

Supporting Information

for

Synthesis of MnO₂–CuO–Fe₂O₃/CNTs catalysts: lowtemperature SCR activity and formation mechanism

Yanbing Zhang, Lihua Liu, Yingzan Chen, Xianglong Cheng, Chengjian Song, Mingjie Ding and Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855. doi:10.3762/bjnano.10.85

Additional experimental data

sample	$S_{\text{BET}}(\text{m}^2 \cdot \text{g}^{-1})$	pore volume (cm ³ ·g ⁻¹)
pristine CNTs	63.11	0.1457
acid-treated CNTs	71.11	0.1585
1% Mn–CuO–Fe ₂ O ₃ /CNTs	61.29	0.1319
2% Mn-CuO-Fe ₂ O ₃ /CNTs	86.40	0.1660
4% Mn–CuO–Fe ₂ O ₃ /CNTs	95.66	0.1841
6%Mn-CuO-Fe ₂ O ₃ /CNTs	130.54	0.2447
Mn–Cu–FeO _x /CNTs-IWIM	111.05	0.1673

Table S1: BET surface area and pore volume for the pristine CNTs, acid-treatedCNTs and as-prepared catalysts

Table S2: Relative oxygen content of the as-prepared catalysts.

	O(%)	
sample	O _L O _S	
4% MnO ₂ -CuO-Fe ₂ O ₃ /CNTs	33.3	66.7
Mn-Cu-FeO _x /CNTs-IWIM	63.2	36.8

Figure S1: N_2 adsorption-desorption isotherm and pore size distribution (inset) of (a) acid-treated CNTs, (b) 4% MnO₂-CuO-Fe₂O₃/CNTs, and (c) Mn-Cu-FeO_x/CNTs-IWIM.

Figure S2: SO₂ tolerance of 4% MnO₂–CuO–Fe₂O₃/CNTs catalyst. Reaction conditions: [NO] = [NH₃] = 400 ppm, [SO₂] = 50 ppm (when used), [O₂] = 5%, N₂ as balance gas, WHSV=280 L·g_{cat}⁻¹·h⁻¹, 0.15 g catalyst.

BET surface area data

The results of BET surface area measurements (Table S1) show that the surface area of the pristine CNTs was $63.11 \text{ m}^2 \cdot \text{g}^{-1}$, whereas it became larger after being loaded with catalyst, indicating the even distribution of metal-oxide catalysts on the CNTs. It should be noted that although the 4% MnO₂–CuO–Fe₂O₃/CNTs catalyst showed the best catalytic activity among all samples, it possessed a smaller surface area (95.66 m² · g⁻¹) than Mn–Cu–FeO_x/CNTs-IWIM (111.05 m² · g⁻¹), revealing that the surface area is not the only important factor in SCR activity [1].

N₂ adsorption-desorption curves

Figure S1 shows the N_2 adsorption–desorption isotherm and the pore size distribution of the acid-treated CNTs and the as-synthesized catalysts. All samples present a typical type-IV isotherm along with a type-H4 loop, verifying the mesoporous structure [2,3]. The pore sizes of the samples were between 2.5 and 5.0 nm.

SO₂ tolerance

 SO_2 , a common component of flue gas, can inhibit the catalytic activity. Therefore, the catalysts need to be resistant against SO_2 . In Figure S2, it is shown that the denitration efficiency of 4% MnO_2 –CuO–Fe₂O₃/CNTs catalyst is ca. 87.9% in the absence of SO_2 . When 50 ppm SO_2 is added to the gas flow for 5 h, there is a decline in catalytic efficiency to ca. 67.6%. Afterwards, the catalytic activity remains stable at around 67.1%. Hence, the 4% MnO_2 –CuO–Fe₂O₃/CNTs exhibits SO_2 tolerance, which is favorable for its practical application.

References

- Zhang, Y.; Zheng, Y.; Wang, X.; Lu, X. Catal. Commun. 2015, 62, 57–61. doi:10.1016/j.catcom.2014.12.023
- Schill, L.; Putluru, S.; Fehrmann, R.; Jensen, A. Catal. Lett. 2014, 144, 395–402. doi:10.1007/s10562-013-1176-2
- Sing, K.; Everet, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemieniewska, T. *Pure Appl. Chem.* 1985, *57*, 603–619. doi:10.1351/pac198557040603