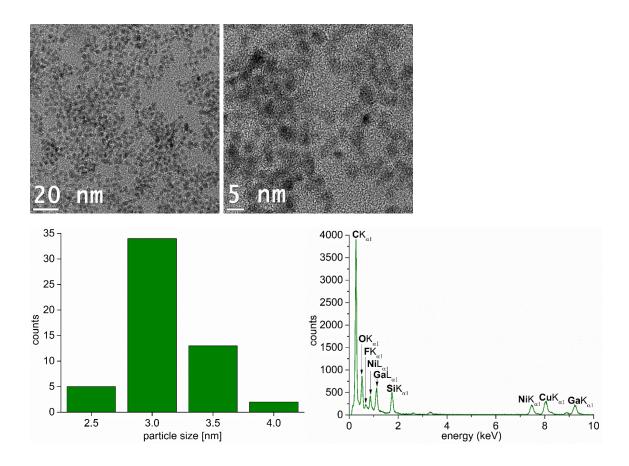

for

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

Ilka Simon, Julius Hornung, Juri Barthel, Jörg Thomas, Maik Finze, Roland A. Fischer and Christoph Janiak


Beilstein J. Nanotechnol. 2019, 10, 1754–1767. doi:10.3762/bjnano.10.171

Additional experimental details



Phase	Composition, at.% Ni	Pearson symbol	Space group	Strukturbericht designation	Prototype
(Ga)	0	oC8	Стса	A11	Ga
Ga₅Ni	16.7				
Ga ₇ Ni ₃	29-30	cI40	$Im\bar{3}m$	$D8_{ m f}$	Ge ₇ Ir ₃
Ga ₃ Ni ₂	40	hP5	$P\bar{3}m1$	D5 ₁₃	Al_3Ni_2
Ga₄Ni₃	42.4-43.4	cI112	Ia3d	•••	
β	42-69.4	cP2	$Pm\bar{3}m$	B2	CsCl
3	59-59.5			•••	
γ	62.5-65	hP4	$P6_3/mmc$	$B8_1$	NiAs
δ	63-66.5	oC16	Cmmm		Ga ₃ Pt ₅
α'	70-77	cP4	$Pm\bar{3}m$	$L1_2$	AuCu ₃
(Ni)	75.7-100	cF4	$Fm\bar{3}m$	$\overline{A1}$	Cu

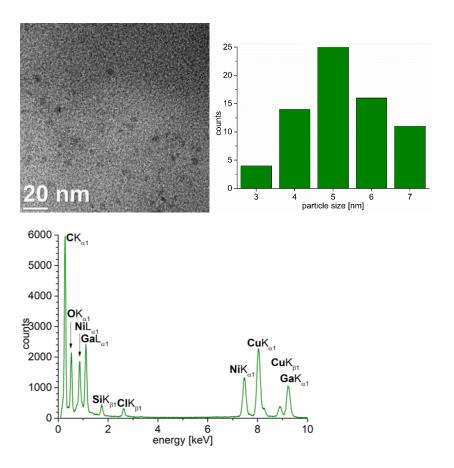

Figure S1: Phase diagram and crystal structure data for Ni/Ga taken from literature [1].

Figure S2: HR-TEM-Images and particle size distribution of the Ni/Ga-nanoparticles from 1 wt % dispersion of Ni(COD)₂ and GaCp* in [BMIm][BF₄] (top) with 24 hours dispersion time, 10 minutes microwave decomposition time. Particle size 2.5 ± 0.5 nm (65 particles counted). EDX- and XP-spectra (bottom). EDX-Quantification from three different spots on the TEM-Grid showed equimolar ratio of nickel to gallium of 41:59 atom % (± 1 atom %). No SAED-measurement was possible.

Figure S3: HR-TEM-Images of the Ni/Ga-nanoparticles from 0.5 wt % dispersion of Ni(COD) $_2$ and GaCp* in [BMIm][BF $_4$] (top) with 24 hours dispersion time, 20 minutes microwave decomposition. Particle size distribution 2.5 \pm 0.5 nm (56 particles counted) and EDX-spectra (bottom). EDX-Quantification from three different spots on the TEM-Grid showed equimolar ratio of nickel to gallium of 57:43 atom % (\pm 2 atom %). No SAED-measurement was possible.

