

Supporting Information

for

Facile synthesis of carbon nanotube-supported NiO//Fe $_2$ O $_3$ for all-solid-state supercapacitors

Shengming Zhang, Xuhui Wang, Yan Li, Xuemei Mu, Yaxiong Zhang, Jingwei Du, Guo Liu, Xiaohui Hua, Yingzhuo Sheng, Erqing Xie and Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923-1932. doi:10.3762/bjnano.10.188

Specific capacitance calculation and additional figures

Calculation

The specific capacitance from GCD can be calculated [1] by the equation

$$c_{s} = \frac{I * \triangle t}{m * \triangle V} \tag{S1}$$

Where c_s is the specific capacitance (F g⁻¹), I is the response current (A), m is the mass of active material (mg), Δt is the discharge time (s), and ΔV is the voltage window (V).

The capacity (C) of the single cell is calculated by the equation

$$C = \frac{c_s}{3.6} \tag{S2}$$

The specific capacitance of full cells can be calculated by equation (S1). The energy density of the device can be calculated by the equation

$$E = \frac{1}{2} * Cs * V^2$$
 (S3)

and the power density is given by

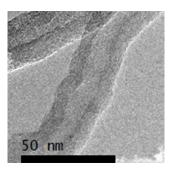
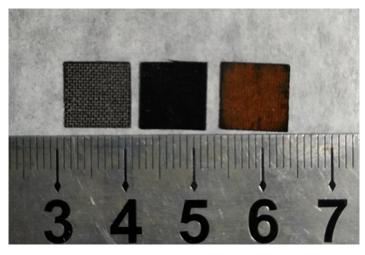
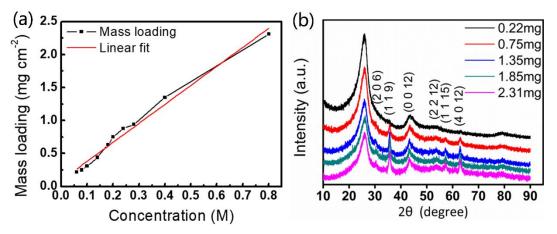
$$P = \frac{E}{t} \tag{S4}$$

Where E is the energy density (Wh kg⁻¹), Cs is the specific capacitance (F g⁻¹) calculated by GCD curves of device, V is the voltage window (V), P is the power density (W kg⁻¹), and t is the discharge time (s).

To maintain a charge balance between the cathode and anode, the mass ratio between the cathode (m_{-}) and anode (m_{-}) electrodes needs to follow the equation (S5):

$$\frac{m_+}{m_-} = \frac{C_- * \Delta V_-}{C_+ * \Delta V_+} \tag{S5}$$

Supporting Figures

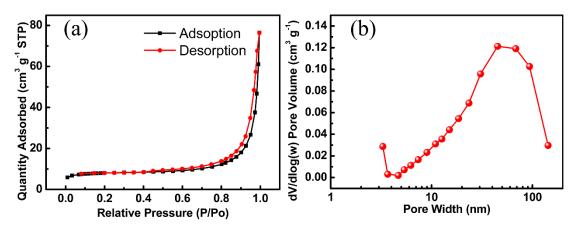
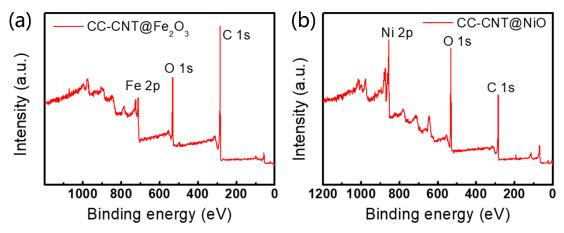
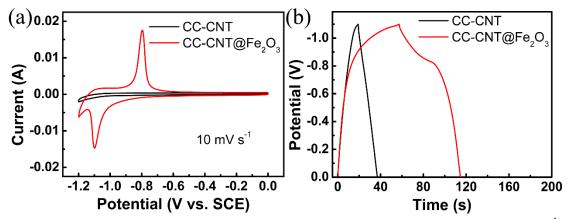

Figure S1: TEM of the CNT.

Figure S2: Optical photograph of CC, CC-CNT and CC-CNT@Fe₂O₃ (from left to right).

Figure S3: (a) Linear relationship between the mass loading of Fe₂O₃ on CC-CNT and the concentration of the FeCl₃ solution. (b) XRD of CC-CNT@Fe₂O₃ with different mass loadings of Fe₂O₃.

