

Supporting Information

for

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

Cristiano Glessi, Aya Mahgoub, Cornelis W. Hagen and Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269. doi:10.3762/bjnano.12.21

Additional experimental data

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

Table of content:

NMR characterization and cold finger sublimation experiments of the precursors 1–7	S3
1 (Cl,Me)AuCl	S3
2 (CI,Et)AuCl	S4
3 (Cl,iPr)AuCl	S5
4 (Cl,Et)AuBr	S6
5 (Cl,Et)Aul	S9
6 (N,Et)AuCl	S12
7 (Cl,Et)AuCF ₃	S16
Supplemental deposition data for 1–7	S19

NMR characterization and cold finger sublimation experiments of the precursors 1–7

1 (CI,Me)AuCl

Sublimation. From top to bottom in order: **1**, sublimed obtained for three different experiments at a registered temperature of: 100.7 °C, 99.6 °C, 100.9 °C.

Figure S1: ¹H NMR spectra stack plot for **1** and the obtained sublimation materials (400 MHz or 300 MHz, CD₂Cl₂).

2 (CI,Et)AuCl

Elemental analysis: Calcd. for C₇H₁₀AuCl₃N₂: C, 19.76; H, 2.37; N, 6.58%. Found: C, 19.80; H, 2.35; N, 6.56%.

Sublimation. From top to bottom in order: **2**, sublimed obtained for three different experiments at a registered temperature of: 78.3 °C, 78.3 °C, 78.2 °C.

Figure S2: ¹H NMR spectra stack plot for **2** and the obtained sublimation materials (400 MHz or 300 MHz, CD₂Cl₂).

3 (CI,iPr)AuCl

Elemental analysis: Calcd. for C₉H₁₄AuCl₃N₂: C, 23.83; H, 3.11; N, 6.18%. Found: C, 23.81; H, 3.09; N, 6.19%.

Sublimation. From top to bottom in order: **3**, sublimed obtained for three different experiments at a registered temperature of: 75.2 °C, 76.2 °C, 75.2 °C.

5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 f1 (ppm)

Figure S3: ¹H NMR spectra stack plot for **3** and the obtained sublimation materials (400 MHz or 300 MHz, CD₂Cl₂).

4 (Cl,Et)AuBr

Figure S4: ¹H NMR spectrum of 4 (400 MHz, CD₂Cl₂).

Figure S5: ¹³C NMR spectrum of 4 (101 MHz, CD₂Cl₂).

Sublimation. From top to bottom in order: **4**, sublimed obtained for three different experiments at a registered temperature of: 77.3 °C, 77.2 °C, 77.4 °C.

Figure S6: ¹H NMR spectra stack plot for **4** and the obtained sublimation materials (400 MHz or 300 MHz, CD₂Cl₂).

5 (CI,Et)Aul

Figure S7: ¹H NMR spectrum of 5 (600 MHz, CD₂Cl₂).

Figure S8: ¹³C NMR spectrum of 4 (151 MHz, CD₂Cl₂).

Sublimation. From top to bottom in order: **5**, sublimed obtained for three different experiments at a registered temperature of: 73.3 °C, 73.2 °C, 73.3 °C.

Figure S9: ¹H NMR spectra stack plot for **5** and the obtained sublimation materials (400 MHz or 300 MHz, CD₂Cl₂).

6 (N,Et)AuCl

17NEtCl.10.fid PROTON CD2Cl2 {D:\uio\AVII400-05} cristigl 23 8885555 4444 4444 887244 887282 [] ſ 5.0 4.5 f1 (ppm) F98:2 1.00-1 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.0

Figure S10: ¹H NMR spectrum of 6 (400 MHz, CD₂Cl₂).

Figure S11: ¹H NMR spectrum of 6 (101 MHz, CD₂Cl₂).

Figure S12: $^{1}H-^{13}C$ HSQC spectrum of 6 (600 MHz, CD₂Cl₂).

Figure S13: $^{1}H-^{13}C$ HMBC spectrum of 6 (600 MHz, CD₂Cl₂).

Sublimation. From top to bottom in order: **6**, sublimed obtained for three different experiments at a registered temperature of: 60.2 °C, 59 °C, 60.2 °C.

Figure S14: ¹H NMR spectra stack plot for **6** and the obtained sublimation materials (400 MHz or 300 MHz, CD₂Cl₂).

7 (CI,Et)AuCF₃

Figure S15: ¹H NMR spectrum of 6 (400 MHz, CD₂Cl₂).

Figure S17: ¹⁹F NMR spectrum of 6 (188 MHz, CD₂Cl₂).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 -220 f1 (ppm)

Sublimation. From top to bottom in order: **6**, sublimed obtained for three different experiments at a registered temperature of: 54.9 °C, 52.8 °C, 53.1 °C. For the first experiment no heating rate is applied as immediate sublimation is observed.

Figure S18: ¹H NMR spectra stack plot for **7** and the obtained sublimation materials (400 MHz or 300 MHz, CD₂Cl₂).

Supplemental deposition data for 1–7

Element	Average	Standard error
С	65.4	0.23
Ν	10.5	0.23
Au	5.0	0.07
Si	13.4	0.13
0	2.8	0.04
CI	0.9	0.02
I	2.0	0.05

Table S1: EDX of 5 performed at 8 keV and 600 pA.

Figure S19: 250 × 250 nm² square deposits of **6** at 100 °C, pitch 10 nm, dwell 500 μ s, 5 kV, 2000 passes, 600 pA, top down and 50° tilt. A round, very granular halo is visible.

Figure S20: (a) Height and (b) diameter of pillars grown using a 5 kV, 40 pA beam as a function of the electron dose given as total number of primary electrons used to deposit a pillar. During all experiments the substrate and the precursor are heated together to 100 °C, except for (CI,Me)AuCI, which was heated to 120 °C. For each precursor an array of 3×3 pillars was deposited. The lines between the points merely serve as a guide to the guide.