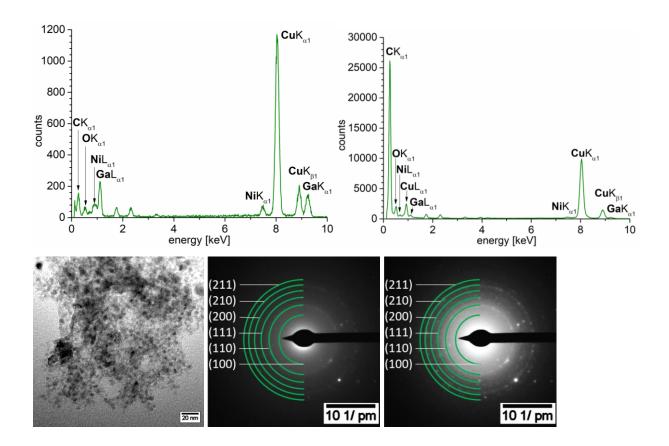

Figure S4: HR-TEM-Images and particle size distribution of the Ni/Ga-nanoparticles from 0.5 wt-% dispersion of Ni(COD)₂ and GaCp* in propylene carbonate (PC). 24 hours dispersion time before decomposition, 20 minutes microwave decomposition. Particle size 5 ± 1 nm (70 particles counted). EDX-Quantification from three different spots on the TEM-Grid showed equimolar ratio of nickel to gallium of 45:55 atom % (± 1 atom %). No SAED-measurement possible.

Table S1: Comparison of d-spacing values (hkl-index) of experimental results (exp.) vs NiGa, Ga and Ga-rich phases. For literature d-spacing values the nine most intense reflections were chosen.

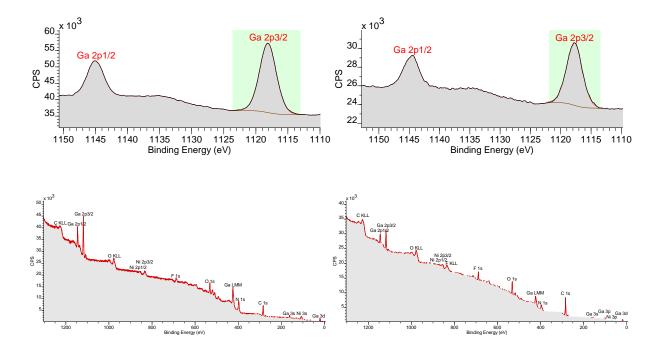
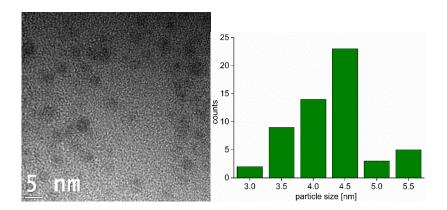
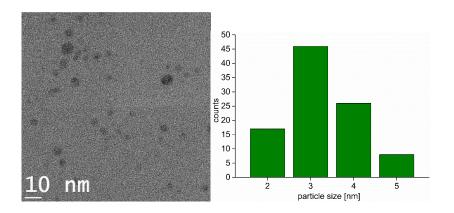
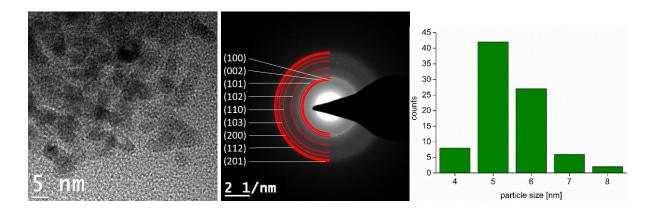
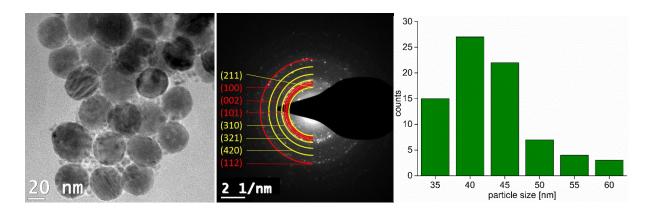

ехр.	NiGa [<i>Pm</i> 3 <i>m</i>]	Ga [<i>Cmce</i>]	Ni₃Ga₄ [<i>la</i> 3̄ <i>d</i>]	Ni₂Ga₃ [<i>P</i> 3̄ <i>m</i>]	Ni₃Ga ₇ [<i>Im</i> 3̄ <i>m</i>]	NiGa₅ [<i>I</i> 4/ <i>mcm</i>]
0.398		0.382 (020)	0.466 (211)	0.489 (001) 0.351 (100)	_	_
0.283	0.288 (100)	0.294 (111)	0.305 (321) 0.285 (400)	0.285 (101)	0.267 (310) 0.244 (222)	0.271 (211)
0.231		0.225 (200)	_	_	0.226 (321)	0.223 (220) 0.213 (114/213)
0.201	0.204 (110)	0.199 (131)	0.208 (521) 0.202 (440)	0.203 (110) 0.201 (102/012)	0.199 (330/411)	0.200 (310) 0.193 (204)
0.181		0.178 (221)	_		0.189 (420)	_
0.164	0.167 (111)		0.165 (444)	_	0.172 (422)	_
0.141	0.144 (200)	0.140 (023)	0.143 (800)	0.143 (202)	0.149 (440) 0.141 (600)	-
0.134	0.129 (210)		_	_	_	0.132 (404)
0.127		0.124 (331) 0.122 (152)	0.128 (840)	-	_	0.127 (334) 0.125 (217)
0.121	0.118 (211)	0.119 (223)	0.117 (844)	0.117 (300) 0.117 (122/212̄) 0.115 (104)	0.115 (633)	_