Figure S4: (a) N₂ adsorption-desorption isotherms and (b) BJH pore size distribution of CC-CNT@Fe₂O₃ at 75.9 K and (b) CC-CNT@NiO.

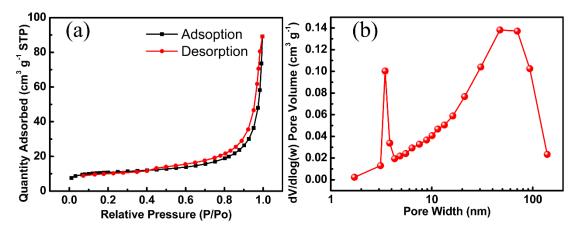

Figure S5: Whole XPS spectra of (a) CC-CNT@Fe₂O₃ and (b) CC-CNT@NiO.

Figure S6: Comparison of CC-CNT and CC-CNT@Fe₂O₃: (a) CV curves at 10 mV s⁻¹, (b) GCD curves at 4.3 mA cm⁻².

Table S1: Fitted EIS values of CC-CNT@Fe₂O₃ and CC-CNT@NiO.

	Rs	CPE-T	CPE-P	Rct	W-R	W-T	W-P	С
CC-CNT @Fe ₂ O ₃	1.125	0.0035572	0.85	0.002	0.35	0.056	0.37	0.8
CC-CNT @NiO	1.27	0.0012409	0.85	0.1	0.7	0.12	0.3327	0.465

Figure S7: (a) N₂ adsorption-desorption isotherms and (b) BJH pore size distribution of CC-CNT@NiO at 75.9 K.

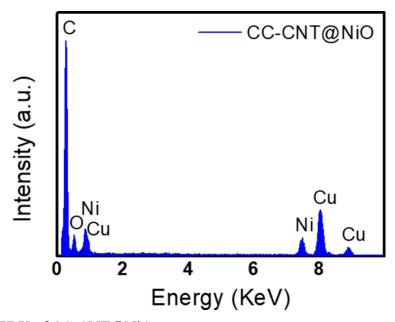
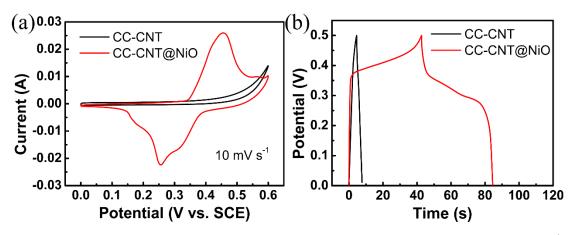
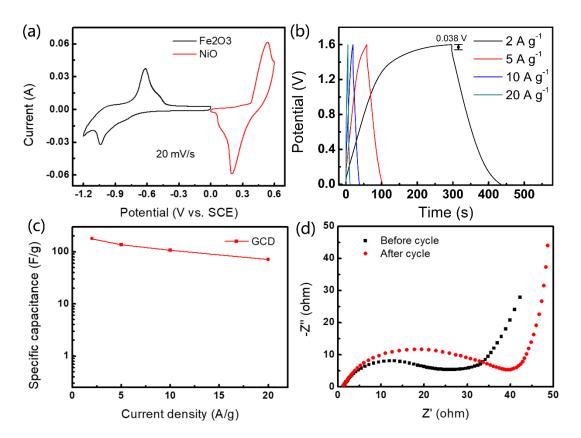




Figure S8: EDX of CC-CNT@NiO.

Figure S9: Comparison of CC-CNT and CC-CNT@NiO: (a) CV curves at 10 mV s^{-1} , (b) GCD curves at 6.6 mA cm^{-2} .

Figure S10: (a) CV curves of CC-CNT@Fe₂O₃ and CC-CNT@NiO at 20 mV s⁻¹. (b) GCD curves and (c) Specific capacitances at 2, 5, 10 and 20 A g⁻¹ of the all-solid-state ASC. (d) EIS curve of the device before and after 5000 cycles.

References

[1] Zhou, J.; Zhao, H.; Mu, X.; Chen, J.; Zhang, P.; Wang, Y.; He, Y.; Zhang, Z.; Pan, X.; Xie, E. *Nanoscale* **2015**, *35*, 14697–14706. doi:10.1039/c5nr03426d