

Supporting Information

for

DFT calculations of the structure and stability of copper clusters on MoS₂

Cara-Lena Nies and Michael Nolan

Beilstein J. Nanotechnol. **2020**, *11*, 391–406. doi:10.3762/bjnano.11.30

Additional computational data

DOS Plots

Density of state plots for all Cu_n adsorption configurations are given below.

Figure S1: DOS plots of Cu₁ and Cu₂ adsorption structures. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of 5 for the ease of comparison.

Figure S2: DOS plots of Cu₃ adsorption structures. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of five for the ease of comparison.

Figure S3: DOS plots of Cu₄ adsorption structures. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of five for the ease of comparison.

Figure S4: DOS plots of Cu₁ and Cu₄ adsorption structures on defective MoS₂. Black = total DOS, blue = DOS projected onto Mo d orbitals, red = DOS projected onto S p orbitals, cyan = DOS projected onto Cu d orbitals. The contribution of the Cu d orbitals has been increased by a factor of five for the ease of comparison.

Charge Density Distribution after adsorption of Cu_n

The charge density difference after adsorption of the most favourable Cu_n is shown below.

Figure S5: Charge density difference after adsorption of the most favourable Cu_n on pristine (A–G) and defective (H, I) MoS_2 .

Cu atom repelled from ML

An example of a Cu atom that is repelled from the MoS₂ ML is shown in Figure S6. This occurred during the relaxation of several Cu₄ structures on the MoS₂ monolayer with an S vacancy.

Figure S6: A Cu atom is repelled from the surface during the geometry relaxation.