Table S2: EDX-quantification results from NiGa- and Ga(Ni)-nanoparticles in [BMIm][NTf₂], 1 hour and 12 hours dispersion time.


mostly large Ga(Ni)- next to some small NiGa-nanoparticles in [BMIm][NTf ₂], 1 hour dispersion time							
spot number	#1	#2	#3	Ø	σ		
Ni (K) [%]	28	24	30	28	2		
Ga (K) [%]	72	76	70	72	2		
NiGa- and Ga(Ni)-nanoparticles in [BMIm][NTf ₂], 12 hour dispersion time							
spot number	#1	#2	#3	Ø	σ		
Ni (K) [%]	36	38	40	38	1		
Ga (K) [%]	64	62	60	62	1		


Figure S5: Top: EDX-spectra of mostly large Ga(Ni)-nanoparticles (left) and only small NiGananoparticles (right) from a 0.5 wt % dispersion of Ni(COD)₂ and $GaCp^*$ in [BMIm][NTf₂] after 1 hour dispersion time prior to 30 min decomposition. Bottom: HR-TEM-image of NiGananoparticles. SAED with indexed reflections for NiGa (green diffraction rings for space group $Pm\overline{3}m$) with two different contrasts.


Figure S6: Top: HR-XP-spectral region of the Ga 2p_{1/2} and 2p_{3/2}-orbital of NiGa/ Ga(Ni)-nanoparticles samples obtained by microwave-induced decomposition after 1 hour dispersion time (left) and 12 hours dispersion time (right). Bottom: full XP-spectra of NiGa/ Ga(Ni)-nanoparticles samples obtained by microwave-induced decomposition after 1 hour dispersion time (left) and 12 hours dispersion time (right).


Figure S7: HR-TEM-Images and particle size distribution of the Ni-nanoparticles from 1 wt % dispersion of Ni(COD)₂ and GaCp* in [EMIm][B(CN)₄]. 30 minutes dispersion time, 30 minutes microwave decomposition. Particle size: 4 ± 1 nm (56 particles counted). EDX-Quantification from three different spots on the TEM-Grid showed only nickel. No SAED-measurement possible.

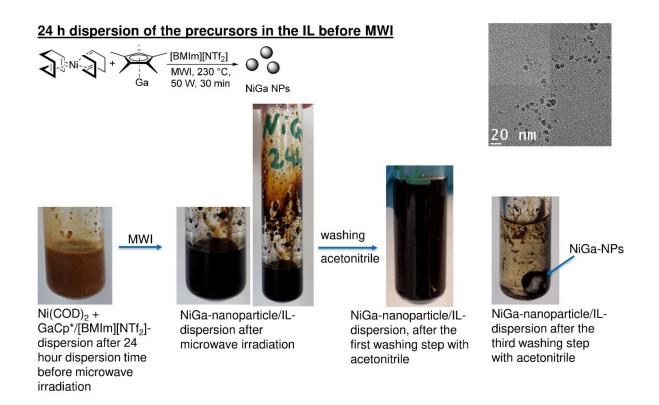

Figure S8: HR-TEM-Images and particle size distribution of the Ni/Ga-nanoparticles from 1 wt % dispersion of Ni(COD)₂ and GaCp* in [EMIm][B(CN)₄]. 24 hours dispersion time, 30 minutes microwave decomposition. Particle size: 4 ± 1 nm (97 particles counted). EDX-Quantification from different spots on the TEM-Grid showed No SAED-measurement possible.

Figure S9: TEM-image and particle size distribution of 1.0 wt % Ni-nanoparticles in $[EMIm][FB(CN)_3]$ from Ni(COD)₂ and GaCp*. 1 hour dispersion time, 30 minutes microwave decomposition. SAED with indexed reflections for Ni (space group: $P6_3/mmc$), particle size: 5 ± 1 nm (85 particles counted). EDX-Quantification from this spot showed ratio of nickel to gallium of 87:13 atom % (± 1 atom %).

Figure S10: TEM-image and particles size distribution of 1.0 wt % Ni- and Ga(Ni)-nanoparticles in [EMIm][FB(CN)₃] from Ni(COD)₂ and GaCp*. 1 hour dispersion time, 30 minutes microwave decomposition. SAED with indexed reflections for Ni (red diffraction rings for space group: $P6_3/mmc$) and Ga (yellow diffraction rings for space group: $I\overline{4}3d$), particle size: Ni: 5 ± 1 nm, Ga(Ni): 40 ± 5 nm. EDX-Quantification from this spot showed ratio of nickel to gallium of 49:51 atom % (± 1 atom %).

Figure S11: preparation of NiGa-nanoparticles from 24 hour dispersion time and 30 minutes decomposition time.

Table S3: Semihydrogenation of 4-octyne to 4-octene using IL-free, precipitated NiGa-nanoparticles in comparison to NiGa@[BMIm][NTf₂].^a

	NiGa-nanoparticles				NiGa@[BMIm][NTf ₂]			
	conversion	selectivity	TON	TOF	conversion	selectivity	TON	TOF
		4-octene				4-octene		
	[%]	[%]	_	[h ⁻¹]	[%]	[%]	-	[h ⁻¹]
run 1	93–96	82–89	157	170	15-19	100	384	128
run 2	92–93	95–100	175	211	10	100	322	107
run 3	82–92	96–100	143	154	20	100	558	186

^a 0.1 g NiGa@[BMIm][NTf₂] dispersion (1 wt % = 0.001 g in total metal, 7.8 μmol NiGa) and 2 g (2.7 mL, 18.2 mmol) of degassed dry 4-octyne (molar NiGa:substrate ratio = 1:2331) were stirred under 5 bar H₂ at 120 °C for 3 h. Runs 1–3 were carried out with the same catalyst by removing the products in high vacuum. In a typical catalytic test reaction 10 mg precipitated, IL-free NiGa-nanoparticles (77 μmol) and 1 g (1.35 mL, 9 mmol) of degassed dry 4-octyne (molar NiGa:substrate ratio = 1:115) were stirred under 5 bar H₂ at 120 °C. Runs 1–3 were carried out with the same catalyst by removing the products in high vacuum. TON per run (TON = mol_{substrate}/mol_{catalyst}). TOF [h⁻¹] per run (TOF = mol_{substrate}/(mol_{catalyst}*time)).

Table S4: Mass of Ni(COD)₂, GaCp* IL and PC, wt % total metal dispersion, dispersion and decomposition times in IL or PC.

	IL/PC	Ni(COD) ₂	GaCp*	wt % total	dispersion	decomp.	
IL/PC	g	`mg ´	mg	metal	time	time	
	(mL)	(mmol)	(mmol)	dispersion	[h]	[min]	
[PMIm][PE.]	1.9341	43.1	31.8	0.995	24	10	
[BMIm][BF ₄]	(1.51)	(0.157)	(0.154)	0.995	24	10	
[BMIm][BF ₄]	1.2012	13.1	9.8	0.499	24	20	
	(0.94)	(0.048)	(0.048)	0.499		20	
[BMIm][NTf ₂]	1.2064	13.1	10	0.502	24	10	
	(0.84)	(0.048)	(0.049)	0.502	27	10	
[BMIm][NTf ₂]	0.9998	12.6	8.2	0.544	24	30	
[Divining[ivinz]	(0.70)	(0.046)	(0.040)	0.044			
[BMIm][NTf ₂]	1.0057	11.7	10.3	0.572	1	30	
[Billing[ivi12]	(0.70)	(0.043)	(0.050)	0.072			
[BMIm][NTf ₂]	1.0023	22.3	19.4	1.066	12	30	
	(0.70)	(0.081)	(0.094)	1.000			
PC	1.2001	13.1	10.0	0.504	24	20	
. •	(1.00)	(0.048)	(0.0049)	0.001			
[EMIm][B(CN) ₄]	1.0015	22.4	18.4	1.0045	0.5	30	
[=][=(=)4]	(0.96)	(0.081)	(0.089)	1.0010	0.0		
[EMIm][B(CN) ₄]	0.2533	8.8	6.2	1.493	24	20	
[=][=(=::)+]	(0.24)	(0.032)	(0.030)				
[EMIm][BF(CN) ₃]	1.0045	22.5	17.6	1.025	1	30	
[=][=: (=::)0]	(0.94)	(0.082)	(0.085)				
[EMIm][BF(CN) ₃]	0.3156	10.6	7.9	1.478	24	30	
[=][=: (=:4/3]	(0.19)	(0.039)	(0.038)				
[BMIm][NTf ₂]	1.0586	_	15.6	0.492	24	60	
[=][2]	(0.74)		(0.076)	002			

¹ H. Okamoto, *J. Phase Equilib. Diffus.* **2010**, *31*, 575–576.